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We study the asymptotic limit as the density ratio !−/!+ → 0, where !+ and !− are
the densities of two perfect incompressible 2-D/3-D fluids, separated by a surface of
discontinuity along which the pressure jump is proportional to the mean curvature
of the moving surface. Mathematically, the fluid motion is governed by the two-phase
incompressible Euler equations with vortex sheet data. By rescaling, we assume
the density !+ of the inner fluid is fixed, while the density !− of the outer fluid is
set to ". We prove that solutions of the free-boundary Euler equations in vacuum
are obtained in the limit as " → 0.
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1. Introduction

1.1. The Water Wave Problem

A number of articles have recently appeared that focus on the analysis of the
one-phase free-boundary incompressible Euler equations, in either irrotational form
or with vorticity, in both 2-D and 3-D, and with or without surface tension
effects on the free surface. See [6, 7, 10–14, 18, 19, 21] and the references therein.
In irrotational form, the one-phase incompressible Euler equations with free-surface
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818 Cheng et al.

are often referred to as the water wave equations for the motion of the interface,
since irrotationality decouples the motion of the liquid from that of the free-surface
wave motion. The water wave equations typically model the motion of a liquid drop
inside of air, or the waves on the surface of the ocean underneath the atmosphere
(of course, air can be replaced with any other incompressible liquid with very small
relative density). In particular, suppose that the density of the liquid is denoted
by !+ while the density of air (or the lighter liquid) by !−. Even when !− " !+,
the motion of the liquid-air system is more accurately modeled by the two-phase
Euler equations, which in irrotational form lead to the equation of motion for vortex
sheets.

The jump discontinuity in the tangential component of velocity across the
material interface, which appears in the two-phase Euler model, is responsible for
the ill-posedness of this system of PDE when surface tension effects are ignored
(see [9, 20]). On the other hand, in the presence of surface tension, the two-phase
system is well-posed. See [4] for existence and uniqueness of solutions to two-phase
(rotational) Euler equations, and see [1–3] for the proof of well-posedness for the
irrotational problem. Also, see [15] for an infinite-dimensional geometric approach
to a priori estimates of the general problem. With surface tension included, the
pressure experiences a jump discontinuity proportional to the mean curvature of
the vortex sheet as we describe below. The two-phase system is a great deal more
difficult to simulate computationally or study analytically, so it is of significant
interest to rigorously establish the convergence of solutions to the two-phase
equations (vortex sheets) to those of the one-phase model (water waves) in the limit
as !−/!+ → 0. The purpose of this paper is to prove this asymptotic result, without
any irrotationality assumptions on the fluids. We state our results for the case that
the space dimension is either 2 or 3, but we note that with additional regularity
assumptions on the data, our results are valid for any space dimension great than 1.

1.2. The Two-Phase Euler Equations in Eulerian Variables

For ! = 2 or 3, let " ⊆ #! denote an open, bounded set, which comprises the
volume occupied by two incompressible and inviscid fluids with different densities.
At the initial time t = 0, we let "+ denote the volume occupied by the inner fluid
with density !+ and we let "− denote the volume occupied by the outer fluid with
density !−. Mathematically, the sets "+ and "− denote two disjoint open bounded
subsets of " such that " = "+ ∪"− and "+ ∩"− = ∅. The material interface at
time t = 0 is given by # $= "+ ∩"−, and %" = %"− − # .

Let "+&t' and "−&t' denote the time-dependent volumes of the inner and outer
fluids, respectively, separated by the moving material interface #&t'. Let u± and
p± denote the velocity field and pressure function, respectively, in "±&t'. Then the
so-called vortex sheet problem, given by the solution of the incompressible Euler
equations for the motion of two fluids separated by a moving surface of discontinuity,
can be written as

!±&u±
t + u± ·Du±'+Dp± = 0 in "±&t'( (1.1a)

div u± = 0 in "±&t'( (1.1b)

)p*± = +H on #&t'( (1.1c)

)u · n*± = 0 on #&t'( (1.1d)
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On the Limit 819

u− · n = 0 on %"( (1.1e)

u&0' = u0 on ,t = 0-×"( (1.1f)

$ &#&t'' = u+&t' · n&t'( (1.1g)

where $ &#&t'' denotes the speed of the moving interface #&t' in the normal
direction, and n&t' denotes the outward-pointing unit normal to %"+&t'; thus, (1.1g)
indicates that the vortex sheet #&t' moves with the normal component of the fluid
velocity. !+ and !− are the densities of the two fluids occupying "+&t' and "−&t',
respectively, H&t' is twice the mean curvature of #&t', and + > 0 is the surface
tension parameter which we will henceforth set to one.

In [4], we proved the existence and uniqueness of the solutions to (1.1). See
also [1–3] for the proof of well-posedness for the irrotational problem, and [15]
for an infinite-dimensional geometric approach to a priori estimates of the general
problem.

By rescaling, if necessary, we may assume that

!+ = 1 and that !− = . " 1/

Letting u±
. denote the solutions of (1.1), the main objective of this article is to study

the asymptotic behavior of the solutions u±
. as . → 0.

1.3. Notation

1.3.1. Sobolev Norms on "± and # . Let Hs&"+' denote Hs&"+0#' for scalar
functions or Hs&"+0#!' for vector fields, and let Hs&"−' denote Hs&"−0#'/# for
a scalar function with zero average or Hs&"−0#!' for vector fields. We denote the
Hs&"±'-norms by

)w+)s(+ = )w+)Hs&"+' and )w−)s(− = )w−)Hs&"−'/

The Hs&#'- and Hs&%"'-norms are denoted by

*w+*s = )w+)Hs&#'( *w−*s = )w−)Hs&#'( and *w*s(%" = )w)Hs&%"'/

For simplicity, we also use )w)2s(± and *w*2s(± to denote )w+)2s(+ + )w−)2s(− and
*w+*2s + *w−*2s , respectively, that is,

)w)2s(± = )w+)2s(+ + )w−)2s(−(
*w*2s(± = *w+*2s + *w−*2s /

We also use +·( ·,H1&"+', +·( ·,H1&"−' and +·( ·,H0/5&#' to denote the duality pairing
between H1&"+' and H1&"+'′, the duality pairing between H1&"−' and H1&"−'′,
and the duality paring between H0/5&#' and H−0/5&#', respectively.

1.3.2. Einstein Summation Convention. Repeated Latin indices are summed from
1 to !, while repeated Greek indices are summed from 1 to !− 1. For example,

f 1g1 $=
!−1∑

1=1

f 1g1 and f igi $=
!∑

i=1

f igi/
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820 Cheng et al.

