ESP

Kouba

Worksheet 7

1. Determine the x-values for which the following functions are continuous.

a.
$$f(x) = \sin x$$

b.
$$f(x) = \frac{1}{\sin x}$$

c.
$$f(x) = \frac{x^4 - 1}{x^2 - 1}$$

d.
$$f(x) = \begin{cases} \frac{x^4 - 1}{x^2 - 1} & \text{for } x \neq 1, -1 \\ 2 & \text{for } x = 1 \\ 3 & \text{for } x = -1 \end{cases}$$

e.
$$f(x) = \begin{cases} x^2 + x & \text{for } x < 0 \\ \frac{\sin x}{\sqrt{x}} & \text{for } 0 \le x < 2\pi \\ 0 & \text{for } x > 2\pi \end{cases}$$

- 2. Assume that the total distance (miles) traveled by a bicyclist after time t (hours) is $T = 3 t^2$.
- a. Determine the average velocity of the bicyclist over the following intervals of time.

i.
$$t = 1$$
 to $t = 4$

ii.
$$t = 1$$
 to $t = 2$

iii.
$$t = 1$$
 to $t = 1.1$

iv.
$$t = 1$$
 to $t = 1.01$

b. Determine the exact velocity of the bicyclist when t = 1.

- 3. Position a wire, three centimeters long, on the positive x-axis with leftmost end at the origin. Assume that the left x centimeters of this wire have mass \sqrt{x} grams and that the units for density shall be grams per centimeter.
- a. Determine the average density of the wire on the following intervals.

- b. Determine the exact density of the wire at x = 2.
- 4. Consider the graph of $y = \frac{1}{x-1}$.
 - a. Determine the slope of the secant lines joining points determined by the following pairs of x-values.

i.
$$x = 3/2$$
, $x = 3$
ii. $x = 3/2$, $x = 2$
iii. $x = 3/2$, $x = 7/4$
iv. $x = 3/2$, $x = 25/16$

- b. Determine the slope of the line tangent to the graph of $y = \frac{1}{x-1}$ at x = 3/2.
- 5. Use $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to compute the derivative of each of the following functions.

a.
$$f(x) = x - x^2$$

b. $f(x) = \frac{x+1}{2x-3}$

c.
$$g(x) = \sqrt{x-5}$$

d.
$$h(x) = x - \frac{1}{x^2}$$

e.
$$f(x) = \cos 4 x$$

f.
$$f(x) = \begin{cases} x^2 & \text{for } x \ge 0 \\ 1/2 & \text{x for } x < 0 \end{cases}$$

- 6. A spaceship is traveling along the curve $y = x^2$. At some point along this path, a payload will be released from the spaceship and travel through space along a line tangent to the curve. Where should the payload be released in order to be intercepted at a space station positioned at the point (3, 2)?
- 7. Verify with a careful and complete explanation that the equation $1.9^{x} = x^{2}$ has at least 3 solutions.

- g. a. Use the Intermediate-Value Theorem to show that $5 x^3 x + 7 = 0$ has at least one solution.
 - b. Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial of odd degree n and with lead coefficient $a_n > 0$. Show that there is at least one real number r satisfying P(r) = 0.
- 9. Use the Intermediate-Value Theorem to show that $\frac{1}{X+3} e^{x} = 0$ has a solution in the interval [-1, 0].
- 10. Determine whether or not $x^3 = 2^X$ has a solution.
- 11. Let f and g be two continuous functions defined on the closed interval [a, b]. Assume that

$$f(a) < g(a)$$
 and $f(b) > g(b)$.

Show that there is a number c in the open interval (a, b) satisfying

$$f(c) = g(c)$$
.

12. Assume that f and g are continuous functions and that g(x) > 0 on the interval [a, b]. In addition, assume that

$$f(a) = g(a)$$
 and $f(b) < 0$.

Show that there is some number c, $a \le c \le b$, satisfying

$$2 f(c) = g(c).$$

HINT: Consider the function h(x) = f(x) / g(x).

13. How many numbers are in the following list and what is the sum of these numbers?