Lodone 2 : Efj’&mf(mcj Jon Expms;m

-Waraihdw’%#{% Bow o imfinite me {Ajkep
B-C. of €iguk’s, Eadh eégw[?ﬁ read ozo(/xjmﬁe,

'cgji‘(")amo‘ [Aj| > 02 aoj>r0,

hoppen. LE @ 0 om exq fen of the RSL sysfew comesp.to A
M { Wrcfj}jéﬂ\‘ w om ONB ab” L*a,b) .

' fly {PSiep © o ONBof Liur(0,b).

( Sketdh of Provf)
@Fimf,o‘commﬁ-l—mx O& (L) pﬁ\

Step 1.1 : W) =1 onla,bl . Since pF)+Gf=-Af

we have A Er(RSL) D —Aea(h).

Now # : 6 Compuct aolf-0d4.op. pand shoned the

&gﬁowo wth L. ANeal(l), Ya € o(K).

=" By the Spedial Than, TON peg. 14j} of L.
Let“] P55 be the corvesp. eigued’s.

> By the KL Thw, {V/xf C o~(L).

> The agwﬁ')‘%" RSL systesm onL ) :-'//‘J-e[R
omdk ;"> 0 dume to the compadned .

21X = oo | auet the correrp. &36m§{cpj§]enmm

O}J'B of Lta, b, which io pepanable.

Stepl.2: W(x) >0 amd € Cla,b],
Infou spealeing, fot A€ ¢~(RSL) with ¢ oo the eijfon.
Thew, 2“«%: —AWwY = -N'9 = Lwe ;\Fz\:o 3
& N wp=(wklw ¢
& N we=(Jw L JwHwe
& Ner(iwl )
with (W@ oo the e/ﬁﬁm




Step1.3 * Simplisty of eadh 22yl for the RSL ¢
Cwth the %M?M/gy,ﬂéﬁc.‘s) wf?aﬁnmdgwued befmyz

® The cone whew 0 € (L) Prck MeR s.t.
K& @ C(RSL) . Thio Co pordible Aumce o (RSL) Lo
cowtolle , Let RSLp be am RSL by replacing

93 g+f¢w~,
Than , (f,A) Co am eigeapun oﬁ RSLu
= (pf’ )+ (§Hpwr Aw)f=0
Thio co possible iff- A+pH €T(RSL)
Hemce Lﬂ(—)%a;ggsgn, e, we Coum "
L the e 's. SoOc be e re.
A’e""ﬁt j S o a-Ppl fe ///

Remark : The above thuw & {uwot o sf’a«i‘ing Po.'u‘(
of a wojer branc af cw\.aﬁﬂsf.s . Fav = pﬁgsi
nystewms that com be descibed/moddled by the RSL
Sgsf'&w-d 5 Y. lch du«pm—’fwx’ to know  the disbbufion
of ther equal s auwd the behavior of the corvesp. egfena.
The following one Samples of the facla onthe gemeral RSL:
e A; > 00 a0 jee (ie., only finitely momy Aj's ane <0);
{- > L towerges ;

Mo AJ

* P5 Qoo Waﬂa 4 Zeros on [a,b],
See, e.9., Titchmoash (1962) omd/or Amrein etal . (2005).

We. coudok nell dusewss the SSL Sysfewd m
detenlls . Conswlt the above poots” oo well oo
Yosido (1991) omd Stokgolk 3 Holst (2011, Chopd).




K _Solution of the Homging Chaim (HC) Problem
what wae o £ 1o lenow Hot oo given SL system
heo aw ONB of L*(a,b) conocatfing qf& egfens ?
= Con wiite doun the polution ff the IV-BV Problem
from wfick the SL aystem arse. Thot o, We con justify
the Sepanalion of vauiables !

To Clluetrate thic, let’s recall the HC problew of Lecture 20.
2U _ 2 (x%_

at* X

(HO){ B.C.: W(L,t)=0, o0stc<oe
I.C.: WU(x,0)=WUlx), Z2(x,0)=0, 0<x<l.
BDD.: Aupluix,t)| < oo, 0sxsQ, ost<oeo,

The Corresp. SSL ayfem o :
(x-f’)’-r?—F =0, osx=<f,
(HCSL){ B.C.: £(L)=0.
BDOD.: f :bdd on (0,2] .

