
Math 21B Kouba Challenge Sheet 3

- 1.) Assume that the temperature of the sidewalk on a hot summer day is given by $T(t) = 100 + 30e^{t-4}$ degrees Fahrenheit at hour t for $0 \le t \le 4$.
 - a.) What is the sidewalk's temperature when t = 0 hours?
 - b.) What is the sidewalk's temperature when t = 4 hours?
 - c.) What is the sidewalk's average temperature for $0 \le t < 4$?
- 2.) Convert the following limit to a definite integral and then evaluate the integral:

$$\lim_{n \to \infty} \sum_{i=1}^{2n} \left(\frac{3i}{n^2} - \frac{1}{n^2} \right)^2 n$$

- 3.) The average value of function $f(x) = 3x^2 + 4x$ on the interval [0, b] is 35. What is the value of b?
- 4.) Consider the function $f(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 2 & \text{if } 1 \le t \le 2 \end{cases}$ and let $G(x) = \int_0^x f(t) dt$.
 - a.) i.) Sketch the graph of f on the interval $0 \le t \le 2$.
 - ii.) Is f continuous on the interval $0 \le t \le 2$?
 - iii.) What is the average value of f on the interval $0 \le t \le 2$?
 - b.) i.) Determine a "formula" for G.
 - ii.) Sketch the graph of G on the interval $0 \le x \le 2$.
 - iii.) Is G continuous on the interval $0 \le x \le 2$?
 - iv.) What is the average value of G on the interval $0 \le x \le 2$?
- 5.) Determine all possible functions f which satisfy the equation

 - a.) $f'(t) = 2t(1+t^2)^5$. b.) $f'(t) = 2t(1+(f(t))^2)$.
- 6.) Let C(t) be the number of crocodiles in a habitat at time t years. Initially there are 50 crocodiles and after 5 years there are 75 crocodiles. If the rate at which the number of crocodiles changes at time t is directly proportional to the square of the number of crocodiles at time t, how many crocodiles will there be when t = 10 years? t = 14 years? t = 14.999years? What is your conclusion about this mathematical model?
- 7.) Determine the radius of the inscribed circle.

