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My research area is geometric group theory and geometric structures on mani-
folds, with the main emphasis on the interaction between algebraic, topological and
geometric properties of groups and applying geometric techniques in order to solve
problems in the algebraic group theory and algebraic geometry.

1 Interaction of metric geometry and the theory

of algebraic groups

In the series of papers [13], [39], [54], [43], [44], [45], [14], I and my collaborators
(Tom Haines, Shrawan Kumar, Bernhard Leeb and John Millson) applied ideas and
methods of Riemannian geometry to tackle some fundamental problems of Lie theory
and representation theory. Surveys of this work are published in [18] and [30]. Some
of these problems again originate in the 19-th century linear algebra problems, e.g.

“Given two symmetric matrices with given sets of eigenvalues, what can be said
about the eigenvalues of their sum?”

Another basic problem we are addressing is how to decompose the tensor product
of two irreducible representations of a Lie group into irreducible summands. The most
significant result we obtained here is a generalization of the celebrated Saturation
Theorem in representation theory (due to Knutson and Tao), to groups other than
GL(n), see [54].

Theorem 1 Given any root system R and positive Weyl chamber ∆, one can define
a saturation factor k = kR (currently, ranging between 1 and 60), and a convex cone
C ⊂ ∆3 (given by the vector-valued triangle inequalities) so that the following holds.
Let G be a complex semisimple group with the root system R. Then for every triple
(λ, µ, ν) of dominant weights of G, whose sum belongs to the root lattice of G, we
have:

1. If
(Vλ ⊗ Vµ ⊗ Vν)G 6= {0}

then (λ, µ, ν) ∈ C.
2. If (λ, µ, ν) ∈ C then

(Vk2λ ⊗ Vk2µ ⊗ Vk2ν)G 6= {0}.
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This theorem contains the saturation theorem of Knutson and Tao [58] as a special
case, since for the type A root systems, we have k = 1.

A spin-off of this work is my paper with Arkady Berenstein [2]. There we construct
thick affine buildings associated with dihedral Coxeter groups I2(m) of order 2m,
m 6= 1, 2, 3, 6. These groups do not correspond to any root systems and any Lie
groups. While spherical buildings were constructed by J.Tits in 1977, the existence
of Euclidean buildings was unknown prior to our work, except for a construction of
buildings for the dihedral group I2(8) (due to Kramer, Hitzelberger and Weiss [15]:
Unlike [2], their proof was based on existence of certain finite groups, called Suzuki
groups). The paper [2] completes the classification (initiated by J. Tits) of finite
Coxeter groups for which there exist thick affine building.

2 Geometric structures on manifolds

I proved some existence theorems for conformally-flat Riemannian metrics and convex
real-projective structures:

[17]. The main result of this paper is:

Theorem 2 Let M be a smooth closed 4-dimensional spin-manifold. Then there
exists a closed 4-dimensional smooth manifold N such that the connected sum M#N
admits a conformally-flat Riemannian metric. The point is that the manifold M need
not admit a conformally flat metric, for instance, because it has nonzero signature or
has simple infinite fundamental group.

[20]. In this paper I construct strictly convex real-projective structures on Gromov-
Thurston manifolds Mn of dimension n ≥ 4. These are manifolds which admit nega-
tively curved metrics with small pinching, while admitting no locally symmetric met-
rics of negative curvature. As the result, I obtain strictly convex domains Ω ⊂ RP n

(for each n ≥ 4) and properly discontinuous cocompact groups of projective transfor-
mations Γ y Ω, so that Γ is Gromov-hyperbolic but not isometric to the fundamental
group of a closed hyperbolic n-manifold. Prior to this work, such examples existed
only for n = 4, they were constructed by Y. Benoist in [1] using reflection groups; in
the same paper he posed the problem of existence of higher-dimensional examples.

[33]. In this paper I answered a question asked by Gregory Margulis in his ICM-
1974 paper: I constructed a finitely generated discrete subgroup Γ of isometries of a
4-dimensional Hadamard manifold of pinched negative curvature, such that the orders
of torsion elements in Γ are unbounded.