Lemmo. QL the eiguls of HCSL are poutive,

(Pravf) Let (),¢) be om egenpairn of HCSL
wth 1Pll,=1. [eb L£f:=(xf), c.e, (-2, ¢)
be om evgempanr of L if (A, P)co am evempais of HCSL
Now, A =“:r<£.:;‘:‘{> =-g’ (x;o’)'cfe;ltz( W{
(]
=—[M]:+S'xg¢’|zdx >o.///
0 o

Let (Aj,9,), ye N, be the eidoupaing of HESL
with uff’,-ll}l J YieIN. oegera



Go we disecunsed o Lectine 20, we hope o
?/xprm wnu ad g,fv‘- Mﬁdué/'e./uwxug nounald modeo :

¥ UlX, €)= 2 ¢ %.(x)waf.fj t

If thio Lo twe YE >0, thew
- -5 o 1¢}: the Founien

U(x,0) = Uo(x) 'Z C; Fy(x) < cotf’s of o .. 1051,
= Thio Bolde if 14§ fams am ONB of L*(0,2).
Unfatun , HCSL. o MWM, S0 the thws for the
RS L cannot be a.pplfeo(. wch more werk o needed
to show +thal {Y;§: complete un L(0,8): NEL Wotson (1944)
Let’s proceed by awm?? that {¢;}: am ONB for L*(0,2).
Then we expect the Aol. of HC o 6.

If term-by-term differentiafion of &) io valid, Lthen

S013)= £ ho) i =S anponsse

S‘;Mlmnﬂg. -:—:5,: leodo to the pome Neried oo above.
How eer, does the RHS make fonre with }‘J > 027
Neverthe leas , 6K) o juotified via :

‘:-h_"_" Let uoe€ szo,lj, Them , 3 ot most ome pol. o‘ HC

ucx,t) € C(Lo)xL0,)). If 3a ndk., thuw it ia givew by
bek) U(-, 1) = 2.Cj-CotI%- P, wiewed as o e om [0,4],

where (1), 9;), j€ N one the eigenpuins of HCSL with |||, =1

omd ;=< uo, 5>, V€N (k%) Patdo wort. ll- =1l Nz, 4.
for every tzo.

(Progf) Let wbe o pol.of HC. Fov eadh £20, bt
OJ'L{’) F = <M(-,t), ‘f) >. Sine {"j.},jc—m/ fnwl
om ONB of L*0,1), we have




00
(xx1) WU(s, t) = Zc-m«fg en L0,2) .

Ui = C;0) € CT10,0) amd C;8) = (Ueel D, 4,
We'll prove ﬂtffw Qi ITon. Swppode,‘t’hwaeaw»ﬁo(da
T\Nm. Aame U W o ol . vg(—le,

i) = Lz (x50, 9> =<Luestr, 4

L:ndf-odi. = < uc,¢), £4>
= <ul,t), -A; 4>
S olisfies the =m:-f&/\j hmenic. mt
aC()s steed € oMo & moT o
) = Ay wOJ—t+B 4,1‘:, Aj. B;: arb. const's.
Nwweuu.tl«zIC'
Sine C (t) = < Uele, t), %>
cco) <ugl,0), ¥ > =<0,9;>=0
=> B —0 VJélN
Now, A; _c (0) = <ul-,0), ¢; >= <y, ¢; >
So, CC{-)—C Coml"t jEIN.
ku. b‘g(*"*) we.hwe_

uls, t—)_z C"o\ﬁst 90 ML[O.Z)///
Remark = The c omdifior g Up ) amd U(-, ) moy

be toe restiictive, -QApe(,ua_QL} Considering realistic
yra{r(www Wwhat we have discurred one th.a a0~ Colled
Lossicol polutions. For fess restiictive comoitions, we
need the molion ag’ weak solutimas amd the thcary« a{-’
Sobolev spaces . See,e.§., Follomd (1995), Lieb& Loss
(2001), -



(Proof of the Clam) For t20 & Rz, we hawe

Citt+h) —C)(t) _ ,
= ‘ﬁ, 4 <u't (-, f)a ‘6 >

— < we., -é-t}.\ﬂ)‘— ud-,¢t) —de (-, €D, goj >

_ S”{Wa teh) = WE) iy 0 €2} F G0 dX — (49
0 A~ RAAA~——~A~

A

. — O a0 Hh >0 aiﬁ«fxed‘t,vxe[-O,.Ql
§o,ig we Con wre the Dom.Conv. Thum ., thew
the aboune Leads fo C;tt)=<uUg (-, ), ¢>,
am ol repeaﬁvav' the fame MW, we co show™
Eje) = SUee (.8, >, amdk Cj(:) €C*o,00).
But v fact , the Dom. Conv. Tham . Roldo for (X)) !
() wWith t:fixed ,let M= M ()i= pup |de(x,t)].

0S¢t 'St
0sx<4

Sinca Ue(-,-) € C([0,2)x[0,»)) via assump. omd [0,0]x [0, t+1]
Lo Compack, M< oo, Now, fot G(x):=dMI %00
Ba The MQM VGQMZTM, u(X,fZ\)—u(x) - , ut(x,t"'&h—)ls M
provided that —tsRh<1, “oeln
= For thne values of R, ﬂnzmoowluo«rgtha_
integrom o wm () < GX), aud |9, < oo
e G € Cfo,ﬁj\omcj( lool;( on Co,ﬂ.g :

So, the Dom. Conv. Thm. clees wppfgw(*)//




