Processing math: 100%


SOLUTION 6:    Integrate 1x2x dx. Use the trig substitution x=sinθ so that dx=cosθ dθ Substitute into the original problem, replacing all forms of x, getting 1x2x dx=1sin2θsinθ cosθ dθ =cos2θsinθ cos dθ =cosθsinθcosθ dθ =cos2θsinθ dθ =1sin2θsinθ dθ =(1sinθsinθ) dθ =(cscθsinθ) dθ (Recall that cscθ dθ=ln|cscθcotθ|+C) =ln|cscθcotθ|+cosθ+C ( We need to write our final answer in terms of x.

tex2html_wrap_inline125


Since x=sinθ it follows that sinθ=x1=oppositehypotenuse and from the Pythagorean Theorem that (adjacent)2+(opposite)2=(hypotenuse)2   (adjacent)2+(x)2=(1)2     adjacent=1x2   cosθ=adjacenthypotenuse=1x21 cotθ=adjacentopposite=1x2x and cscθ=hypotenuseopposite=1x.) =ln|1x1x2x|+1x2+C

Click HERE to return to the list of problems.