1.3.3. The Tangential Derivative. Let ,U2-
K
2=1 denote an open covering of # , such

that for each 2 ∈ ,1( 2( / / / (K-, with

V2 = B&0( r2'( denoting the open ball of radius r2 centered at the origin and,

V+
2 = V2 ∩ ,x! > 0-(

V−
2 = V2 ∩ ,x! < 0-(

there exist for s ≥ 3, Hs-class charts 32 which satisfy

32 $ V2 → U2 is an Hs diffeomorphism,

32&V
+
2 ' = U2 ∩"+(

32&V2 ∩ ,x! = 0-' = U2 ∩ #/

Next, for L > K, let ,U2-
L
2=K+1 denote a family of open balls of radius r2 contained

in " such that ,U2-
L
2=1 is an open cover of ", and let

,42-
L
2=1 denote a %0 partition of unity subordinate to this covering of "/

We use %̄ to denote the tangential derivative in U2 ∩". For a differentiable function
f on ", the 1th component of the tangential derivative of f is given by

f(1 = %̄1f = %

%x1
)f 1 32* 1 3−1

2 =
[
&Df 1 32'

%32
%x1

]
1 3−1

2 /

We use f(i to denote the ith component of Df , where Df is the gradient of f , or

f(i =
%f

%xi
/

1.3.4. The Identity Map e. The identity map on #n is denoted by e so that e&x'= x.
For 1 = 1( 2, we use the notation e(1 to denote the two tangent vectors to the
reference material interface # ; more specifically, in any local coordinate chart V2, e(1
denotes the tangent vectors %32

%x1
. Note that

)&Df' 1 32* · e(1 = f(1 1 32 or &f(j 1 32'ej(1 = f(1 1 32/

1.3.5. Hs Norm of # . We defined the Hk-norm of # to be

*# *2k $=
K∑

2=1

∫ !−1

#
42*%k11···1k32*

2dx1 · · ·dx!−1/

The Hs-norm for any real s ≥ 0 is defined by interpolation. We say that # is of class
Hs (or # ∈ Hs) whenever *# *s < 0. The Hs-norm of %" is defined similarly.
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On the Limit 821

1.3.6. Inner Products and Contractions. Given two vector v and w in #!, the inner
product of v and w is denoted by v · w, which in component is defined as

v · w = viwi =
!∑

i=1

viwi/

For two matrices A and B, the contraction between A and B, denoted by A $B , is
the trace of the product of A and B, which in component is defined as

A $B = Tr&AB' = Aj
iB

i
j =

!∑

i(j=1

Ai
jB

j
i /

1.3.7. The Transpose of Matrices. Given any matrix &, we use &T to denote its
transpose.

1.4. The Arbitrary Lagrangian–Eulerian (ALE) Formulation

Let 5+ denote the Lagrangian flow map of u+ in "+, that is,

5+t &x( t' = u+&5+&x( t'( t' ∀x ∈ "+( t > 0( (1.2a)

5+&x( 0' = x ∀x ∈ "+/ (1.2b)

By a theorem of Dacorogna and Moser [8], we can choose a volume preserving
diffeomorphism 6 on "− such that

det&D6' = 1 ∀x ∈ "−(

6 = 5+ ∀x ∈ #(

6 = e ∀x ∈ %"/

Furthermore, the following elliptic estimate holds:

)6)4/5(− ≤ C
[
*5+*4 + *%"*4

]
/

We then define

6&x( t' =
{
5+&x( t' x ∈ "+(

6&x( t' x ∈ "−(

Remark 1. We emphasize that 6t does not equal v− in "−; on the other hand,

6t = v+ on "+/

Set v = u 1 6, q = p 1 6, and let A = &D6'−1. Using the ALE variables,
equations (1.1) are written as

v+i
t + Ak

i q
+
(k = 0 in &0(T'×"+( (1.3a)

.v−i
t + .wjv−i

(j + Ak
i q

−
(k = 0 in &0(T'×"−( (1.3b)
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822 Cheng et al.

Aj
i v

±i
(j = 0 in &0(T'×"±( (1.3c)

q+ − q− = −7g5 · n on &0(T'× #( (1.3d)

v+ · n = v− · n on &0(T'× #( (1.3e)

v− · N = 0 on %"( (1.3f)

&6&t'( v&t'("±&t''t=0 = &e( u0("
±'( (1.3g)

where e&x' = x denotes the identity map on ", w = A&v− − 6t', and n&t' $= n&6&t''
denotes the outward-point unit normal to %"+&t' and evaluated at the point 6&t'.
With N denoting the outward-point unit normal to %"+ at t = 0, we have the
identity

n&6&t'' = ATN

*ATN * /

1.5. The Higher-Order Energy Function

With ' &t' denoting the surface area of the vortex sheet #&t', the physical energy
function is given by )u+)2

L2&"+&t'' + .)u−)2
L2&"−&t'' + 2+' &t'. While the physical energy

is exactly conserved, it is much too weak to provide the necessary a priori control to
pass to the limit as . → 0. As such, we define the higher-order energy function (

(&t' = *%̄5+ · N *23(+ + )v)23(± + )vt)21/5(± + )v+tt)20(+ + .)v−tt)20(−/

Note that only .)v−tt)20(− has the asymptotic scaling parameter ..

1.6. The Regularity of the Solution to (1.1)

With . = !−/!+, the following theorem is the main result in [4].

Theorem (Well-posedness of (1.1)). Suppose that + > 0, and that # $= #&0' is of class
H4, %" is of class H3, and u±

0 ∈ H3&"±'. Then, for all . > 0, there exists T. > 0,
and a solution &u±&t'(p±&t'("±&t'' of (1.1) with u± ∈ L0&0(T0H3&"±&t'', p± ∈
L0&0(T0H2/5&"±&t'', and #&t' ∈ H4. The solution is unique if u±

0 ∈ H4/5&"±' and
# ∈H5/5.

Note that the time of existence T. depends crucially upon ., and that a priori
T. may approach zero as . → 0.

1.7. Main Result

Let "&t' = "+&t', and let U denote the solution of the one-phase free-surface
incompressible Euler equations in vacuum, satisfying

Ut + U ·DU +DP = 0 in "&t'( (1.4a)

divU = 0 in "&t'( (1.4b)

P = H on #&t'( (1.4c)

U · n = 0 on #&t'( (1.4d)
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On the Limit 823

u&0' = u0 on ,t = 0-×"( (1.4e)
$ &#&t'' = U&t' · n&t'/ (1.4f)

Theorem 1.1 (Main Theorem). Let . = !−/!+, and for . > 0, let u+
. denote the

sequence of the solution to (1.1) in the inner phase "+&t'. Suppose that u+
0 = u0*"+ ∈

H3&"+' and u−
0 = u0*"− ∈ H3&"−' satisfying u+

0 · N = u−
0 · N on # , where # is of class

H4/5 and %" is smooth. Then there exists T > 0, independent of ., such that the solution
u+
. 15. to (1.1) converges weakly to U15 in L2&0(T0H3&"+'' as . → 0, where 5. and
5 are flows of u+

. and U , respectively.

Remark 2. Note that u. a priori only exists on the .-dependent time interval &0(T.';
however, the main theorem shows that T. is in fact independent of ., and that u.
exists on an .-independent interval &0(T' for all . > 0.

1.8. The Structure of the Proof and Outline of the Paper

The proof of Theorem 1.1 consists of several steps that we describe as follows.
In Section 2, we review some well-known inequalities that we use throughout our
analysis. In Section 3, we establish estimates for the time derivatives of velocity
and pressure, evaluated at time t = 0. Section 4 is devoted to the derivation of .-
independent estimates for our two-phase system. The fundamental difficulty resides
in the estimates for the normal and tangential components of v−tt , which are founded
on improved elliptic estimates (with respect to our estimates in [4]) for the pressure
functions. Finally, in Section 5, we pass to the limit as . → 0 and establish our main
result.

2. Preliminary Results

2.1. The Trace of the Normal Component of a Vector Field

A vector u ∈ L2&)' with div u ∈ H1&)'′ has a normal trace u · N ∈ H−0/5&%)', where
N is the unit normal to the surface %), with the estimate

)u · N)2H−0/5&%)' ≤ C
[
)u)2L2&)' + )div u)2H1&)'′

]
( (2.1)

where C depends on *# *s for all s > !+2
2 (see, for example, [17]).

By the Piola identity, Ak
i (k = 0 (since detD6 = 1), and the identity ATN = √

gn,
letting uj = Aj

iw
i in (2.1) yields the Lagrangian normal trace estimate

)w · n)2H−0/5&%)' ≤ C
[
)w)2L2&)' + )Aj

iw
i
(j)2H1&)'′

]
( (2.2)

where ) is either "+ or "−.

