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Abstract. It is shown that local epi-sub-Lipschitz continuity of the function-valued mapping associated with a
perturbed optimization problem yields the local Lipschitz continuity of the inf-projections (= marginal functions,
= infimal functions). The use of the theorem is illustrated by considering perturbed nonlinear optimization problems
with linear constraints.
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1. Introduction

Let’s consider the following mathematical programming problem:

min f0(x)

so that fi (x) ≤ 0, i = 1, . . . , s,

fi (x) = 0, i = s + 1, . . . , m,

x ∈ C ⊂ Rn.

In order to study the stability of the solution(s) and of the optimal value of such a problem,
one relies usually on the embedding of this problem in a family of perturbed mathematical
programming problems:

min f0(u, x)

so that fi (u, x) ≤ 0, i = 1, . . . , s,

fi (u, x) = 0, i = s + 1, . . . , m,

x ∈ C ⊂ Rn.

where u ∈ U ⊂ Rm is the parameter inducing the perturbations, and such that with u = 0
one recovers the originally stated problem.
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For our purposes, it will be convenient to identify optimization problems with extended
real-valued functions and analyze the dependence of these functions on perturbations. So,
our given problem becomes

min f (x), x ∈ R
n

where

f (x) =
{

f0(x) if fi (x) ≤ 0, i = 1, . . . , s, fi (x) = 0, i = s + 1, . . . , m, x ∈ C,

∞ otherwise.

And, the family of perturbed problems becomes

{min f (u, x), x ∈ R
n | u ∈ U }

where

f (u, x) =







f0(u, x) if fi (u, x) ≤ 0, i = 1, . . . , s, fi (u, x) = 0,

i = s + 1, . . . , m, x ∈ C,

∞ otherwise.

Let

p(u) = inf
x∈Rn

f (x, u), P(u) = arg min
x∈Rn

f (x, u).

One refers to p as the inf-projection of the bivariate function f and to P as the argmin-
mapping (associated with f ). In general, p is an extended real-valued function, i.e., p : Rm →
R̄, with

– p(0) the optimal value of the given problem,
– dom p = {u ∈ U | infx f (u, x) < ∞}, its effective domain, the subset of perturbations

u ∈ U for which the corresponding mathematical programming problems are feasible,
– p(u) = −∞ if the corresponding mathematical program is unbounded.

Also, P : U →→Rn , is a set-valued mapping with

– P(0) the set, possibly empty, of optimal solutions of the given problem,
– dom P = {u ∈ U | arg minx f (u, x) (= ∅}, its effective domain, the subset of pertur-

bations u ∈ U for which the infimum of the corresponding mathematical programming
problems are actually attained.

Stability issues have to do with the continuity properties of the function p and the set-
valued mapping P in a neighborhood of 0 relative to U . In view of the fact that one will
always restrict the attention to dom p or dom P , one may as well work with U = Rm ,
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and this will be our framework henceforth. Section 2 provides a quick overview of what’s
known about the continuity of p and P and lays down the tools that will be needed to obtain
local Lipschitz continuity of p in Section 3. In Section 4, we apply the results of Section 3
to analyze nonlinear programs with linear constraints.

2. The variational setting

The material of this section is from the book on ‘Variational Analysis’ [2]. It provides a
brief introduction to set convergence, epi-convergence and culminates in a result about the
continuity of inf-projections.

Convergence of a sequence of sets is usually described in terms of the inner and outer lim-
its. In order to handle statements about sequences and subsequences, it’s always convenient
to work notation (involving subsets of N):

N∞ := {N ⊂ N | N\N finite}
= {subsequences of N containing all ν beyond some ν̄},

N #
∞ := {N ⊂ N | N infinite} = {all subsequences of N}.

N∞ is called the Fréchet filter on N and N # is the associated ‘grill’.

Definition 2.1 (inner and outer limits). For a sequence {Cν}ν∈N of subsets of Rn, the outer
limit is the set

lim sup
ν→∞

Cν :=
{

x | ∃N ∈ N #
∞, ∃xν ∈ Cν(ν ∈ N ) with xν →

N
x
}

while the inner limit is the set

lim inf
ν→∞

Cν :=
{

x | ∃N ∈ N∞, ∃xν ∈ Cν(ν ∈ N ) with xν →
N

x
}

.

