
The Riemann–Roch Theorem

Well, a Riemann surface is a certain kind of Hausdorf space. You know what a Hausdorf space is,

don’t you? Its also compact, ok. I guess it is also a manifold. Surely you know what a manifold

is. Now let me tell you one non-trivial theorem, the Riemann–Roch Theorem

— Gian-Carlo Rota’s recollection of Lefschetz lecturing in the 1940’s, quoted in

A Beautiful Mind by Sylvia Nasar.

Introduction

In this section M will always denote a compact Riemann surface of genus g. We introduce

divisors on Riemann surfaces as a device for describing the zeros and poles of meromorphic functions

and differentials on M . Associated to each divisor is are vector spaces of meromorphic functions and

differentials. The Riemann–Roch theorem is a relation between the dimensions of these spaces.

Divisors

The zeros and poles of a meromorphic function or form on M can be described assoicating with

each point in M an integer. To each zero we associate the order of the zero, to each pole we associate

minus the order of the pole, and to points that are neither zeros nor poles we associate zero. This leads

us to the following definition.

A divisor is a function

α : M → Z

that takes on non-zero values for only finitely many p ∈ M .We will write divisors multiplicatively as

A =
∏

p∈M

pα(p), B =
∏

p∈M

pβ(p)

(although it is acutally more common to write them additively as
∑

p∈M α(p)p.) The set of all divisors,

denoted Div(M), has a natural abelian group structure. With our notation the product and inverse are

given by

AB =
∏

p∈M

pα(p)+β(p)

A
−1 =

∏

p∈M

p−α(p)

The identity element 1 corresponds to α(p) = 0 for every p ∈ M . With these definitions, Div(M)

forms an abelian group (in fact, the free abelian group generated by points of M ).

Recall that if ω is a meromorphic q-differential then order of ω at p ∈ M , denoted ordp(ω) is power

corresponding to the first non-zero term in the Laurent expansion of a local expression for ω. If ω is
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not identically zero, then ordp(ω) = 0 for all but finitely many points (the zeros and poles of ω). Thus

div(ω) =
∏

p∈M

pordp(ω)

is an example of a divisor on M . Notice that

div(ωη) = div(ω) · div(η)

In particular, if we letK∗(M) = K(M)\{0} denote the multiplicative group of meromorphic functions

K(M) (that is, 0-differentials). Then div : K∗ → Div(M) is a group homomorphism.

The degree of the divisor deg : Div(M) → Z is defined as

deg(
∏

p∈M

pα(p)) =
∑

p∈M

α(p)

The degree is also a group homomorphism.

Proposition 1 deg(div(f)) = 0 for any meromorphic function f .

Proof: Think of f as a holomorphic map from M to C∞. Recall that we defined the branching number

bf (p) for such a map. We proved that for any q ∈ C∞

∑

p∈f−1(q)

bf (p) + 1 = m

where m is the degree of f . (This is different from the degree of div(f)!) In particular

∑

p∈f−1(0)

bf (p) + 1−
∑

p∈f−1(∞)

bf (p) + 1 = 0

If p is a zero of f then bf (p) + 1 = ordp(f). On the other hand, if p is a pole of f then bf (p) + 1 =

− ordp(f). Therefore the previous equality can be written

div(deg(f)) =
∑

p∈M

ord
p

(f) = 0

A principal divisor is a divisor of the form div(f) for a non-zero meromorphic function f . The

principal divisors form a subgroup of the group of divisors of degree zero. A (q-) canonical divisor is a

divisor of the form div(ω) for a non-zero meromorphic (q-)differential ω.

The divisor class group is the quotient Div(M)/principal divisors. Thus two divisors A and B

are in the same equivalence class if A = div(f)B for some meromorphic function f . Note that deg

is well defined on the divisor class group since if A = div(f)B then deg(A) = deg(div(f)B) =

deg(div(f)) + deg(B) = 0 + deg(B).
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The polar divisor of f is defined by

f−1(∞) =
∏

p∈M

pmax{− ordp(f),0}

while the zero divisor of f is defined by

f−1(0) =
∏

p∈M

pmax{ordp(f),0}

Since div(f) = f−1(0)/f−1(∞) the polar divisors and the zero divisors define the same element in the

divisor class group.

Any meromorphic differential defines the same element in the divisor class group. This element is

called the canonical class. This follows from the fact that if ω and η are two meromorphic differentials

then f = ω/η is a meromorphic function. Thus div(ω) = div(f) div(η). Similarly we may define the

q-canonical class (which is in fact just the qth power of the canonical class.)