2.2. The Hodge Decomposition Elliptic Estimate

Proposition 2.1. For r ≥ 2/5, let ) be Hr domain, that is, %) is of class Hr−0/5. If
w ∈ L2&)0#3' with curlw ∈ Hr−1&)', divw ∈ Hr−1&)', and %̄w · N ∈ Hr−1/5&%)', then
there exists a constant C depending on *%)*r−0/5 such that

)w)Hr &)' ≤ C&*%)*r−0/5'
[
)w)L2&)' + )curlw)Hr−1&)' + )divw)Hr−1&)'

+ )%̄w · N)Hr−1/5&%)'

]
/ (2.3)
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824 Cheng et al.

This estimate is well-known and follows from the identity −7F = curl curlF −
Ddiv F ; a convenient reference is Taylor [16].

2.3. The Curl and Divergence Estimates of !, v and vt

Exactly following Section 10 in [6], we have the following

Lemma 2.1. The quantities Ddiv 5+, div v±, div v±t and Dcurl 5+, curl v±, curl v±t
satisfy the following estimates:

)div v±t )20/5(± + )curl v±t )20/5(± + )div v±)22(±
+ )curl v±)22(± + )Ddiv 5+)22/5(+ + )Dcurl 5+)22/5(+

≤ C8*0 + C8T+
(

sup
t∈)0(T*

(&t'
)
+ 8 sup

t∈)0(T*
(&t'( (2.4)

where 8 > 0 is taken sufficiently small, and P denotes a polynomial function of its
argument.

2.4. A Polynomial-Type Inequality

For a constant M ≥ 0, suppose that f&t' ≥ 0, t 5→ f&t' is continuous, and

f&t' ≤ M + CtP&f&t''( (2.5)

where P denotes a polynomial function, and C is a generic constant. Then for t
taken sufficiently small, we have the bound

f&t' ≤ 2M/

This type of inequality, which we introduced in [5], can be viewed as a generalization
of standard nonlinear Gronwall inequalities.

2.5. Differentiating the Matrix A

In this subsection we list a very useful identity here concerning the differentiation
of the cofactor matrix A for reference. Let 8 be a differential operator such as %t, %̄
or D, then

8Aj
i = −Aj

r86
r
(sA

s
i / (2.6)

For example, when 8 = %t,

&Aj
i 't = −Aj

r6
r
t(sA

s
i /
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On the Limit 825

3. Estimates for Velocity, Pressure, and their Time
Derivatives at Time t = 0

3.1. Estimates for the Initial Data

We require estimates for the time derivatives of the velocity and pressure at
t = 0. As in [4], we use w1, w2, q0 and q1 to denote vt&0', vtt&0', q&0' and qt&0',
respectively. Following [4], estimates for qi can be obtained by analyzing certain
elliptic equations, and estimates for wi are obtained by letting t = 0 in (1.3a) and
(1.3b). The estimates obtained in [4] are density dependent. In particular, wi and qi
satisfy

)w+
1 )22(+ + )q+

0 )23(+ + .)w−
1 )22(− + 1

.
)q−

0 )23(− ≤ C+&)u0)23(±( *# *24/5' (3.1)

and

)w+
2 )20(+ + .)w−

2 )20(− + )q+
1 )21(+ + 1

.
)q−

1 )21(− ≤ C+&)u0)23(±( *# *24/5'( (3.2)

where + is some polynomial of its variables.
However, in order to obtain .-independent estimates, we require .-independent

bounds for q−
i and w−

i . Indeed, we have the following

Proposition 3.1. Given u+
0 ∈ H3&"+', u−

0 ∈ H3&"−', and # ∈ H4/5, then

)w1)22(± + )w2)20(± + )q+
0 )23(+ + )q+

1 )21(+

+ 1
.2
[
)q−

0 )22(− + )q−
1 )20(−

]
≤ C+&)u0)23(±( *# *24/5'/ (3.3)

Proof. We note that the estimates for w+
i and q+

i follow from (3.1) and (3.2), so it
suffices to obtain estimates for w−

i and q−
i . We estimate q−

0 first.
Taking the Lagrangian divergence of (1.3b), by the Lagrangian divergence-free

condition Aj
i v

−i
(j = 0, we obtain

.
[
−Aj

itv
−i
(j − Aj

i(2v
−i
(j w

2 + Aj
iw

2
(jv

−i
(2

]
+ Aj

i &A
k
i q

−
(k'(j = 0/

Using (2.6) and w = A&v− − 6t' in the equality above at t = 0, as well as restricting
(1.3b) on %"− in the normal direction at t = 0, we find that q−

0 satisfies

7q−
0 = −.&Du−

0 '
T $ &Du−

0 ' in "−( (3.4a)

%q−
0

%N
= −.w−

1 · N − .&w0 ·Du−
0 ' · N on #( (3.4b)

%q−
0

%N
= −.&w0 ·Du−

0 ' · N on %"/ (3.4c)

By (1.3e),

w−
1 · N = w+

1 · N + g980 &u
+
0(9 · N')&u+

0 − u−
0 ' · e(8*/ (3.5)
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826 Cheng et al.

Therefore, by elliptic regularity,

)q−
0 )23(− ≤ C.2

[
)u−i

0(ju
−j
0(i)21(− + *w+

1 · N *21/5 + *g980 &u+
0(9 · N'&u+

0 − u−
0 ' · e(8*21/5

+ *&w0 ·Du−
0 ' · N *21/5(− + *&w0 ·Du−

0 ' · N *21/5(%"
]

≤ C.2+&)u0)23(±( *# *24/5'/ (3.6)

By (3.6) and (1.3b), we also obtain an .-independent estimate for w−
1 :

)w−
1 )22(− ≤ C

[
)w0 ·Du−

0 )22(− + 1
.2
)q−

0 )23(−
]
≤ C+&)u0)23(±( *# *24/5'/ (3.7)

Similarly, since

w−
2 · N = w+

2 · N + 2&w+
1 − w−

1 ' · nt&0'+ &u+
0 − u−

0 ' · ntt&0'(

by (3.7) we find that

*w−
2 · N *2−0/5 ≤ C

[
*w+

2 · N *2−0/5 + *w+
1 − w−

1 *21/5*nt&0'*20 + *u+
0 − u−

0 *21/5*ntt&0'*2−0/5

]

≤ C+&)u0)23(±( *# *24/5'/

Hence by considering the elliptic problem for q−
1 (see [4, p. 14] or letting t = 0

in (4.11a) for the precise equations), the elliptic regularity implies

)q−
1 )21(− ≤ C.2+&)u0)23(±( *# *24/5'/

Time-differentiating (1.3b) and setting t = 0 then yields the estimate

)w−
2 )20(− ≤ C+&)u0)23(±( *# *24/5'/ !

Henceforth, we let *0 denote a constant depending on )u0)3(± and *# *4/5.
Therefore, (3.3) implies

)w1)22(± + )w2)20(± + )q+
0 )23(+ + )q+

1 )21(+ + 1
.2
[
)q−

0 )23(− + )q−
1 )21(−

]
≤ *0/ (3.8)

In the later discussion, we also need the lower order estimates for q±
0 and w±

1 .
Instead of Proposition 3.1, we have the following

Proposition 3.2. Given u+
0 ∈ H1/5&"+', u−

0 ∈ H1/5&"−', and # ∈ H3, then

)w1)20(± + )q+
0 )21(+ + 1

.2
)q−

0 )21(− ≤ C+&)u0)21/5(±( *# *23'/ (3.9)

Proof. The parts )w+
1 )20(+ and )q+

0 )21(+ in (3.9) follows from [4] by first solving

7q+
0 = −u+i

0(ju
+j
0(i in "+(

1
.
7q−

0 = −u−i
0(ju

−j
0(i in "−(
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On the Limit 827

q+
0 − q−

0 = H0 on #(

%q+
0

%N
− 1
.