3 Kleinian groups and discrete subgroups in semisim-

ple Lie groups

[21]. This is an extensive survey (which I was writing on and off since 1992) on
topological and geometric aspects of Kleinian groups acting on higher-dimensional
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hyperbolic spaces. The main challenge was to select and organize the diverse material
so that it takes a coherent shape and connects to various developments in other areas
of mathematics. The paper contains some new results as well. For instance, it is a
standard fact of the theory of Kleinian groups acting on the hyperbolic 3-space H3

that if two such groups are quasiconformally conjugate, then one can continuously
deform one group to the other. It is shown in [21] that the corresponding assertion
is false for torsion-free Kleinian groups acting on Hn, n ≥ 5.

[22]. This paper deals with the interplay between homological dimension of
Kleinian groups and their critical exponents. The main result is a linkage between
two basis invariants of Kleinian groups: An algebraic invariant (the homological di-
mension) and a geometric invariant (the critical exponent).

Theorem 3 Let Γ be a discrete subgroup of the group of isometries of hyperbolic
n-space, Isom(Hn). Let δ(Γ) denote the critical exponent of Γ and d(Γ) denote the
rational homological dimension of Γ relative to its rank ≥ 2 parabolic subgroups. Then

d(Γ) ≤ δ(Γ) + 1.

Corollary 4 Let Γ be a nonelementary geometrically finite subgroup of Isom(Hn) so
that the topological dimension of its limit set equals the Hausdorff dimension of the
limit set. Then the limit set is a round sphere.

Results of this kind have a long history, going back to H. Poincaré who (about
100 years ago) had observed that the limit set of a quasifuchsian group is either a
round circle or is “fractal” (nowhere differentiable curve).

[24]. The main goal of this paper is to prove two results on sequences of discrete
representations of a finitely generated group Γ to a rank 1 Lie group G (such theorems
are, by now, standard, in the case of discrete and faithful representations). The
work was motivated by questions asked (nearly simultaneously) by several people
(in particular, Michel Boileau and Fritz Grunewald) about sequences of discrete but
non-faithful representations. The main result is

Theorem 5 1. Let ρi : Γ → G be a sequence of Zariski dense representations with
discrete images converging to a representation ρ : Γ→ G. Then ρ(Γ) is again discrete.

2. Suppose above that Γ is finitely-presented and the sequence of representations
ρi diverges to an action Γ y T of Γ on a tree T . Then, as in the Rips theory, Γ
admits a nontrivial splitting over a virtually nilpotent subgroup.

The novelty of Part 2 is that the action Γ y T need not be stable in the sense
of Rips. Nevertheless, one can generalize Rips notion of stability, so that the Rips
Machine still works.

[25]. In this paper I consider self-similar groups in the sense Nekrashevych. Self-
similar groups appear in various constructions of groups of intermediate growth and
most of them are rather exotic. The main result of this paper is that such groups
appear quite naturally in the context of discrete subgroups of Lie groups:
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Theorem 6 Let Γ be an irreducible lattice in a semisimple algebraic group over the
real numbers which is not locally isomorphic to SL(2,R). Then Γ is arithmetic if and
only if it admits a self-similar action on a rooted simplicial tree (of finite valence).
Moreover, all arithmetic groups (including the surface groups) admit self-similar ac-
tions on rooted simplicial trees.

[27]. A group Γ is called coherent if every finitely-generated subgroup of Γ is also
finitely-presented. This paper is centered around the following conjecture of mine (for
G = SO(n, 1) this conjecture is due to Dani Wise):

Conjecture 7 Let G be a semisimple algebraic group without compact factors, Γ < G
be a lattice. Then Γ is coherent if and only if G is locally isomorphic to SL2(F ),
F = R or F = C.

Note that one direction of this conjecture is well-known: Every discrete subgroup
of PSL2(C) is isomorphic to the fundamental group of a 3-dimensional hyperbolic
orbifold and, hence, is coherent by the theorem of P. Scott. In the case of lattices in
higher rank (i.e., rank ≥ 2) Lie groups this conjecture is currently out of reach, it is
not even known if SL(3,Z) is coherent, which is a problem posed by J.-P. Serre in
1979. In [27], building upon my earlier work with Potyagailo and Vinberg [55, 56, 57],
I established the following results supporting my conjecture by proving it for “most”
arithmetic lattices in rank 1 Lie groups:

• Conjecture 7 holds for all arithmetic subgroups in SO(n, 1) which are associated
with hermitian forms for division rings over totally–real number fields. This
leaves (among arithmetic subgroups of groups SO(n, 1)) the conjecture open
only the exceptional class of arithmetic lattices in SO(7, 1).