There is a natural partial ordering on divisors. Let A =
∏

p∈M pα(p) and B =
∏

p∈M pβ(p). We

say A ≥ B if α(p) ≥ β(p) for every p ∈ M and A > B if A ≥ B but A 6= B. A divisor A is called

integral (or effective) if A ≥ 1 and strictly integral if A > 1.

A meromorphic function f is called a multiple if A if f = 0 or div(f) ≥ A. If A =
∏

p∈M pα(p) and

f is non-zero, this means that f is has poles of order a most− ordp(f) at points p where ordp(f) < 0. At

all other points f is holomorphic, with zero of order at least ordp(f) whenever ordp(f) > 0. Similarly,

a meromorphic differential ω is called a multiple of A if ω = 0 or div(ω) ≥ A

Define the vector spaces

L(A) = {meromorphic functions f : div(f) is a multiple of A}

Ω(A) = {meromorphic differentials div(ω) : ω is a multiple of A}

Here are some elementary facts about these spaces.

Proposition 2 L(1) = C.

Proof: If div(f) ≥ 1 then f is a holomorphic function on M , hence constant.

Proposition 3 If deg(A) > 0 then L(A) = {0}.

Proof: If f is non-zero and contained in L(A) then deg(div(f)) ≥ deg(A) > 0. But this is impossible

since the degree the principal divisor div(f) is zero.

Proposition 4 If A ∈ Div(M) and ω is any non-zero meromorphic differential then

dim(Ω(A)) = dim(L(A/ div(ω)))

Proof: The linear map from Ω(A) → L(A/ div(ω)) defined by η 7→ η/ω is clearly one to one and onto.
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Proposition 5 For any divisor A the dimensions dim(L(A)) and dim(Ω(A)) only depend on the equivalence

class of A in the divisor class group.

Proof: Suppose that B = div(f)A for some meromorphic function f . Then multiplication by f is a

linear one to one and onto map from L(A) → L(B). Thus dim(L(A)) = dim(L(B)). Let ω be

a non-zero meromorphic differential, whose exisitence was established in a previous section. Then

dim(Ω(A)) = dim(L(A/ div(ω))) = dim(L(B/ div(ω))) = dim(Ω(B)).

We now state the Riemann–Roch Theorem.

Theorem 6 Let M be a compact Riemann surface of genus g and A ∈ Div(M). Then

dim(L(A−1) = deg(A)− g + 1 + dim(Ω(A))

Proof of Theorem 6 when A = 1: In this case L(A−1) = L(1) consists of holomorphic functions. These

are precisely the constant functions. Thus dim(L(A−1)) = 1. The space Ω(A) consists of holomorphic

differentials. This space is g dimensional. Finally, we have deg(1) = 0. Since

1 = 0− g + 1 + g

the Riemann-Roch theorem holds.

Proof of Theorem 6 when A > 1: Let A = pn1

1 · · · pnm
m with nj > 0. Then deg(A) =

∑

nj > 0. Choose

representatives {a1, . . . , ag, b1, . . . , bg} for a canonical homology basis. Define B = pn1+1
1 · · · pnm+1

m

and

Ω0(B
−1) = {ω ∈ Ω(B−1) : respj

(ω) = 0,

∫

aj

ω = 0, j = 1, . . . , g}

The point of introducing this space is that the exterior derivative d maps the space we are interested

in, namely L(A−1) into Ω0(B
−1). This follows by considering the action of d locally near the poles.

If f ∈ L(A−1), then the poles of df will have order one greater than the poles of f . Moreover, all the

residues of df will be zero as will be the integrals of df over any closed cycle, in particular the aj cycles.

Thus

d : L(A−1) → Ω0(B
−1) (1)

and we may compute the dimension of L(A−1) using

dim(L(A−1)) = dim(Ker(d)) + dim(Im(d)).

The dimension of Ker(d) is 1, since any function f with df = 0 is constant, and constants are

contained in L(A−1) since we are assuming that A is integral. Thus

dim(L(A−1)) = 1 + dim(Im(d)). (2)

4



Next, we claim that

dim(Ω0(B
−1)) = deg(A) (3)

To prove this claim we recall that for each p ∈ M and n ≥ 2 there exist meromorphic one forms τ
(n)
p

such that in a local co-ordinate system vanishing at p, τ (n)
p is given by z−ndz and such that

∫

aj
τ

(n)
p = 0

for each j. For each j = 1, . . . , m we now choose local co-ordinates vanishing at pj , and fixed for the

rest of the proof, thus obtaining nj elements τ
(2)
pj , . . . , τ

(nj+1)
pj in Ω0(B

−1). These forms are clearly

linearly independent. This implies that

dim(Ω0(B
−1)) ≥

∑

j

nj = deg(A)

To establish the opposite inequality, we expand an element ω ∈ Ω0(B
−1) locally about each point pj .