%q−
0

%N
=

[
&u−

0 − u+
0 ' · e(:g1:0 u+

0(1 + &w0 ·Du−
0 '
]
· N on #(

%q−
0

%N
= −.&w0 ·Du−

0 ' · N on %"(

to obtain that

)q+
0 )21(+ + 1

.
)q−

0 )21(− ≤ C
[
)u+i

0(ju
+j
0(i)4L6/5&"+' + )u−i

0(ju
−j
0(i)4L6/5&"−' + *H0*20/5

+ *)&u−
0 − u+

0 ' · e(:g1:0 u+
0(1 + &w0 ·Du−

0 '* · N *2−0/5

+ *&w0 ·Du−
0 ' · N *2−0/5(%"

]

≤ C+&)u0)21/5(±( *# *23'(

and the estimate for w+
1 follows from the Euler equations. Then we test (3.4a)

against q−
0 to find that

)Dq−
0 )20(− = −

∫

"−
.u−i

0(ju
−j
0(iq

−
0 dx +

∫

#∪%"
q−
0
%q−

0

%N
dS

≤ .)u−i
0(ju

−j
0(i)L6/5&"−')q−

0 )L6&"−' − .
∫

#
q−
0 &w

−
1 + w0 ·Du−

0 ' · NdS

− .
∫

%"
q−
0 &w0 ·Du−

0 ' · NdS

≤ C8.
2+&)u0)21/5(±( *# *23'+ 8)q−

0 )21(−(

where we use (3.5) to estimate w−
1 · N in terms of u±

0 and w+
1 . By Poincare’s

inequality, we find that (3.9) holds for )q−
0 )21(− and therefore, by the Euler equations,

for )w−
1 )0(− as well. !

3.2. Basic Assumptions on Bounds

We assume that we have a sufficiently smooth solution v+, such that on the time
interval )0(T*,






)5+ − e)23(+ ≤ 1
2
( )D5+)22(+ ≤ !*"+*2 + 1(

)v+)21/5(+ ≤ )u+
0 )21/5(+ + 1( )v−)21/5(− ≤ )u−

0 )21/5(− + 1(

)v+t )20(+ ≤ )w+
1 )20(+ + 1( )w)21/5(− ≤ 2)w0)21/5(− + 1(

)v−t )20(− ≤ +&)u0)21/5(±( *# *23'(

where + is a polynomial of its variable. Verification of these assumptions, except
for )v−t )0(−, will follow from the fundamental theorem of calculus, once our energy
estimates are completed.

In the following, we allow our generic constant C to depend on the right-hand
sides of these inequalities. Given the estimate (3.9), the constant C depends only on
the measure of "+, )u0)21/5(± and *# *23.
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828 Cheng et al.

3.3. The Estimates for w = A"v− − #t$ and wt

By the fundamental theorem of Calculus,

)w&t')21/5(− ≤ 2
[
)w&0')21/5(− + t

∫ t

0
)wt&s')21/5(−ds

]
/ (3.10)

Since w = A&v− − 6t',

wj
t = −Aj

r6
r
t(sA

s
2&v

−2 − 62
t '+ Aj

2&v
−2
t − 62

tt' = −Aj
r6

r
t(sw

s + Aj
2&v

−2
t − 62

tt'0

hence

)wt)20(− ≤ )A)2L0&"−'

[
)D6t)2L3&"−')w)2L6&"−' + 2&)v−t )20(− + )6tt)20(−'

]
≤ C

and

)wt)21/5(− ≤ C
[
)6t)22/75(−)w)21/5(− + )v−t )21/5(− + )6tt)21/5(−

]
≤ C sup

t∈)0(T*
(&t'/

4. The %-Independent Estimates

4.1. Estimates for the Pressure and v±tt · n
Proposition 4.1. Given (&t' defined in Section 1.5, the solution v± of (1.3) satisfies the
following estimate:

*vtt · n*2−0/5(± + )q+)22/5(+ + )q+
t )21(+ + 1

.2
[
)q−)22/5(− + )q−

t )21(−
]
≤ C sup

t∈)0(T*
(&t'/ (3.10)

Proof. The proof consists of four steps.

Step 1 (Estimates for q−). Since q− satisfies

Aj
i &A

k
i q

−
(k'(j = −.

[
&Aj

i 'tv
−i
(j + &Aj

i '(2w
2v−i

(j − Aj
iw

2
(jv

−i
(2

]
in "−(

Aj
iA

k
i q

−
(kNj = .

[
− v−i

t − w2v−i
(2

]
Aj

iNj on #(

q−
(kNk = −.w2v−i

(2 Ni on %"(

elliptic regularity shows that

1
.2
)q−)22/5(− ≤ C

[
)ADwDv−)20/5(− + )wDADv−)20/5(− + )AtDv−)20/5(−
+ *v−i

t ni*1 + *&w ·Dv−' · n*1 + *&w ·Dv−' · N *1(%"
]
/

We first estimate )ADwDv−)20/5(−. This requires interpolation, so we first estimate
)ADwDv−)20(− and )ADwDv−)21(−. It is easy to see that

)ADwDv−)20(− ≤ )A)2L0&"−')Dw)2L6&"−')Dv−)2L3&"−' ≤ C
[
)v+)22(+ + )v−)22(−

]

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
D
a
v
i
s
]
 
A
t
:
 
2
1
:
5
8
 
1
3
 
A
p
r
i
l
 
2
0
1
0



On the Limit 829

and that

)D&ADwDv−')20(− ≤ C
[
)DADwDv−)20(− + )AD2wDv−)20(− + )ADwD2v−)20(−

]

≤ C
[
)v+)23(+ + )v−)23(−

]
0

hence, by interpolation,

)wDADv−)20/5(− ≤ C
[
)v+)22/5(+ + )v−)22/5(−

]
/

Similarly, by interpolation we find that

)wDADv−)20/5(− + )AtDv−)20/5(− ≤ C
[
)v+)22/5(+ + )v−)22/5(−

]
/

It is also easy to see that *v−t · n*1 ≤ C)v−t )1/5 and that

*&w ·Dv−' · n*21 + *&w ·Dv−' · N *21(%" ≤ C)v−)23/

It follows that

1
.2
)q−)22/5(− ≤ C sup

t∈)0(T*
(&t'/ (4.2)

Step 2 (Uniform Bounds for v±tt · n). Letting w = v+tt in (2.2),

*v+tt · n*−0/5 ≤ C
[
)v+tt)0(+ + )Aj

i v
+i
tt(j)H1&"+'′

]
/

By the incompressibility condition (1.3c),

Aj
i v

+i
tt(j = −&Aj

i 'ttv
+i
(j − 2&Aj

i 'tv
+i
t(j/ (4.3)

Let f ∈ H1&"+'; then

+&Aj
i 'ttv

+i
(j ( f,H1&"+' = −

∫

"+
&Aj

i 'ttv
+if(jdx +

∫

#

(√
gni

)
tt
v+ifdS/ (4.4)

Taking the supremum over all f ∈ H1&"+' with )f)1(+ = 1, we find that

)&Aj
i 'ttv

+i
(j )2H1&"+'′ ≤ C

[
)&Aj

i 'ttv
+i)20(+ + *&√gn'tt · v+*2−0/5

]

≤ C
[
&)Dv+t )2L3&"+'+ )Dv+)4L6&"+'')v+)2L6&"+'+ *v+t *20/5 + *v+*20/5*v+*22/25

]

≤ C
[
)v+t )21/5(+ + )v+)23(+

]
≤ C sup

t∈)0(T*
(&t'/

Similarly,

+&Aj
i 'tv

+i
t(j( f,H1&"+' = −

∫

"+
&Aj

i 'tv
+i
t f(jdx +

∫

#
&
√
gni'tv

+i
t fdS

which implies

)&Aj
i 'tv

+
t(j)2H1&"+'′ ≤ C

[
)&Aj

i 'tv
+i
t )20(+ + *&√gn't · v+t *2−0/5

]

≤ C
[
)Dv+)2L3&"+')v+t )2L6&"+' + )v+)2W 1(4&#')v+t )2L4&#'

]
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830 Cheng et al.

