Processing math: 100%
SOLUTION 6: Integrate ∫√1−x2x dx. Use the trig substitution
x=sinθ
so that
dx=cosθ dθ
Substitute into the original problem, replacing all
forms of x, getting
∫√1−x2x dx=∫√1−sin2θsinθ cosθ dθ
=∫√cos2θsinθ cos dθ
=∫cosθsinθcosθ dθ
=∫cos2θsinθ dθ
=∫1−sin2θsinθ dθ
=∫(1sinθ−sinθ) dθ
=∫(cscθ−sinθ) dθ
(Recall that ∫cscθ dθ=ln|cscθ−cotθ|+C)
=ln|cscθ−cotθ|+cosθ+C
( We need to write our final answer in terms of x.
Since x=sinθ it follows that
sinθ=x1=oppositehypotenuse
and from the Pythagorean Theorem that
(adjacent)2+(opposite)2=(hypotenuse)2 ⟶
(adjacent)2+(x)2=(1)2 ⟶ adjacent=√1−x2 ⟶
cosθ=adjacenthypotenuse=√1−x21
cotθ=adjacentopposite=√1−x2x
and
cscθ=hypotenuseopposite=1x.)
=ln|1x−√1−x2x|+√1−x2+C
Click HERE to return to the list of problems.