Suppose in co-ordinates vanishing at pj the form ω has the expansion
∑∞

k=−nj−1 dj,kzkdz. Define the

map S : Ω0(B
−1) → Cdeg(A) by

S : ω 7→ (d1,−2, . . . , d1,−n1−1, . . . . . . dm,−2, . . . , dm,−nm−1)

If Sω = 0 then ω is a holomorphic one form whose integral over every aj cycle vanishes, and hence is

zero. Thus S is one to one and

dim(Ω0(B
−1))) = dim(Im(S)) ≤ dim(Cdeg(A)) = deg(A).

This establishes (3) and also shows that the forms τ
(k)
pj , for k = 2, . . . , nj + 1, j = 1..m form a basis for

Ω0(B
−1)).

Our final task is to compute the dimension of the image of d in (1). Notice that this image consists

of precisely those ω ∈ Ω0(B
−1)) with

∫

bj
ω = 0 for j = 1, . . . , g. This is because the residues and the

integrals over the aj cycles are zero by assumption, so the extra conditions imply that integrals of ω

are independent of path. Thus given such an ω we may define f =
∫ z

0 ω, where 0 is any base point.

Then df = ω. The poles of f will have order one less than poles of ω so f ∈ L(A−1), as required.

The observation that Im(d) is obtained from Ω0(B
−1)) by imposing g linear conditions shows

that dim(Im(d)) ≥ dim(Ω0(B
−1)))− g = deg(A)− g. This already gives the Riemann inequality

dim(L(A−1)) = dim(Ker(d)) + dim(Im(d)) ≥ 1 + deg(A)− g.

However to obtain an equality we must do more. Start with the basis τ k
pj

, k = 2, . . . , nj + 1,

j = 1..m for Ω0(B
−1)). We proved the bilinear relation

∫

bl

τk
pj

= 2πi
α

(l)
j,k−2

k − 1
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where α
(l)
j,k−2 are coefficients for the expansion in the co-ordinate system about pj for the basis

{ω1, . . . , ωg} for Ω(1) (the holomorphic one forms) normalized so that
∫

aj
ωk = δj,k . Explicitly,

ωl =
∑

k

α
(l)
j,kzkdz near pj

An element

ω =

m
∑

j=1

nj+1
∑

k=2

dj,kτk
pj

of Ω0(B
−1)) lies in Im(d) precisely when for every l = 1, . . . , g,

0 =

∫

bl

ω =

m
∑

j=1

nj+1
∑

k=2

dj,k

∫

bl

τk
pj

= 2πi

m
∑

j=1

nj+1
∑

k=2

dj,k

α
(l)
j,k−2

k − 1

This can be written as the matrix equation

TM

































d1,2

...
d1,n1+1

...

...
dm,2

...
dm,nm+1

































= 0

where

T =







α
(1)
1,0 . . . α

(1)
1,n1+1

...
...

...
α

(g)
1,0 . . . α

(g)
1,n1+1

. . . . . .
...

...
. . . . . .

α
(1)
m,0 . . . α

(1)
m,nm−1

...
...

...
α

(g)
m,0 . . . α

(g)
m,nm−1







and M is the diagonal matrix

M = diag[1, 1/2, . . . , 1/n1, . . . . . . , 1, 1/2, . . . , 1/nm]

Since M is invertitlbe, this shows that the dimension of Im(d) is equal to the dimension of the kernel

of T .

The proof is completed by recognizing the transpose of matrix T Define a map R : Ω(1) → Cdeg(A)

as follows. Given ω ∈ Ω(1) (that is, ω is holomorphic one-form) we exand about pj in local co-ordinates:

ω =

∞
∑

k=0

ej,kzkdz near pj

Then

R : ω 7→ (e1,0, . . . , e1,n1−1, . . . . . . , em,0, . . . , em,nm−1)
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Then the kernel of R is Ω(A), since Rω = 0 forces ω to have zeros of precisely the required orders. To

compute the matrix for R with respect to the basis {ω1, . . . , ωg} for Ω(1) and the standard basis for Cg

we must compute Rωl and place the resulting vectors in the columns of the matrix. Since

Rωl = (α
(l)
1,0, . . . , α

(l)
1,n1−1, . . . . . . , α

(l)
m,0, . . . , α

(l)
m,nm−1)

we see that the matrix for R is the transpose of T . We have

dim(Ker(T t)) + dim(Im(T t)) = dim(Ω(1)) = g

This implies that

dim(Ω(A)) + dim(Im(T t)) = g

On the other hand

dim(Ker(T )) = dim(Cdeg(A))− dim(Im(T t))

This implies that

dim(Im(d)) = deg(A)− dim(Im(T t))

Combining these equations gives

dim(Im(d)) = deg(A)− g + dim(Ω(A))

In view of (2), this completes the proof.