≤ C
[
)v+t )21(+ + )v+)4/31/5(+)v+)2/33(+)v+t )2/30(+)v+t )4/31/5(+

]

≤ C
[
)v+t )21(+ + )v+)21/5(+)v+t )21/5(+ + )v+t )20(+)v+)23(+

]

≤ C sup
t∈)0(T*

(&t'/ (4.5)

Therefore,

)Aj
i v

+
tt(j)2H1&"+'′ ≤ C sup

t∈)0(T*
(&t' (4.6)

and hence

*v+tt · n*2−0/5 ≤ C sup
t∈)0(T*

(&t'/

The .-independent estimate for v−tt · n is obtained using a different argument. By
(1.3e),

v−tt · n = v+tt · n+ &v+ − v−' · ntt + 2&v+t − v−t ' · nt0

hence

*v−tt · n*2−0/5 ≤ C
[
*v+tt · n*2−0/5 + *&v+ − v−' · ntt*2−0/5 + *&v+t − v−t ' · nt*2−0/5

]
/

We claim that for any f ∈ H1/25&#' and g ∈ H−0/5&#',

*fg*−0/5 ≤ C*f *1/25*g*−0/5/ (4.7)

To see this, note that

*fg*−0/5 = sup
*;*0/5=1

*+fg( ;,H0/5&#'* = sup
*;*0/5=1

*+g( f;,H0/5&#'* ≤ *g*−0/5 sup
*;*0/5=1

*f;*0/5/

It is clear that

*f;*0 ≤ *f *L0&#' *;*0 (4.8)

and

*f;*1 = *f;*0 + *%̄f ;*0 + *f %̄;*0/

By the embeddings

H0/25&#' ⊂ L8/3&#'( H0/75&#' ⊂ L8&#'( H1/25&#' ⊂ L0&#'(

we see that

*f;*1 ≤ C*f *1/25*;*1/ (4.9)
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On the Limit 831

Using interpolation between the inequalities (4.8) and (4.9) shows that

*f;*0/5 ≤ C*f *1/25*;*0/5(

which in turn proves the claim.
Thus, using the inequality (4.7), we find that

*&v+ − v−' · ntt*2−0/5 ≤ C*v+ − v−*21/25
[
*%̄v+t *2−0/5 + *v+*22/25

]
≤ C sup

t∈)0(T*
(&t'/

Now we turn to the estimate of the last term *&v+t − v−t ' · nt*2−0/5. By Sobolev’s
embedding,

*v+t · nt*2−0/5 ≤ C*v+t · nt*20 ≤ C)v+t )2L4&#')%̄v+)2L4&#' ≤ C)v+t )21(+)v+)22(+
≤ C

[
)v+t )21/5(+)v+)21/5(+ + )v+t )20(+)v+)23(+

]
≤ C sup

t∈)0(T*
(&t'/

The estimate for v−t · nt is the same and thus v−tt · n shares the same H−0/5&#' bound
as v+tt · n. Therefore

*v+tt · n*2−0/5 + *v−tt · n*2−0/5 ≤ C sup
t∈)0(T*

(&t'/ (4.10)

Step 3 (Estimates for q−t ). Time-differentiating (1.3b) and taking the
Lagrangian divergence of the resulting equation, we find that q−

t satisfies

Aj
i &A

k
i q

−
t(k'(j = −.

[
Aj

i v
−i
tt(j + Aj

i &w
2v−i

(2 't(j
]
− Aj

i )&A
k
i 'tq

−
(k*(j in "−( (4.11a)

Aj
iA

k
i q

−
t(kNj = −

[
.v−i

tt + .&w2v−i
(2 't + &Ak

i 'tq
−
(k

]
Aj

iNj on #( (4.11b)

q−
t(kNk = −.&w2v−i

(2 'tNi on %"/ (4.11c)

The goal is to estimate the H1&"−'-norm of q−
t . By elliptic regularity, it suffices

to estimate the H1&"'′-norm of the interior forcing, and the H−0/5&#'-norm of the
boundary forcing.

Similar to Step 2, in order to find an .-independent bound for )Aj
i v

−
tt(j)2H1&"−'′ ,

we need to estimate )&Aj
i 'tv

−i
t(j)H1&"−'′ . To be more specific, we need to obtain an

.-independent bound for *&√gn't · v−t *−0/5. It suffices to estimate *v−t · n*−0/5 and *v−t ·
nt*−0/5. It is clear that

*v−t · n*2−0/5 ≤ C sup
t∈)0(T*

(&t'

and the estimate for v−t · nt is the same as the one for v+t · nt previously used to
establish (4.10); therefore,

)Aj
i v

−i
tt(j)2H1&"−'′ ≤ C sup

t∈)0(T*
(&t'/

We now consider the H1&"−'′-norm of Aj
i &w

2v−i
(2 't(j . Again by (1.3c),

Aj
i &w

2v−i
(2 't(j = Aj

iw
2
t(jv

−i
(2 + Aj

iw
2
t v

−i
(2j + Aj

iw
2
(jv

−i
t(2

− &Aj
i 'tw

2v−i
(j2 − &Aj

i '(2w
2v−i

t(j − &Aj
i 't(2w

2v−i
(j / (4.12)
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832 Cheng et al.

Similar to (4.4),

+Aj
iw

2
t(jv

−i
(2 ( f,H1&"−'

= −
∫

"−
Aj

iw
2
t &v

−i
(2 f(j + v−i

(2jf'dx +
∫

#∪%"

√
gniw2

t v
−i
(2 fdS

=
∫

"−
w2

t

[
&Aj

i '(2v
−i
(j f − Aj

i v
−i
(2 f(j

]
dx +

∫

#∪%"

√
gniw2

t v
−i
(2 fdS(

where w · N = 0 on # and v− · N = 0 on %" are used in the second equality to
eliminate the boundary term due to the integration by parts with respect to Dx2

;
hence,

)Aj
iw

2
t(jv

−i
(2 )2H1&"−'′ ≤ C

[
)wtDv−)20(+ + )wtDADv−)2L6/5&"−' + )wtDv−)2L4/3&#'

]

≤ C sup
t∈)0(T*

(&t'/ (4.13)

Similarly, all the other terms in the right-hand side of (4.12) share the same H1&"−'′

bound, so that

)Aj
i &w

2v−i
(2 't(j)2H1&"−'′ ≤ C sup

t∈)0(T*
(&t'/

Next, we estimate the H−0/5&#'-norm of the boundary forcing. Because of (4.10),
it suffices to estimate *&w2v−i

(2 'tn
i*−0/5. However, because of (4.13), it suffices to

estimate )&w2v−(2't)0(− and it is easy to see that

)&w2v−(2't)20(− ≤ C
[
)v−t )21(− + )v+t )21(+

]
≤ C sup

t∈)0(T*
(&t'/

Combining (4.2) and all the estimates above, we find that for all t ∈ )0(T*,

1
.2
)q−

t &t')21(− ≤ C sup
t∈)0(T*

(&t'/ (4.14)

