Processing math: 100%
SOLUTION 5: Draw a cube with edge lengths x, and assume that x is a function of time t.
a.) The surface area (Add the areas of 6 square surfaces.) of a cube is
S=x2+x2+x2+x2+x2+x2 ⟶
S=6x2
GIVEN: dxdt=−2 cm/min.
FIND: dSdt when x=80 cm.
Now differentiate the surface area equation with respect to time t, getting
D{S}=D{6x2} ⟶
dSdt=6⋅2xdxdt ⟶
( Now let dxdt=−2 and x=80.)
dSdt=12(80)(−2) ⟶
dSdt=−1920 cm2/min.
b.) The volume of a cube is
V=(length)(width)(height) ⟶
V=x3
GIVEN: dxdt=−2 cm/min.
FIND: dVdt when x=80 cm.
Now differentiate the volume equation with respect to time t, getting
D{V}=D{x3} ⟶
dVdt=3x2dxdt ⟶
( Now let dxdt=−2 and x=80.)
dVdt=3(80)2(−2)=−38,400 cm3/min.
Click HERE to return to the list of problems.