The limit of the sequence exists if the outer and inner limit sets are equal:

lim
ν→∞

Cν := lim sup
ν→∞

Cν = lim inf
ν→∞

Cν .

Set convergence can also be characterized in terms of a metric d defined on the hyperspace
cl-sets(=∅(Rn), the space of all nonempty, closed subsets of Rn [1]. To define this metric, for
every ρ ∈ R+ = [0, ∞) and pair of nonempty sets C and D, let

dρ(C, D) := max
|x |≤ρ

|dC (x) − dD(x)|,

d̂ρ(C, D) := inf{η ≥ 0 | C ∩ ρB ⊂ D + ηB, D ∩ ρB ⊂ C + ηB},
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where in particular d0(C, D) = |dC (0) − dD(0)|. Let

d(C, D) :=
∫ ∞

0
dρ(C, D)e−ρdρ,

to which one refers as the (integrated) set distance.

Theorem 2.2 (quantification of set convergence, [2, Theorems 4.36 and 4.42]). For each
ρ ≥ 0, dρ is a pseudo-metric on the space cl-sets (=∅(Rn), but d̂ρ is not. Both families {dρ}ρ≥0

and {d̂ρ}ρ≥0 characterize set convergence: for any ρ̄ ∈ R+, one has

C = lim
ν→∞

Cν ⇔ dρ(Cν, C) → 0 for all ρ ≥ ρ̄

⇔ d̂ρ(Cν, C) → 0 for all ρ ≥ ρ̄.

Moreover, C = limν→∞ Cν ⇔ d(Cν, C) → 0.

The better known Pompeiu-Hausdorff distance d∞(C, D) := supx∈Rn |dC (x) − dD(x)|
doesn’t characterize set convergence. As is clear from its definition and the preceding
theorem, d∞(Cν, C) → 0 induces a more restrictive notion of convergence on cl-sets (=∅(Rn).

Definition 2.3 (continuous mapping). A set-valued mapping S : Rm →→Rn is continuous
at ū if S(ū) = limu→ū S(u), or equivalently, in view of separability, if for all sequences
uν → ū, S(ū) = limν S(uν). The mapping S is said to be continuous relative to a set U ⊂
Rm if for all ū ∈ U, one has S(ū) = limν S(uν) for all sequence uν →U ū.

It follows immediately from Theorem 2.2:

Proposition 2.4 (continuity with respect to the set distance metric). A set-valued mapping
S : Rm →→Rn is continuous at ū if and only it for all ρ ∈ R+:

lim
u→ū

dρ(S(u), S(ū)) → 0.

Definition 2.5 (locally bounded mappings). A set-valued mapping S : Rm →→Rn is locally
bounded at ū if for some neighborhood U ∈ N (ū), the set S(U ) ⊂ Rn is bounded. It’s
locally bounded if this holds for every ū ∈ Rm .

Proposition 2.6 (bounded images, [2, Proposition 5.15]). A mapping S : Rm →→Rn is
locally bounded if and only if S(B) is bounded for every bounded set B ⊂ Rm.

Let’s now introduce the notion of a function-valued mapping from a space U to the space

fcns(X ) := collection of all extended-real-valued functions on X.



LIPSCHITZ CONTINUITY OF INF-PROJECTIONS 273

Such a mapping assigns to each u ∈ U , a function defined on X that has values in R̄.
There is a one-to-one correspondence between such mappings u .→ f (u, ·) : U → fcns(X )
and bivariate functions (u, x) .→ f (u, x) : U × X → R̄; f (u, ·) denotes the function that
assigns to x the value f (u, x). This is the framework we shall adapt to study the dependence
of p and P on perturbations. The function-valued mapping viewpoint has the advantage
of bringing out the ‘dynamic’ qualities of the dependence. Continuity of such mappings
comes in many flavors. We shall be interested in epi-continuity.

Definition 2.7 (epi-convergence). A sequence { f ν}ν∈N of extended real-valued functions
defined on Rn epi-converges to a function f : Rn → R̄ if their epigraphs {epi f ν ⊂
Rn+1}ν∈N converge, as subsets of Rn+1, to epi f . One then writes f ν e→ f . Thus,

f ν e→ f ⇔ epi f ν → epi f.