Step 4 (Estimates for q+ and q+t ). By studying the Neumann problems

Aj
i &A

k
i q

+
(k'(j = .Aj

rv
+r
(s A

s
jv

+i
(j in "+(

Aj
iA

k
i q

+
(kNj = −.v+i

t Aj
iNj on #

and

Aj
i &A

k
i q

+
t(k'(j = −.Aj

i v
+i
tt(j + Aj

i )A
k
rv

+r
(s A

s
i q

+
(k*(j

= .
[
2Aj

rv
+r
(s A

s
i v

+i
t(j + &Aj

t 'ttv
+i
(j

]
+ Aj

i )A
k
rv

+r
(s A

s
i q

+
(k*(j in "+(

Aj
iA

k
i q

+
t(kNj = −.v+i

tt A
j
iNj − Aj

iA
k
i q

+
(kNj on #(

we obtain that for t ∈ )0(T*,

)q+&t')22/5(+ + )q+
t &t')21(+ ≤ C sup

t∈)0(T*
(&t'/ (4.15)

These 4 steps conclude the proposition. !
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On the Limit 833

4.2. Uniform Boundedness of "v−t "0&−

Having )q−
t )21(− uniformly bounded in ., we can prove the last part of the basic

assumptions of Section 3.2. By (1.3b), (3.10), (3.9) and (4.1) we find that

)v−t )20(− ≤ C)w ·Dv−)20(− + C

.2
)q−)21(−

≤ C)w)21(−)Dv−)20/5(− + C

.2
[
)q−

0 )21(− +
∫ t

0
)q−

t )21(−ds
]

≤ C + CT sup
t∈)0(T*

(&t'/

Therefore, (3.10), (3.9) and (4.1) imply that )v−t )20(− ≤ C + CT supt∈)0(T* (&t' and thus
by choosing T small enough, the basic assumptions imply

)D6)22(± + )v)21/5(± + )vt)20(± + )w)21/5(− + )wt)20(− ≤ C( (4.16)

where C is the generic constant defined in Section 3.2.

4.3. Estimates for v+tt · '̄# and v−tt · '̄#
Proposition 4.2. Let v± be the solution to (1.3). Then

*v+tt · %̄6*2−0/5 + *v−tt · %̄6*2−0/5 ≤ C sup
t∈)0(T*

(&t'/ (4.17)

Proof. First, note that since D6 = A−1, we have

f(9 = 6i
(9A

j
i f(j/ (4.18)

It follows from (1.3a), (1.3b) and (4.18) that

v+tt · 6(8 = −6i
(8A

j
i q

+
t(j − 6i

(8&A
j
i 'tq

+
(j = −q+

t(8 + Aj
i v

+i
(8 q

+
(j ( (4.19a)

v−tt · 6(8 = −1
.
q−
t(8 +

1
.
Aj

i v
+i
(8 q

−
(j − w2

t v
−i
(2 6

i
(8 − w2v−i

t(26
i
(8/ (4.19b)

As a consequence,

*v+tt · 6(8*2−0/5 + *v−tt · 6(8*2−0/5

≤ 1
.2
*q−

t(8*2−0/5 + *q+
t(8*2−0/5 + *A*2L0&#'*%̄v+*2L4&#'

[
1
.2
)Dq−)2L4&#' + )Dq+)2L4&#'

]

+ *wt*2L4&#'*Dv−*2L4&#'*%̄6*2L0&#' + *w2v−t(2 · %̄6*2−0/5

≤ C sup
t∈)0(T*

(&t'+ C)v+)22(+
[
1
.2
)q−)22(− + )q+)22(+

]

+ C)wt)21(−)v−)22(− + C*w2v−t(2*2−0/5/
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834 Cheng et al.

By interpolation and Young’s inequality,

)v+)22(+
[
1
.2
)q−)22(− + )q+)22(+

]

≤ C)v+)4/31/5(+)v+)2/33(+

×
[
1
.2
)q−)4/32/5(−)q−)2/31(− + )q+)4/32/5(+)q+)2/31(+

]
≤ C sup

t∈)0(T*
(&t'(

and the same upper bound holds for )wt)21(−)v−)22(−. For the last term, since w ·
N = 0 on # and with the identity w = &w · N'N + g1:0 &w · e(1'e(:, we find that

w2v−t(2 = &w · N'N 2v−t(2 + g1:0 &w · e(1'v−t(2e2(: = g1:0 &w · e(1'v−t(: 0

hence

*w2v−t(2*2−0/5 ≤ C*%̄v−t *2−0/5 ≤ C sup
t∈)0(T*

(&t'/

(4.17) then follows from summing all the estimates above. !

4.4. The %-Independent Energy Estimates

It remains to establish the estimates for %̄v · N , %̄vt · N and %̄5+ · N .

Theorem 4.1. The solution v± to (1.3) satisfies the following estimate:

sup
t∈)0(T*

[
)v+tt &t')20(+ + .)v−tt &t')20(− + *%̄vt&t' · N *20(± + *%̄v&t' · N *21/5(± + *%̄5+&t' · N *23

]

≤ C8*0 + 8 sup
t∈)0(T*

(&t'+ C8T+
(

sup
t∈)0(T*

(&t'
)
/ (4.20)

Proof. We first derive the estimate

sup
t∈)0(T*

[
)v+tt &t')20(+ + .)v−tt &t')20(− + *%̄vt&t' · N *20(±

]

≤ C8*0 + 8 sup
t∈)0(T*

(&t'+ C8T+
(

sup
t∈)0(T*

(&t'
)
/

Twice time-differentiating (1.3a) and (1.3b) and testing the resulting equations
against v+tt and v−tt , respectively, we find that

1
2
d

dt

[
)v+tt)20(+ + .)v−tt)20(−

]
+ .

∫

"−

[
wj

ttv
−i
(j + 2wj

t v
−i
t(j + wjv−i

tt(j

]
v−i
tt dx

+
∫

"+
&Aj

i q
+
(j 'ttv

+i
tt dx +

∫

"−
&Aj

i q
−
(j 'ttv

−i
tt dx = 0/ (4.21)
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On the Limit 835

First, note that v−i
tt(jv

−i
tt = 1

2 &*vtt*2'(j , so that

∫

"−
wjv−i

tt(jv
−i
tt dx = −1

2

∫

"−
div w*vtt*2dx/

Second, using (4.3), we obtain that
∫

"+
&Aj

i q
+
(j 'ttv

+i
tt dx = −

∫

"+
&Aj

i q
+'ttv

+i
tt(jdx +

∫

#
&Aj

i q
+'ttv

+i
tt NjdS

= −
∫

"+

[
&Aj

i 'ttq
+ + 2&Aj

i 'tq
+
t *v

+i
tt(jdx

+
∫

"+
q+
tt

[
&Aj

i 'ttv
+i
(j + 2&Aj

i 'tv
+i
t(j

]
dx +

∫

#
&Aj

i q
+Nj'ttv

+i
tt dS

with a similar identity for the term
∫
"−&A

j
i q

−
(j 'ttv

−i
tt dx. Using these identities, (4.21)

implies that

1
2
d

dt

[
)v+tt)20(+ + .)v−tt)20(−

]
− .

2

∫

"−
div w*v−tt *2dx + .