Proof of Theorem 6 when A is equivalent to an integral divisor: This is immediate since none of the quantities

in the Riemann Roch equality change when A is replaced with an equivalent divisor.

To proceed we must compute the degree of the canonical class. To prepare for this we prove the

easiest case of the uniformization theorem.

Lemma 7 If g = 0 then M is biholomorphic to C∞.

Proof: Pick any p ∈ M . Then dim(L(p−1)) ≥ deg(p)−g +1 = 2. Since the holomorphic functions (that

is, constants) only account for one dimension, there must be a function in L(p−1) with a pole of order

one at p. Thinking of f as a holmorphic map from M → C∞ we find that
∑

p∈f−1(q) bf (p) + 1 = 1

for every q ∈ C∞. This shows that bf (p) = 0 for all p and that f−1(q) always contains a single point.

Hence f is a biholomorphic map.

Lemma 8 Let ω be a meromorphic differential. Then deg(ω) = 2g − 2.

Proof: Since all meromorphic differentials are equivalent and therefore all have the same degree we

may choose any meromorphic differential to do this computation.

When g = 0 and M ∼= C∞ we choose ω = dz If w = 1/z then dz = w−2dw so there is a single

pole of order 2 at z = ∞. Thus deg(ω) = −2 = 2g − 2.
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When g > 0 there exist holomorphic differentials. Let ω be a holomorphic differential. By

Proposition 4

dim(L(div(ω)−1)) = dim(Ω(div(ω)−1 div(ω))) = dim(Ω(1)) = g

and

dim(Ω(div(ω))) = dim(L(div(ω)/ div(ω))) = dim(L(1)) = 1

Because ω is holomorphic, div(ω) is integral. Hence we may use the portion of the Riemann-Roch

theorem already proved to conclude

g = deg(div(ω))− g + 1 + 1,

which proves the lemma.

Another way of saying this is that the degree of the canonical class in the divisor class group is

2g − 2

Proof of Theorem 6 when div(ω)/A is equivalent to an integral divisor for some meromorphic differential ω: We

use the Riemann-Roch theorem for div(ω)/A and Proposition 4 to write

dim(Ω(A)) = dim(L(A/ div(ω)))

= deg(div(ω)/A)− g + 1 + dim(Ω(div(ω)/A))

= deg(div(ω))− deg(A)− g + 1 + dim(Ω(A−1))

= 2g − 2− deg(A)− g + 1 + dim(Ω(A−1)).

This completes the proof.

We can now handle the remaining cases.

Proof of Theorem 6 when neither A nor div(ω)/A for any meromorphic differential ω is equivalent to an integral

divisor: First we claim that

dim(L(A−1)) = 0. (4)

To see this suppose there is a nonzero f ∈ L(A−1). Then div(f) ≥ A−1. This implies that div(f)A ≥ 1,

that is, A is equivalent to an integral divisor. This contradicts our first assumption and proves the claim.

Similarly, we claim that

dim(Ω(A)) = 0. (5)

Suppose that there is a nonzero ω ∈ Ω(A). Then div(ω) ≥ A so that div(ω)/A ≥ 1 contradicting our

second assumption.

Therefore, to prove the Riemann-Roch theorem in this case, we must show that deg(A) = g − 1.

Write A = A1A2 where A1 and A2 are both integral and have no points in common. Then

deg(A) = deg(A1)− deg(A2)
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By the Riemann inequality for integral divisors

dim(L(A−1
1 )) ≥ deg(A1)− g + 1 = deg(A) + deg(A2)− g + 1

Suppose deg(A) ≥ g. Then dim(L(A−1
1 )) ≥ deg(A2)+1. Now the space L(A−1)) is a subspace of

dim(L(A−1
1 )) obtained by imposing deg(A2) linear conditions, namely that the functions vanish at the

points and to the orders prescibed by A2. This implies that dim(L(A−1)) ≥ dim(L(A−1
1 ))−deg(A2) ≥

1. This contradicts (4) and establishes that deg(A) ≤ g − 1

Now we repeat the argument above with for the divisor div(ω)/A, where ω is a meromorphic

differential. Under the assumption deg(div(ω)/A) ≥ g we derive dim(L(A/ div(ω)) ≥ 1 But by (5)

dim(L(A/ div(ω))) = dim(Ω(A)) = 0.

This implies deg(div(ω)/A) ≤ g− 1 so that deg(div(ω))−deg(A) ≤ g− 1 Since deg(div(ω)) = 2g− 2

this shows that deg(A) ≥ g − 1.

Thus deg(A) = g − 1 and the proof is complete.
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