Definition 2.8 (epi-continuity of function-valued mappings). For f : Rm × Rn → R̄, the
function-valued mapping u .→ f (u, ·) is epi-continuous at ū if

f (u, ·) e→ f (ū, ·) as u → ū;

i.e., the functions f (u, ·) epi-converge to f (ū, ·). This means that the set valued-mapping
S f : Rm →→Rn+1 is continuous at ū where S f is the epigraphical mapping associated with
f ; S f (u) = epi f (u, ·).

Definition 2.9 (level boundedness). The function f : Rm × Rn → R̄ is said to be level
bounded in x locally uniformly if, for each α ∈ R, the mapping

u .→ levα f (u, ·) = {x | f (u, x) ≤ α}

is locally bounded.

Level boundedness (locally uniformly) guarantees the existence of solutions and epi-
convergence guarantees the convergence of these solutions!

Theorem 2.10 (continuity of inf-projections, [2, Theorems 1.17 and 7.41]). For f : Rm ×
Rn → R̄ proper, lsc, and such that f (u, x) is level-bounded in x locally uniformly in u, let

p(u) := inf
x

f (u, x), P(u) := arg min
x

f (u, x).

(a) The mapping P, which is compact-valued with dom P = dom p, is osc with respect to
p-attentive convergence →

p . Furthermore, it is locally bounded relative to any set in
Rm on which p is bounded from above.

(b) p is continuous relative to a set U ⊂ Rm when the function-valued mapping u .→ f (u, ·)
is epi-continuous at ū relative to U. Another sufficient condition is that there exists
x̄ ∈ P(ū) such that f (·, x̄) is continuous relative to U at ū.
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(c) For P to be locally bounded and osc (not just in the p-attentive sense) relative to a set
U ⊂ Rm at a point ū ∈ U with P(ū) (= ∅, it suffices to have p be continuous relative
to U at ū.

Our major objective is find out how far the hypotheses of this theorem need to be strength-
ened to obtain not just continuity but (local) Lipschitz continuity of inf-projections.

3. Lipschitz continuity

We now turn to Lipschitz continuity. The basic definitions come from [2, Chapter 9].

Definition 3.1 (Lipschitz and sub-Lipschitz continuity). A mapping S : Rm →→Rn is
Lipschitz continuous on U, a subset of Rm, if it is nonempty-closed-valued on U and
there exists κ ∈ R+, a Lipschitz constant, such that

d∞(S(x ′), S(x)) ≤ κ|x ′ − x | for all x, x ′ ∈ U,

or in equivalent geometric form,

S(x ′) ⊂ S(x) + κ|x ′ − x |B for all x, x ′ ∈ U.

A mapping S : Rd →→Rn is sub-Lipschitz continuous on U ⊂ Rn if it is nonempty-closed-
valued on U for each ρ ∈ R+ there is a ρ-Lipschitz constant κ ∈ R+ such that

dρ(S(u), S(u′)) ≤ κ|u′ − u| ∀u, u′ ∈ U,

and hence also

S(u′) ∩ ρB ⊂ S(u) + κ|u′ − u|B ∀u, u′ ∈ U.

The mapping S is said to be locally sub-Lipschitz continuous if for every ū ∈ dom S there
exists a neighborhood U ∈ N (ū) such that S is sub-Lipschitz continuous on U ∩ dom S.

It’s obvious from this definition and the characterization of continuity in terms of the ρ-set
distances that sub-Lipschitz continuity relative to a subset U ⊂ dom S implies continuity
relative to U . And, local sub-Lipschitz continuity actually implies continuity.

Example 3.2 (local sub-Lipschitz continuity). As can be expected the following continuous
mapping, see figure 1: S : R→→R with

S(u) =











[1, ∞) if u /∈ [−1, 1],

[(−2u − u2)
1
2 , ∞) if u ∈ (−1, 0),

[(2u − u2)
1
2 , ∞) if u ∈ [0, 1),
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Figure 1. A mapping that isn’t locally sub-Lipschitz continuous.

Figure 2. A locally sub-Lipschitz mapping continuous.

isn’t locally sub-Lipschitz continuous at 0. On the other hand, the following continuous
mapping R : R→→R, see figure 2,

R(u) =
{

[ln |u|, ∞) if u (= 0,

R when u = 0,

that isn’t locally bounded at 0, is locally sub-Lipschitz continuous at 0.

