

NAME(print in CAPITAL letters, first name first): _____

NAME(sign): _____

ID#: _____

Instructions: There are six problems. Make sure that you have all 6 problems.

Points received:

1 _____

2 _____

3 _____

4 _____

5 _____

6 _____

TOTAL _____

1. (24 points.) For each series below, if the series converges then find its sum; otherwise, state that it diverges.

$$(a) \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^n$$

$$(b) \sum_{n=1}^{\infty} \left(\frac{5}{4}\right)^n$$

$$(c) \sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}$$

2. (24 points.) For each series below, state whether it converges or diverges.

$$(a) \sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

$$(b) \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

3. (24 points.) For each series below, state whether it converges or diverges.

$$(a) \sum_{n=1}^{\infty} \frac{n^2 + 3n + 1}{n^3 + 2n^2 + 3}$$

$$(b) \sum_{n=1}^{\infty} \frac{n^2 - \cos n}{n^2 + \sin n}$$

$$(c) \sum_{n=1}^{\infty} \frac{\ln n}{n}$$

$$(d) \sum_{n=1}^{\infty} \frac{n^2 + (\ln n)^9}{n^4}$$

4. (24 points.) For each series below, state whether it converges absolutely, converges conditionally, or diverges

$$(a) \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n} + \ln n}$$

$$(b) \sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n^2 + 2n}$$

$$(c) \sum_{n=1}^{\infty} (-1)^n \sqrt{\frac{n}{n+1}}$$

$$(d) \sum_{n=2}^{\infty} (-1)^n \frac{n^8}{n^{10} + e^{-n}}$$

5. (12 points.) Does the following series converge absolutely, converge conditionally, or diverge?

$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n+1} - \sqrt{n} \right)$$

6. (24 points.) Consider the power series

$$\sum_{n=1}^{\infty} \frac{n(x-2)^n}{5^n}.$$

(a) Find the interval of convergence.

(b) Find the radius of convergence.

(c) Find all values of x such that the series is conditionally convergent.