Processing math: 100%


SOLUTION 5: Draw a cube with edge lengths x, and assume that x is a function of time t.

tex2html_wrap_inline125



     a.) The surface area (Add the areas of 6 square surfaces.) of a cube is S=x2+x2+x2+x2+x2+x2     S=6x2 GIVEN:    dxdt=2 cm/min.

FIND:    dSdt when x=80 cm.

Now differentiate the surface area equation with respect to time t, getting

D{S}=D{6x2}    dSdt=62xdxdt   

( Now let dxdt=2 and x=80.) dSdt=12(80)(2)    dSdt=1920 cm2/min.

     b.) The volume of a cube is V=(length)(width)(height)     V=x3 GIVEN:    dxdt=2 cm/min.

FIND:    dVdt when x=80 cm.

Now differentiate the volume equation with respect to time t, getting

D{V}=D{x3}    dVdt=3x2dxdt   

( Now let dxdt=2 and x=80.)

dVdt=3(80)2(2)=38,400  cm3/min.

Click HERE to return to the list of problems.