Detail. Indeed, if u ∈ (−η, η) for some η > 0 and given any ρ ≥ 0, S locally sub-Lipschitz
continuous at 0 would mean that one should be able to find κ ∈ R+ such that

[0, ρ] ⊂ [−κu + (2u − u2)
1
2 , ∞), ∀u ∈ (0, η).
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This would require that κ ≥ limu↘0(2u−1 − 1)
1
2 = ∞. On the other hand for R, pick any

η > 0 and ρ ∈ R+. As long as

κ ≥ max[eρ−1, η−1(ρ + ln η)] one has R(0) ∩ [−ρ, ρ] ⊂ R(u) + (κ|u|)[−1, 1].

Thus, R is locally sub-Lipschitz continuous at 0 as well as at any other point.

Definition 3.3 (epi-sub-Lipschitz continuity). A function-valued mapping u .→ f (u, ·) :
Rm → fcns(Rn) is epi-sub-Lipschitz continuous on U if the epigraphical mapping S f :
Rm →→Rn+1, with S f (u) = epi f (u, ·), is sub-Lipschitz continuous on U . The function-
valued mapping u .→ f (u, ·) is locally epi-sub-Lipschitz continuous if the epigraphical
mapping S f is locally sub-Lipschitz continuous, i.e., for every ū ∈ dom S f there is a neigh-
borhood U ∈ N (ū) such that the function-valued mapping is epi-sub-Lipschitz continuous
on U ∩ dom S f .

Note that the definition of epi-sub-Lipschitz continuity implies that U ⊂ domS f , or in
other words, that dom f (u, ·) (= ∅ for all u ∈ U . Moreover, dom S f is also the effective
domain of the function-valued mapping u .→ f (u, ·).

It will be convenient to use the following definition of the unit ball in Rn+1 : B+ =
B × [−1, 1], where B is the unit (Euclidean) ball in Rn . The sub-Lipschitz continuity of
S f on a set U ⊂ domS f can then be rephrased as follows: given any ρ ∈ R+ there exists
κ ∈ R+ such that for all ū, u′ ∈ U ,

whenever (x, α) ∈ S f (ū) with |x | ≤ ρ, |α| ≤ ρ

one can find

(y, β) ∈ S f (u′) such that
{|y − x | ≤ κ|u′ − ū|,
|β − α| ≤ κ|u′ − ū|.

Theorem 3.4 (local Lipschitz continuity of inf-projections). For f : Rm × Rn → R̄

proper, lsc, and such that f (x, u) is level-bounded in x locally uniformly in u, let

p(u) := inf
x

f (u, x).

Suppose that the function-valued mapping u .→ f (u, ·) : Rm → fcns(Rn) is locally epi-
sub-Lipschitz continuous. Then, p is locally Lipschitz continuous on its effective domain,
dom p.

Proof: As in Sections 1 and 2, let P(u) = arg min f (u, ·). Given ū ∈ dom p, let U
a bounded neighborhood of ū relative to dom p on which the function-valued mapping
u .→ f (u, ·) is epi-sub-Lipschitz continuous. In view of Theorem 2.10, P(U ) ⊂ Rn and
p(U ) ⊂ R are bounded sets. Choose ρ ∈ R+ so that ρB ⊃ P(U ) and [−ρ, ρ] ⊃ p(U ).



LIPSCHITZ CONTINUITY OF INF-PROJECTIONS 277

For any u, u′ ∈ U , let xu ∈ arg min f (u, ·) and xu′ ∈ arg min f (u′, ·) and then p(u) =
f (u, xu), p(u′) = f (u′, xu′ ); note that xu, xu′ ∈ ρB and |p(u)| ≤ ρ, |p(u′)| ≤ ρ.

From the sub-Lipschitz continuity of S f relative to U , it follows that given ρ, there exist
κ ∈ R+ and (yu′ , βu′ ) ∈ S f (u′), (yu, βu) ∈ S f (u) such that

|βu′ − p(u)| ≤ κ|u′ − u|, |yu′ − xu | ≤ κ|u′ − u|

|βu − p(u′)| ≤ κ|u′ − u|, |yu − xu′ | ≤ κ|u′ − u|

One has

−κ|u′ − u| ≤ βu′ − p(u) ≤ κ|u′ − u| but also p(u′) ≤ βu′ .

These inequalities imply:

p(u′) − p(u) ≤ κ|u′ − u|

Similarly,

−κ|u′ − u| ≤ βu − p(u′) ≤ κ|u′ − u| and p(u) ≤ βu

imply

p(u) − p(u′) ≤ κ|u′ − u|.