• Suppose that Γ is a cocompact lattice (arithmetic or not) in PU(2, 1) with posi-
tive 1st Betti number. Then Conjecture 7 holds for Γ. In particular, Conjecture
7 holds for all arithmetic lattices in PU(n, 1) of type 1 (i.e., the ones defined
by hermitian quadratic forms over number fields).

• Conjecture 7 holds for all lattices acting on quaternionic hyperbolic spaces HHn

(n ≥ 2) and the octonionic hyperbolic plane OH2.

Proofs of these results are based on a combination of ideas of algebraic, geometric,
topological and analytical nature. One of the key ingredients was Agol’s solution of
the virtual fibration conjecture for 3-dimensional hyperbolic manifolds. (When I first
wrote [27], I was working modulo the conjecture; luckily for me, Agol proved the
conjecture while the paper was being refereed.)

[31]. Undecidability of the discreteness problem for subgroups of SL(2,C).
This paper is motivated by the following basic question:

Question 8 Let G be a connected Lie group and let A = (A1, . . . , Ak) be a finite
ordered subset of G. Is the discreteness problem for the subgroup ΓA := 〈A1, . . . , Ak〉 <
G decidable?
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This question, in the case of G = PSL(2,C), was raised, most recently, in the
paper [9] by J. Gilman and L. Keen, who noted that:

“it is a challenging problem that has been investigated for more than a century
and is still open.”

The decidability problem was solved in the case G = PSL(2,R) by R. Riley
[60] and, more efficiently, in the case of 2-generated subgroups, by J. Gilman and
B. Maskit [10] and J. Gilman [7].

In [31] I prove that the problem of discreteness for 2-generated nonelementary
subgroups of PSL(2,C) is undecidable in the Blum-Schub-Smale computability model
(for computations over the real numbers).

Geometric finiteness in Lie groups of higher rank. I wrote a number of
papers in collaboration with Bernhard Leeb and Joan Porti and my current student,
Subhadip Dey, developing an analogue of the theory of geometrically finite Kleinian
groups in the setting of Lie groups of higher rank, like SL(n,R), see [46], [47], [48],
[40], [41], [50], [3], [4]. Some of this work is inspired by Mumford’s Geometric Invariant
Theory (GIT); in some sense we develop GIT for discrete subgroups of Lie groups,
defining stable and unstable points, etc. One of the novelties of our approach is that
our analogue of the Hilbert-Mumford numerical stability function takes values not
in real numbers but in a poset, specifically a finite Weyl group equipped with the
strong Bruhat order. These papers by now amount to about 700 pages. The paper
[50] is a survey of our work and [41] is an introduction to the subject. Spin-offs of
this work are my papers [51, 52] and [34] written with my former students Beibei Liu
and Jaejeong Lee, as well as Sungwoon Kim.

4 Metric geometry and Geometric Group Theory.

[19]. In this paper I solved a problem raised by Gromov in [12, page 18]:
Suppose that X is a geodesic metric space which is not quasi-isometric to a point,

R+ and R. Then the necessary and sufficient conditions for existence of a triangle in
X with the given side-lengths a, b, c are the usual triangle inequalities on a, b, c.

The same is shown to be true for path-metric spaces, provided that the triples
(a, b, c) are “nondegenerate”. On the other hand, I constructed examples of complete
non-geodesic path metric spaces X, for which no “degenerate” triples a = b + c, b 6=
0, c 6= 0, correspond to triangles in X.

[35]. In this joint paper with Bruce Kleiner we develop a homological machinery
for geometric group theory, primarily, for studying duality groups. An example of
application of this machinery is a coarse analogue of the Scott compact core theo-
rem for groups of arbitrarily large dimension (the Scott compact core theorem is a
fundamental result in 3-dimensional topology).

[37]. In this appendix to the paper by Olshansky, Osin and Sapir “Lacunary
hyperbolic groups,” I and Bruce Kleiner prove

Theorem 9 Let Γ be a finitely-presented group. Then Γ is Gromov-hyperbolic if and
only if one of its asymptotic cones is a tree.
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This theorem is well-known to be false for groups which are merely finitely–
generated. The main subject of the paper by Olshansky, Osin and Sapir “Lacu-
nary hyperbolic groups” is to develop a structural theory of groups admitting one
asymptotic cone which is a tree.