∫

"−

[
wj

ttv
−i
(j + wj

t v
−i
t(j

]
v−i
tt dx

−
∫

"+

[
&Aj

i 'ttq
+ + 2&Aj

i 'tq
+
t

]
v+i
tt(jdx −

∫

"−

[
&Aj

i 'ttq
− + 2&Aj

i 'tq
−
t

]
v−i
tt(jdx

+
∫

"+

[
&Aj

i 'ttv
+i
(j + 2&Aj

i 'tv
+i
t(j

]
q+
tt dx +

∫

"−

[
&Aj

i 'ttv
−i
(j + 2&Aj

i 'tv
−i
t(j

]
q−
tt dx





&≡ I'

+
∫

#
)Aj

iNj&q
+ − q−'*ttv

+i
tt dS

︸ ︷︷ ︸
O

+
∫

#
&Aj

i q
−Nj'tt&v

+i
tt − v−i

tt 'dS
︸ ︷︷ ︸

J

= 0/

Henceforth, , denotes lower-order remainder terms that can be easily shown to
verify the estimate

∣∣∣∣
∫ t

0
,ds

∣∣∣∣ ≤ *0 + CT+
(

sup
t∈)0(T*

(&t'
)
/

With this notation, the equality above is rewritten as

1
2
d

dt

[
)v+tt)20(+ + .)v−tt)20(−

]
+O+ I+ J+, = 0/

Step 1 (Estimates for the Surface Tension Term O). By the boundary condition
(1.3d),

∫

#
)Aj

iNj&q
+ − q−'*ttv

+i
tt dS =

∫

#

[√
gHnj

]
tt
v+j
tt dS/

Since the metric g and H are computed from 5+ whose time derivatives only involve
%kt v

+ (which is bounded by (&t'), exactly following (12.6) in [6] we find that

1
2

∫

#

√
gg1:&v+t(1 · n'&v+t(: · n'dS

≤
∫ t

0

∫

#
)Aj

iNj&q
+ − q−'*ttv

+i
tt dSds +*0 + CT+

(
sup
t∈)0(T*

(&t'
)
/ (4.22)
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836 Cheng et al.

Step 2 (The Estimates for Error Term I). Let I = I1 + I2 + I3 + I4, the
summands representing the four integrals contained in I:

I1 = −
∫

"+

[
&Aj

i 'ttq
+ + 2&Aj

i 'tq
+
t

]
v+i
tt(jdx( I2 = −

∫

"−

[
&Aj

i 'ttq
− + 2&Aj

i 'tq
−
t

]
v−i
tt(jdx(

I3 =
∫

"+

[
&Aj

i 'ttv
+i
(j + 2&Aj

i 'tv
+i
t(j

]
q+
tt dx( I4 =

∫

"−

[
&Aj

i 'ttv
−i
(j + 2&Aj

i 'tv
−i
t(j

]
q−
tt dx/

Integrating by parts in Dxj
and using the fact that &Aj

i '(j = 0 removing the
higher order term )&Aj

i 'tt*(j which otherwise would have been problematic for our
framework, it is easy to see that

∣∣∣∣
∫ t

0
&I1 + I2'ds

∣∣∣∣ ≤ CT+
(

sup
t∈)0(T*

(&t'
)
/

Next, we estimate I4; the estimate for I3 will follow in the same fashion. Integrating
by parts in time, the most problematic terms to estimate are denoted by

I41 =
∫ t

0

∫

"−
Aj

r6
r
ttt(sA

s
i v

−i
(j q

−
t dx ds and I42 =

∫ t

0

∫

"−
&Aj

i 'tv
−i
tt(jq

−
t dx ds/

The same as the estimates for I1 and I2, integrating by parts with respect to Dxs
for

I41 and Dxj
for I42, we find that

∣∣∣∣
∫ t

0
&I41 + I42'ds

∣∣∣∣ ≤ CT+
(

sup
t∈)0(T*

(&t'
)

so that
∣∣∣∣
∫ t

0
Ids

∣∣∣∣ ≤ *0 + CT+
(

sup
t∈)0(T*

(&t'
)
(

where *0 comes from the temporal boundary terms appearing when integrating by
parts in time for I3 and I4.

Step 3 (The Estimates for the Error Term J). Since ATN = √
gn, we find that

J =
∫

#
&
√
gq−'tt&v

+
tt − v−tt ' · ndS

︸ ︷︷ ︸
J1

+2
∫

#
&
√
gq−'tn

i
t · &v+i

tt − v−i
tt 'dS

︸ ︷︷ ︸
J2

+
∫

#

√
gq−&v+tt − v−tt ' · nttdS

︸ ︷︷ ︸
J3

/

The Estimates for J1: by the boundary condition (1.3e),

&v+tt − v−tt ' · n = &v− − v+' · ntt + 2&v−t − v+t ' · nt

= )&v+ − v−' · 6(8*g
98&v+t(9 · n'+ 2)&v+t − v−t ' · 6(8*g

98&v+(9 · n'
++i&%̄6( %̄v

+'&v+i − v−i'/ (4.23)
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On the Limit 837

Time integrating J1 and integrating by parts in time, we find that

∫ t

0
J1ds =

[ ∫

#

(√
gq−)

t
&v+tt − v−tt ' · ndS

]
&t'

︸ ︷︷ ︸
J10

−
∫

#

(√
gq−)

t
&0'&w+

2 − w−
2 ' · NdS

−
∫ t

0

∫

#

(√
gq−)

t
g98)&v+ − v−' · 6(8*&v

+
tt(9 · n'dS ds &≡ J11'

− 3
∫ t

0

∫

#

(√
gq−)

t
g98)&v+t − v−t ' · 6(8*&v

+
t(9 · n'dS ds

− 2
∫ t

0

∫

#

(√
gq−)

t
g98)&v+tt − v−tt ' · 6(8*&v

+
(9 · n'dS ds &≡ J12'

+
∫ t

0

∫

#

(√
gq−)

t

[
+ij&%̄6( %̄v

+'%̄v+i
t ++j&%̄6( %̄v

+'
]
&v+j − v−j'dS ds

= J10 + J11 + J12 −
∫

#

(√
gq−)

t
&0'&w+

2 − w−
2 ' · NdS +

∫ t

0
,ds/

By (4.17),

*J12* ≤ CT+
(

sup
t∈)0(T*

(&t'
)
(

so we only need to estimate J10 and J11.
For the temporal boundary term J10, using (4.23), the fundamental theorem of

calculus, and interpolation, we find that

*J10* ≤ C)v+t )1(+)q−
t )1(− + CT+

(
sup
t∈)0(T*

(&t'
)

≤ C8)v+t )20 + 8
[
)v+t )21/5 + )q−

t )21
]
+ CT+

(
sup
t∈)0(T*

(&t'
)

≤ C8 + CT+
(

sup
t∈)0(T*

(&t'
)
+ 8 sup

t∈)0(T*
(&t'/

As for J11, integrating by parts with respect to %̄9,

J11 =
∫ t

0

∫

#

(√
gq−)

t(9
g98)&v+ − v−' · 6(8*&v

+
tt · n'dS ds &≡ J111'

+
∫ t

0

∫

#

(√
gq−)

t

[
+i&%̄

26'&v+i − v−i'++&%̄6( %̄v'
]
&v+tt · n'dS ds

+
∫ t

0

∫

#

(√
gq−)

t
+1

ij&%̄6'%̄
26i&v+j − v−j'&v+tt · 6(1'dS ds





≡ J112/

By H0/5&#'–H−0/5&#' duality, we find that J112 is bounded by CT+&supt∈)0(T* (&t''.
For the term J111, we add and subtract q+ to obtain

J111 =
∫ t

0

∫

#
)
√
g&q− − q+'*t(9g

98)&v+ − v−' · 6(8*&v
+
tt · n'dS ds

+
∫ t

0

∫

#
&
√
gq+'t(9g

98)&v+ − v−' · 6(8*&v
+
tt · n'dS ds
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838 Cheng et al.