Hence |p(u′) − p(u)| ≤ κ|u′ − u|. It follows that p is Lipschitz continuous relative to U .
And consequently, locally Lipschitz continuous relative to dom p. !

Corollary 3.5 (Lipschitz continuity of inf-projections). For f : Rm ×Rn → R̄ proper, lsc,
and such that f (x, u) is level-bounded in x locally uniformly in u, let p(u) := infx f (u, x).
Suppose that the function-valued mapping u .→ f (u, ·) : Rm → fcns(Rn) is epi-Lipschitz
continuous, i.e., the epigraphical mapping S f : Rm → Rn is Lipschitz continuous (S f (u) =
epi f (u, ·)). Then, p is Lipschitz continuous on its effective domain, dom p.

Proof: Actually, this is only a corollary in the sense that essentially the same proof
applies, except that one doesn’t have to ‘localize’ the argument. As before, let P(u) =
arg min f (u, ·). Choose any u, u′ ∈ dom p and let xu ∈ P(u), xu′ ∈ P(u′). From the
Lipschitz continuity of S f , it follows that there existκ ∈ R+ and (yu′ , βu′ ) ∈ S f (u′), (yu, βu) ∈
S f (u) such that

|βu′ − p(u)| ≤ κ|u′ − u|, |yu′ − xu | ≤ κ|u′ − u|

|βu − p(u′)| ≤ κ|u′ − u|, |yu − xu′ | ≤ κ|u′ − u|

One then proceeds as in the proof of the theorem, and one concludes that |p(u′) − p(u)| ≤
κ|u′ − u|, i.e., p is Lipschitz continuous with Lipschitz constant κ on dom p. !
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One might expect that with the function-valued mapping u .→ f (u, ·) locally, or possibly
globally, sub-Lipschitz continuous one should be able to assert that whenever p takes on
the value −∞ a some point ū in D, then it’s identically −∞ on dom p or at least on a
neighborhood, relative to dom p, of ū. The following example dispels all such possibilities.

Example 3.6. Consider the function-valued mapping u .→ f (u, ·) : R → fcns({0}) with

f (u, 0) =











ln |u| if u (= 0;

−∞ if u = 0;

∞ otherwise.

One can also write f as follows: f (u, 0) = ln |u| with the understanding that ln 0 = −∞.
The associated epigraphical mapping S f : R→→ {0} × R is then

S f (u) =
{{0} × [ln |u|, ∞) if u (= 0;

{0} × R for u = 0.

This mapping is locally sub-Lipschitz continuous. But p : R → R̄ is not locally Lipschitz
continuous.

Detail. Clearly the ‘critical’ point is at 0. Now, simply observe that S f is the mapping R
of Example 3.2 and p(u) = ln |u| if u (= 0 and p(0) = −∞. The functions x .→ f (u, x)
are level bounded but not locally uniformly in u. !

Example 3.7. Given that under epi-continuity of the set-valued mapping u .→ f (u, ·) one
is able to conclude that P, the argmin mapping is outer semicontinuous. One might hope
that with sub-Lipschitz continuity, the mapping P might itself be sub-Lipschitz continuous.
That this is not the case follows from the following simple example: Let

f (u, x) =
{

ux if x ∈ [−1, 1],

∞ otherwise.

Detail. The mapping P : R → [−1, 1] with

P(u) =











1 if u < 0,

[−1, 1] if u = 0,

−1 if u > 0,

is clearly not locally sub-Lipschitz continuous at 0.

4. Examples

My initial motivation for this article came from certain questions that arose in stochastic
programming. The (local) Lipschitz continuity of certain inf-projections can be exploited
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to obtain bounds on distances between the probability measures induced by stochastic
programs. This, in turn, allows us to obtain error bounds for the distance between the
solution of a stochastic program and of an approximating one obtained by replacing the
given probability measure by an approximating measure [3].

Here, we are only going to consider the following nonlinear programming problem:

min f0(x), Ax = b, x ∈ D ⊂ R
n,

where D is a polyhedral set and f0 is a Lipschitz continuous function on a set that contains
D.

To begin with, we are only going to be interested in perturbations that affect the linear
constraints Ax = b. So, the bivariate function associated with the family of perturbed
problems is

f (u, x) =
{

f0(x) if Ax = b − u, x ∈ D,

∞ otherwise.