[36]. This joint paper with Bruce Kleiner is motivated by the 3-dimensional Wall
conjecture, due to C.T.C.Wall, namely that 3-dimensional Poincare duality groups
are fundamental groups of 3-dimensional manifolds. One approach to this conjecture
is along the lines of the weak hyperbolization conjecture, which is the coarse analogue
of Thurston’s hyperbolization conjecture (now Perelman’s theorem) for 3-dimensional
manifolds:

Conjecture 10 If Γ is a 3-dimensional Poincare duality group then either Γ contains
Z2 or Γ is Gromov-hyperbolic.

In [36] we prove this conjecture assuming, in addition, that Γ is a CAT(0) group.

[29]. In his essay [11], Gromov gave a brief sketch of the proof of Stallings’
theorem on ends of groups via harmonic functions. In [29], I gave a complete proof
for Gromov’s argument; the key technical result is a new compactness for harmonic
functions on Riemannian manifolds:

Theorem 11 Let M be a Riemannian manifold with infinitely many ends which ad-
mits cocompact isometric group action GyM . Consider the space H of nonconstant
harmonic functions on M which take only values 0 and 1 on the ends of M . Then
the energy function on H is proper modulo the action of G.

[26]. This work deals with finitely-generated subgroups of the group Ham(M,ω),
the group of Hamiltonian symplectomorphisms of a symplectic manifold (M,ω). It
was proven by Polterovich and Franks & Handel that non-uniform lattices in higher
rank Lie groups do not embed in Ham(M,ω), where M is a surface (Franks and
Handel established this even for some non-uniform lattices in rank 1 Lie groups).
These results provide evidence to Zimmer’s conjecture that groups with Property T
cannot embed in the groups of area-preserving diffeomorphisms of surfaces. These
results left open the case of lattices in SO(n, 1), which was posed as an open problem
at the Oberwolfach workshop “Group Theory, Symplectic Geometry and Dynamics”
in Oberwolfach (Germany), 2006. In the paper [26] (solicited for publication by
GAFA) I proved the following:

Theorem 12 Let G be any RAAG (a Right–Angled Artin Group) and (M,ω) be any
symplectic manifold. Then G embeds in Ham(M,ω). In particular, as a corollary it
follows that for every arithmetic lattice Γ of simplest type in SO(n, 1), there exists a
finite-index subgroup Γ′ < Γ, so that Γ′ embeds in Ham(M,ω), where (M,ω) is an
arbitrary symplectic manifold (e.g., the 2-sphere).

Results along these lines were known earlier (in the context of area-preserving
diffeomorphisms) provided that M has a surface of high genus (depending on G).
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Passing from the higher-genus surfaces to the 2-sphere in (which is the key to the
proof of Theorem 12) required some substantially new ideas, both of geometrical and
analytical nature.

[6]. This joint paper with Koji Fujiwara paper deals with quasi–homomorphisms
f : Γ → (G, d) from arbitrary groups Γ into discrete groups equipped with proper
left-invariant metrics. A map f is called a quasi-homomorphism if

d(f(xy), f(x)f(y)) ≤ Const

for all x, y ∈ Γ. Quasi–homomorphisms were introduced by Stanislav Ulam in 1960’s
[62, Chapter 6], who regarded stability of homomorphisms as a part of the general
stability theory and asked the following general question: “When is it true that the
solution of an equation differing slightly from a given one, must of necessity be close
to the solution of the given equation?” It was known for a long time that homomor-
phisms of many groups are unstable in Ulam’s sense, when the target is commutative
(i.e., there are many quasihomomorphisms which are very far from homomorphisms):
This was first discovered by Robert Brooks when the domain Γ is a free group and
extended by Epstein and Fujiwara to the case of Gromov-hyperbolic groups Γ. Very
little was know prior to [6] about quasi-homomorphisms with noncommutative tar-
gets. Bill Thurston in an email to Danny Calegari noted that

“About quasi-morphisms to non-abelian groups: they may be hard to construct
in general, but it looks like the Heisenberg group will be one interesting case.”

In the same email Thurston outlined a construction of “interesting” quasihomo-
morphisms from fundamental groups of closed hyperbolic 3-manifold groups into
the 3-dimensional Heisenberg group. Among other things, the paper [6] justifies
Thurston’s claim about “interesting” (exotic) quasi-homomorphisms to Heisenberg
groups and shows that, in general, homomorphisms can be lifted to exotic quasi-
homomorphisms, when the pull-back of a certain 2nd cohomology class is bounded.
The main result of [6] is that, no matter what the target group G is, all quasi-
homomorphisms to G essentially come from such a lifting construction. In other
words, [6] shows that instability in Ulam’s problem (when the domain and the range
groups are arbitrary discrete groups) essentially reduces to quasihomomorphisms with
commutative target groups. In the special case, when the target group G is torsion-
free and hyperbolic, the main theorem of [6] is easy to state:

Theorem 13 Every quasihomomorphism f : Γ → G is either bounded, or is a ho-
momorphism, or is a quasi-homomorphism whose image is contained in an infinite
cyclic subgroup of G.

