Math 21A

Kouba

Challenge Discussion Sheet 7

1.) One hundred and forty (140) feet of fencing will be extended from a 20 ft. by 40 ft. corner of a building to create a rectangular pen. What dimensions x and y will result in the pen of maximum area?

- 2.) Find that number so that 4 times itself exceeds its square by the largest amount.
- 3.) A rectangle is inscribed beneath the graph of $y = 12 x^2$ and above the x-axis. Find the dimensions of the rectangle of
 - a.) maximum area.
- b.) maximum perimeter.

- 4.) A piece of wire 16 inches long is to be cut into two pieces. One piece is bent into a circle and the other is bent into a square. Where should the cut be made in order that the sum of the areas is a
 - a.) minimum?
- b.) maximum?
- 5.) Determine y' = dy/dx for each.

a.)
$$x^2 + y^2 = y + 3x$$

b.)
$$4 + \tan(x - y) = \sec(y^3)$$

c.)
$$\frac{x^2y}{x+y^3} = \frac{y-1}{x+2}$$

- 6.) Compute the slope and concavity of the graph of $xy + y^3 = 8$ at x = 0. Sketch the graph near x = 0.
- 7.) Show that the hyperbolas xy = 1 and $x^2 y^2 = 1$ intersect at right angles.
- 8.) The graph of the equation $(x^2 + y^2 4x)^2 = 4(x^2 + y^2)$ is given. It is called a Limacon of Pascal. Determine the slope of the line tangent to the graph at point A (x = 1). CHALLENGE: Determine the slope(s) of the line(s) tangent to the graph at (0,0).