To apply Corollary 3.5, in addition to level boundedness in x locally uniformly in u, one
needs to check if the function-valued mapping u .→ f (u, ·) is epi-Lipschitz continuous.
Let’s begin with the level boundedness condition.

Of course, the function f0 could be level bounded from which would immediately follow
the level boundedness of f in x locally uniformly in u. This requirement could also follow
from having the mapping

S : R
m →→R

n with S(u) = {x ∈ D | Ax = b − u}

locally bounded. A necessary and sufficient condition is provided by Proposition 4.2; the
following proposition is a key component of its proof as well as in obtaining epi-Lipschitz
continuity.

Proposition 4.1 (polyhedral graph-convex mappings, [5]). If S : Rm →→Rn is graph-
convex but such that gph S is polyhedral in Rm × Rn, then S is Lipschitz continuous
on dom S, even if its values S(u) are unbounded sets.

Proof: A variant of the original proof can be found in [2, Example 9.35]. !

Let ker(A) denote the kernel of a matrix A, i.e., ker(A) = {x ∈ Rn|Ax = 0}; ker(A) is
also called the null space of A. For a set D ⊂ Rn, D∞ will denote the horizon cone of D,
which for a convex set D consists of all vectors xd such that x + λxd ∈ D for all x ∈ D
and λ ∈ R+, [2, Theorem 3.6].

Proposition 4.2 (local boundedness of graph-polyhedral mappings). Consider the map-
ping S : Rm →→Rn with S(u) = {x ∈ D | Ax = b − u} where D is a (convex) poly-
hedral subset of Rn and A is a m × n-matrix. Then, S is locally bounded if and only if
D∞ ∩ ker(A) = {0}.
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Proof: S(u) is unbounded if and only if there is a half-line with xd (= 0 such that

{x0 + λxd | λ ∈ R+} ⊂ D ∩ {x | Ax = b − u},

and this occurs if and only if xd ∈ D∞ ∩ ker(A). Moreover, the preceding also implies
that whenever S(u) is nonempty, S(u) ⊂ S(u) + (ker(A) + D∞), and consequently, on
dom S, S(u) is bounded if and only if ker(A) ∩ D∞ = {0} [2, Theorem 3.5]. Thus, we
are dealing with a set-valued mapping whose values are bounded and whose graph is a
polyhedral convex set. In view of Proposition 4.1, this immediately implies that S is locally
bounded. !

The epi-Lipschitz continuity of the mapping u .→ f (u, x) also follows from Pro-
position 4.1. To show that the epigraphical mapping S f is epi-Lipschitz continuous, it
will suffice to show that if u, u′ ∈ dom S f and (x, α) ∈ S f (u), there exists a Lipschitz
constant, say κ ∈ R+ and (y′, β ′) ∈ S f (u′) such that

|y′ − x | ≤ κ|u′ − u|, |β ′ − α| ≤ κ|u′ − u|;

also here we use B+ = B × [−1, 1] as the unit ball in Rn+1 with B the (Euclidean) unit ball
in Rn . Proposition 4.1 implies that one can find κS ∈ R+, the Lipschitz constant associated
with the mapping S, and y′ ∈ S(u) such that |y′ − x | ≤ κS|u′ − u|. Lipschitz continuity of
f0, with Lipschitz constant κ0, in turn implies

| f0(y′) − f0(x)| ≤ κ0|y′ − x | ≤ κ|u′ − u|

where κ = κS(max[1, κ0]). Now, α ≥ f0(x), so one can always find β ′ ≥ f0(y′) such that
|β ′ − α| ≤ | f0(y′) − f0(x)|, and thus not only

|y′ − x | ≤ κ|u′ − u| but also |β ′ − α| ≤ κ|u′ − u|.

From Corollary 3.5 and what precedes, one has that the inf-projection,

p(u) = inf
x

{ f0(x) | Ax = b − u, x ∈ D}

is Lipschitz continuous on dom p.
This is not a new result, cf. [6, Theorem 2]. Of course, the proof in [6] doesn’t pass

through checking epi-Lipschitz continuity.
To follow up, let’s consider a more involved perturbation scheme which is closer to that

encountered when dealing with stochastic programming problems. Again, we deal with the
nonlinear programming problem:

min f0(x), Ax = b, x ∈ D ⊂ R
n.
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But this time, let’s consider perturbations that affect both the constraints and the objective:

f (u, x) =
{

f0(u1, x) if Ax = b − u2, x ∈ D,

∞ otherwise.

where u = (u1, u2) ∈ Rd (d > m) and the bivariate function f0 is such that f0(0, x) = f0(x).