While quasihomomorphisms with noncommutative targets were studied before,
this rigidity phenomenon was overlooked. In addition to the rigidity results, we
also introduce several generalizations of Ulam-quasihomomorphisms and show that
for some of them an analogue of the Brooks’ construction does work (at least for
self-maps of free groups).
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Books. My first book “Hyperbolic Manifolds and Discrete Groups”, originally
published by Birkhauser in 2001, had second edition published in 2009 in the series
“Modern Birkhauser Classics.”

My second book, “Geometric Group Theory”, [5], written in collaboration with
Cornelia Drutu, was published by the AMS in 2018.

5 Interactions of geometric topology and algebraic

geometry.

[38], [28]. The first paper is my joint work with J.Kollár. It is well-known that there
are many restrictions on the fundamental groups of smooth projective varieties. To
the contrary, in [61], Carlos Simpson proved that every finitely-presented group ap-
pears as the fundamental group of an irreducible singular complex-projective variety.
In the same paper he also asked (Question 12.2, [61]):

Question 14 Is it true that every finitely-presented group appears as the fundamental
group of an irreducible singular complex-projective variety where all singularities are
“normal crossings”?1

A partial affirmative answer to this question is given in [38], except that one
only gets a reducible variety. Using this result, it was proven in [38] that every
finitely-presented group appears as the fundamental group of the link of an isolated
complex singularity. It was further shown in [38] that a finitely-presented group G is
superperfect over Q (i.e., Hi(G,Q) = 0 for i = 1, 2) if and only if G is the fundamental
group of the link of a rational complex singularity. All this was quite unexpected.

In the follow-up paper [28] (which was actually published before [38], because the
refereeing process of [38] took too long), I used an interesting connection between hy-
perbolic and algebraic geometry to prove several theorems partially answering Simp-
son’s question for irreducible varieties:

Theorem 15 1. Suppose that G is the fundamental group of a compact hyperbolic
3-dimensional manifold M3. Then there exists an irreducible 2-dimensional projective
variety Z whose singularities are normal crossings only, such that π1(Z) ∼= G.

2. Suppose that G is an arbitrary finitely-presented group. Then there exists an
irreducible 2-dimensional projective variety Z whose singularities are normal crossings
and Whitney umbrellas, such that π1(Z) ∼= G.

Note that Whitney umbrellas (given by the equation v2 = wu2) are the “next
simplest singularities” after normal crossings.

The work [38] and [28] required several new ideas both on algebro–geometric side
(converting Euclidean and hyperbolic polyhedral complexes into complex-projective
varieties) and on the hyperbolic geometry side. One of the key ingredients in the

1Normal crossings are the simplest singularities.
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proof is a recent theorem of Panov and Petrunin [59] establishing a certain univer-
sality phenomenon for 3-dimensional hyperbolic orbifolds. The most difficult part on
the hyperbolic geometry side was to find a (partial) correction of a faulty paper by
Jorgensen and Marden [16] claiming that “generic” Dirichlet fundamental domains for
Kleinian groups are “simple” (residues of faces are isomorphic to posets of simplices).
In fact, examples constructed in [28] show some of the claimed genericity results to be
false as stated. Presence of Whitney umbrellas in Part 2 of Theorem 15 comes from
2-torsion in Kleinian groups uniformizing certain 3-dimensional hyperbolic orbifolds.

6 Commutative algebra and complex analysis

My paper [32] addresses the question
“How many nonconstant holomorphic functions can a connected complex manifold

have?”
The precise way to quantify the size of the ring of holomorphic functions OM of

a complex manifold M is the Krull dimension of this ring. In my paper I solve a
problem raised by Georges Elencwajg about the possible range of dimensions of OM :

Theorem 16 For every connected complex manifold M , the Krull dimension of OM
is either zero (only constant holomorphic functions) or is infinite (more precisely, has
cardinality at least continuum).

The proof of this theorem is an application of nonstandard real numbers and
ultralimits.
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