Math 21B

Kouba

Challenge Sheet 1

1.) Evaluate the following sums.

a.)
$$\sum_{i=1}^{1000} (i+3)^2$$

b.)
$$\sum_{i=1}^{750} \{(i+1)^3 - i^3\}$$

a.)
$$\sum_{i=1}^{1000} (i+3)^2$$
 b.) $\sum_{i=1}^{750} \{(i+1)^3 - i^3\}$ c.) $\sum_{i=17}^{83} \left(\frac{1}{i+4} - \frac{1}{i+3}\right)$

d.)
$$\sum_{i=8}^{98} \log \left(\frac{i+1}{i+2} \right)$$
 e.) $\sum_{i=1}^{200} \ln(1+1/i)$ f.) $\sum_{i=734}^{10,125} (3+\sin i\pi)$

e.)
$$\sum_{i=1}^{200} \ln(1+1/i)$$

f.)
$$\sum_{i=734}^{10,125} (3 + \sin i\pi)$$

- 2.) Evaluate the following limit : $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{i^2+i}$
- 3.) The speed of a runner at time t seconds is given by $v(t) = t^2 t + 2$ ft./sec.
 - a.) Sketch the speed graph for $0 \le t \le 5$.
 - b.) What is the runner's speed when
 - i.) t=0 seconds?
 - ii.) t=1 second?
 - iii.) t=5 seconds?
- c.) Estimate the distance the runner travels for $0 \le t \le 5$ by using five equal subdivisions of time on the interval [0,5] and speeds determined by
 - i.) left endpoints of the subdivisions.
 - ii.) right endpoints of the subdivisions.
 - iii.) midpoints of the subdivisions.
- d.) Evaluate the following limit : $\lim_{n\to\infty} \sum_{i=1}^n v(5i/n) \cdot (5/n)$. Explain why the answer represents the exact distance covered by the runner for $0 \le t \le 5$.