Assumption 4.3. The function f0 : Rd × Rn → R̄ is locally Lipschitz continuous on
Rd × D.

Level boundedness in x locally uniformly in u of f can be obtained under the same
conditions as earlier: either f0 is level-bounded in x locally uniformly in u or one has
that ker(A) ∩ D∞ = {0} which yields the local boundedness of the feasibility mapping
u .→ S(u) = {x ∈ D | Ax = b − u2}. (Of course, in certain situations one might have
to invoke the properties of the level sets of f0(u1, ·) in combination with those of S(u) to
obtain level boundedness in x locally uniformly in u.) Let’s proceed with the assumption
that ker(A) ∩ D∞ = {0} which means that S : Rm →→Rn is locally bounded and Lipschitz
continuous on its effective domain with Lipschitz constant κS , cf. Proposition 4.1.

Next, let’s analyze the continuity properties of the mapping u .→ f (u, ·), or equivalently
of its epigraphical mapping S f where S f (u) = epi f (u, ·). This time, we are going to restrict
ourselves to a bounded subset U of dom S f (u). Let u, u′ ∈ U and

(x, α) ∈ S f (u) ∩ ρB
+, (x ′, α′) ∈ S f (u′) ∩ ρB

+.

The Lipschitz continuity of the feasibility mapping S yields y′ ∈ S((u)′) and y ∈ S(u) such
that

|y′ − x | ≤ κS|u′
2 − u2|, |y − x ′| ≤ κS|u2 − u′

2|.

This means that y′ and y belong to ρ̃B with ρ̃ = ρ + κS(diam U ). Since f0 is locally
Lipschitz continuous, for U × ρ̃B there is Lipschitz constant κ0 such that

| f ((u1)′, y′) − f (u1, x)| ≤ κ0|((u1)′, y′) − (u1, x)| ≤ κU |u′ − u|

| f (u1, y) − f ((u1)′, x ′)| ≤ κ0|((u1)′, y) − (u1, x ′)| ≤ κU |u − u′|

where the last inequalities involving the (new) constant κU come form the preceding string
of inequalities for |y′ − x | and |y′ − x |. There remains simply to observe that because
α ≥ f (u, x) there always exists β ′ ≥ f (u′, y′) such that |β ′ − α| ≤ | f (u′, y′) − f (u, x)|.
And for the same reasons one can find β ∈ S f (u) such that |β −α′| ≤ | f (u, y)− f (u′, x ′)|.

What we have shown is that S f is sub-Lipschitz continuous on U with Lipschitz con-
stant κU , or equivalently the mapping u .→ f (u, ·) is epi-sub-Lipschitz on U . And from this
argument, it follows that u .→ f (u, ·) is locally sub-Lipschitz continuous (on its effective do-
main). Applying Theorem 3.4, then yields the local Lipschitz continuity of p = infx f (·, x)
on its effective domain. Let’s summarize this as follows:
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Proposition 4.4. With u = (u1, u2) ∈ Rd , let

f ((u1, u2), x) =
{

f0(u1, x) if Ax = b − u2, x ∈ D,

∞ otherwise,

where D is a (convex) polyhedral subset of Rn, A is a m × n-matrix. Assume that ker(A) ∩
D∞ = {0} and f0 is locally Lipschitz continuous on Rd × D. Then, the inf-projection of f,
i.e., p = infx f (·, x), is locally Lipschitz continuous on dom p, its effective domain.

Probably the ‘simplest’ case when the preceding result could be applied is when

f (u, x) =
{〈c + u1, x〉 if Ax = b − u2, x ≥ 0,

∞ otherwise,

i.e., when considering a linear programming problem with perturbations affecting both the
objective and the constraints. In this situation, one could rely on the Basis Decomposition
Theorem [4], applied to the primal and dual problems to obtain the local Lipschitz continuity.
But as soon as the problem to be perturbed involves nonlinearity one has to rely on more
comprehensive statements like Theorem 3.4 and its Corollary.
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