SOLUTIONS TO DIFFERENTIATION OF INVERSE TRIGONOMETRIC FUNCTIONS



SOLUTION 11 : Differentiate tex2html_wrap_inline654arctex2html_wrap_inline656 . What conclusion can be drawn from your answer about function y ? What conclusion can be drawn about functions arctex2html_wrap_inline662 and tex2html_wrap_inline596 ? First, differentiate, applying the chain rule to the inverse cotangent function. Then

tex2html_wrap_inline666

tex2html_wrap_inline668

tex2html_wrap_inline670

= 0 .

If y' = 0 for all admissable values of x , then y must be a constant function, i.e.,

tex2html_wrap_inline680 for all admissable values of x ,

i.e.,

arctex2html_wrap_inline686 for all admissable values of x .

In particular, if x = 1 , then

arctex2html_wrap_inline694

i.e.,

tex2html_wrap_inline696 .

Thus, c = 0 and arctex2html_wrap_inline702 for all admissable values of x . We conclude that

arctex2html_wrap_inline708 .

Note that this final conclusion follows even more simply and directly from the definitions of these two inverse trigonometric functions.

Click HERE to return to the list of problems.




SOLUTION 12 : Differentiate tex2html_wrap_inline710 . Begin by applying the product rule to the first summand and the chain rule to the second summand. Then

tex2html_wrap_inline712

tex2html_wrap_inline714

tex2html_wrap_inline716

tex2html_wrap_inline718 .

Click HERE to return to the list of problems.




SOLUTION 13 : Find an equation of the line tangent to the graph of tex2html_wrap_inline720 at x=2 . If x = 2 , then tex2html_wrap_inline726, so that the line passes through the point tex2html_wrap_inline728. The slope of the tangent line follows from the derivative

tex2html_wrap_inline730

tex2html_wrap_inline732

tex2html_wrap_inline734

tex2html_wrap_inline736

tex2html_wrap_inline738

tex2html_wrap_inline740

(Recall that when dividing by a fraction, one must invert and multiply by the reciprocal. That is tex2html_wrap_inline742 .)

tex2html_wrap_inline744

tex2html_wrap_inline746 .

The slope of the line tangent to the graph at x = 2 is

tex2html_wrap_inline750 .

Thus, an equation of the tangent line is

tex2html_wrap_inline752

or

tex2html_wrap_inline754

or

tex2html_wrap_inline756 .

Click HERE to return to the list of problems.




SOLUTION 14 : Evaluate tex2html_wrap_inline758. Since tex2html_wrap_inline760 and tex2html_wrap_inline762, it follows that tex2html_wrap_inline758 takes the indeterminate form `` zero over zero.'' Thus, we can apply L'Htex2html_wrap_inline768pital's Rule. Begin by differentiating the numerator and denominator separately. DO NOT apply the quotient rule ! Then

tex2html_wrap_inline758 = tex2html_wrap_inline772

= tex2html_wrap_inline774

(Recall that when dividing by a fraction, one must invert and multiply by the reciprocal. That is tex2html_wrap_inline776 .)

= tex2html_wrap_inline778

= tex2html_wrap_inline780

= tex2html_wrap_inline782 .

Click HERE to return to the list of problems.




SOLUTION 15 : A movie screen on the front wall in your classroom is 16 feet high and positioned 9 feet above your eye-level. How far away from the front of the room should you sit in order to have the ``best" view ? Begin by introducing variables x and tex2html_wrap_inline786. (See the diagram below.)





From trigonometry it follows that

tex2html_wrap_inline788,

so that

tex2html_wrap_inline790 .

In addition,

tex2html_wrap_inline792

so that

tex2html_wrap_inline794 .

It follows that

tex2html_wrap_inline796

tex2html_wrap_inline798,

that is, angle tex2html_wrap_inline800 is explicitly represented as a function of distance x . Now find the value of x which maximizes the value of function tex2html_wrap_inline800. Begin by differentiating function tex2html_wrap_inline800 and setting the derivative equal to zero. Then

tex2html_wrap_inline810

tex2html_wrap_inline812

tex2html_wrap_inline814.

tex2html_wrap_inline816.

Now solve this equation for x . Then

tex2html_wrap_inline820

iff

tex2html_wrap_inline822

iff

tex2html_wrap_inline824

iff

tex2html_wrap_inline826

iff

tex2html_wrap_inline828

iff

tex2html_wrap_inline830 feet .

(Use the first or second derivative test (The first derivative test is easier.) to verify that this value of x determines a maximum value for tex2html_wrap_inline800.)

Thus, the ``best'' view is found x=15 feet from the front of the room.

Click HERE to return to the list of problems.







Duane Kouba
Tue Sep 16 16:10:59 PDT 1997