## Math 21A

## Kouba

Challenge Discussion Sheet 6

- 1.) Consider the function  $f(x) = x^{3/2} + x^{1/2}$ . Show that f satisfies the assumptions of the Mean Value Theorem (MVT) on the interval [0,1], and determine all values of c guaranteed by the MVT.
- 2.) Explain why  $f(x) = x^3 x^{1/3}$  does not satisfy all of the assumptions of the MVT on the interval [-1, 1].
- 3.) Consider the function  $f(x) = \begin{cases} x^2, & \text{if } 0 \le x \le 3 \\ x^3, & \text{if } -1 \le x < 0 \end{cases}$ 
  - a.) Sketch the graph of f.
- b.) Show that f satisfies the conditions of the Mean Value Theorem (MVT) over the interval [-1, 3], including special attention at x = 0, and determine all values of c guaranteed by the MVT.
- 4.) Determine the domain of each function and where each function is increasing, decreasing, concave up, and concave down. Identify all relative and absolute extrema, inflection points, x- and y-intercepts, and asymptotes (vertical, horizontal, or tilted). Sketch the graph.

1

a.) 
$$f(x) = x(5-x)^4$$

b.) 
$$y = \frac{x}{x^2 + 4}$$

c.) 
$$g(x) = \frac{x^2 + 4}{x}$$

d.) 
$$f(x) = x^{2/3} + x$$
 on the interval [-1,8]

e.) 
$$f(x) = \sqrt{3}\sin x + \cos x$$
 on the interval  $[0, 2\pi]$ 

5.) A hemisphere sits on top of a right circular cylinder of height 10 and radius r. Write the volume V of the hemisphere as a function of the volume C of the cylinder.