=
∫ t

0

∫

#

[
&
√
gg1:6(1'(: · n

]
t(9
g98)&v+ − v−' · 6(8*&v

+
tt · n'dS ds &≡ J1111'

+
∫ t

0

∫

#
&
√
gq+'t(9g

98)&v+ − v−' · 6(8*&v
+
tt · n'dS ds &≡ J1112'/

In order to study the term J1111, we integrate by parts with respect to %̄9 and then
in time (to move one time derivative from v+tt · n) and find that the most challenging
term to estimate is

∫ t

0

∫

#

[
&
√
gg1:6(1'(: · n

]
tt
g98)&v+ − v−' · 6(8*&v

+
t · n'(9dS ds/

Since

[
&
√
gg1:6(1'(: · n

]
tt
=

(√
gg1:v+t(1

)
(:
· n+√

gg1:g98&v+t(9 · 6(8'&6(1: · n'
−√

g
[
g19g:8&v+t(9 · 6(8 + v+t(8 · 6(9'+ g1:g98&v+(9 · n'&v+(8 · n'

]

× &6(1: · n'++1
i &%̄6( %̄v

+'%̄26i ++2
i &%̄6( %̄v

+'%̄2v+i(

the most difficult term to estimate after integrating by parts with respect to %̄: is

∫ t

0

∫

#

√
gg1:g98)&v+ − v−' · 6(8*&v

+
t(1 · n'&v+t(: · n'(9dS ds/

Now by

g1:&v+t(1 · n'&v+t(: · n'(9 =
1
2

[
g1:&v+t(1 · n'&v+t(: · n'

]
(9
− 1

2
&g1:'(9&v

+
t(1 · n'&v+t(: · n'(

integrating by parts implies that the above integral is bounded by
CT+&supt∈)0(T* (&t''. Therefore,

*J1111* ≤ *0 + CT+
(

sup
t∈)0(T*

(&t'
)
+

∣∣∣∣
∫

#
&
√
gH'tg

98)&v+ − v−' · 6(8*&v
+
t · n'(9dS

︸ ︷︷ ︸
K1

∣∣∣∣(

where *0 and the term K1 arises from the temporal boundary term when integrating
by parts in time for J1111. However, similar to the estimate of J10, the temporal
boundary term K1 can be estimated as

*K1* ≤ C)v+)2/5(+)v+t )1/5(+ + CT+
(

sup
t∈)0(T*

(&t'
)

≤ C8)v+)20(+ + 8
[
)v+)23(+ + )v+t )21/5(+

]
+ CT+

(
sup
t∈)0(T*

(&t'
)

≤ C8 + 8 sup
t∈)0(T*

(&t'+ CT+
(

sup
t∈)0(T*

(&t'
)
/
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On the Limit 839

As for J1112, by the divergence theorem, since Aj
i v

+i
tt(j is a lower order term thanks to

incompressibility, we find that

J1112 =
∫ t

0

∫

-
<

1√
g
&
√
gq+'t(9jg

98)&v+ − v−' · 6(8*A
j
i v

+i
tt dx ds

︸ ︷︷ ︸
K2

+
∫ t

0

∫

-
<

1√
g
&
√
gq+'t(9g

98)&v+ − v−' · 6(8*A
j
i v

+i
tt(jdx ds

+
∫ t

0

∫

-
&
√
gq+'t(9

[
<

1√
g
g98)&v+ − v−' · 6(8*

]

(j
Aj

i v
+i
tt dx ds = K2 +

∫ t

0
,ds(

where < is a smooth cut-off function supported around # with < = 1 on # , and with
the support of < taken sufficiently close to # so that the tangential derivatives are
well-defined. We set

- = supp&<' ∩"+/

To estimate K2, the structure of the Euler equations has to be used. In fact,
∣∣∣∣K2 +

∫ t

0

∫

-
<v+i

tt(9g
98)&v+ − v−' · 6(8*v

+i
tt dx ds

︸ ︷︷ ︸
K3

∣∣∣∣ ≤ CT+
(

sup
t∈)0(T*

(&t'
)
(

where we use the identity

−
(√

gv+i
t

)
t(9

=
(√

gAj
i q

+
(j

)
t(9

= Aj
i

(√
gq+

(j

)
t(9
− &Aj

i 't
(√

gq+
(j

)
(9
− &Aj

i '(9
(√

gq+
(j

)
t

to replace 1√
g
Aj

i &
√
gq+'t(9j in K2 by v+i

tt(9 in K3.
It then suffices to estimate K3 to complete the estimate of J1. However, since

2v+i
tt(9v

+i
tt = &*v+tt *2'(9, integrating by parts with respect to %̄9 implies that K3 is bounded

by CT+&supt∈)0(T* (&t''.
Therefore, combining all the estimates above we find that

∣∣∣∣
∫ t

0
J1ds

∣∣∣∣ ≤ &C8 +*0'+ CT+
(

sup
t∈)0(T*

(&t'
)
+ 8 sup

t∈)0(T*
(&t'/ (4.24)

The Estimates for J2: we first note that by (4.19a,b),

&v+tt − v−tt ' · 6(8 =
1
.
q−
t(8 − q+

t(8 + Aj
i v

+i
(8

(
1
.
q+
(j − q−

(j

)
+ w2

t v
−i
(2 6

i
(8 + w2v−i

t(26
i
(8/ (4.25)

Therefore, by nt = −g98&v+(9 · n'6(8 and (4.25), we find that

J2 = −
∫

#

(√
gq−)

t
g98&v+(9 · n'

[
1
.
q−
t(8 − q+

t(8 + Aj
i v

+i
(8

(
1
.
q+
(j − q−

(j

)]
dS

−
∫

#

(√
gq−)

t
g98&v+(9 · n'

[
w2

t v
−i
(2 6

i
(8 + w2v−i

t(26
i
(8

]
dS/
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840 Cheng et al.

It is easy to see that the second integral is bounded by C.+&supt∈)0(T* (&t'' (the
presence of . is due to the estimate of

(√
gq−)

t
). The most problematic term of

the first integral is when the time derivative acts on q and in this case, by H0/5&#'-
H−0/5&#' duality, (4.2), (4.14) and (4.15) imply that

∣∣∣∣
∫

#

(√
gq−)

t
g98&v+(9 · n'

[
1
.
q−
t(8 − q+

t(8 + Aj
i v

+i
(8

(
1
.
q+
(j − q−

(j

)]
dS

∣∣∣∣ ≤ C.+
(

sup
t∈)0(T*

(&t'
)
/

Therefore,

∫ t

0
J2ds ≤ C.T+

(
sup
t∈)0(T*

(&t'
)
/ (4.26)

The Estimates for J3: by (4.25) we find that

J3 = −
∫

#
q−√gg98&v+t(9 · n')&v+tt − v−tt ' · 6(8*dS +

∫

#
+i&%̄6( %̄v

+'q−&v+i
tt − v−i

tt 'dS

= −
∫

#

√
gg98q−&v+t(9 · n'

(
1
.
q−
t(8− q+

t(8

)
dS

︸ ︷︷ ︸
K4

−
∫

#

√
gg98q−&v+t(9 · n'Aj

i v
+i
(8

(
1
.
q+
t(j − q−

t(j

)
dS

−
∫

#

√
gg98q−&v+t(9 · n')w2

t v
−i
(2 6

i
(8 + w2v−i

t(26
i
(8*dS +

∫

#
+i&%̄6( %̄v

+'q−&v+i
tt − v−i

tt 'dS

= −K4 +,/

Before estimating K4, we first note that by the divergence theorem,

∫

#

√
gg98q−&v+t(9 · n'q+

t(8dS =
∫

#
q−g98&v+i

t(9A
j
iNj'q

+
t(8dS

=
∫

-
<q−g98Aj

i v
+i
t(9q

+
t(8jdx +

∫

-
<q−g98Aj

i v
+i
t(9jq

+
t(8dx

+
∫

-
&<q−g98'(jA

j
i v

+i
t(9q

+
t(8dx/

We then follow the estimate of J1112 and obtain the inequality

∣∣∣∣
∫

-
<q−g98Aj

i v
+i
t(9q

+
t(8jdx +

∫

-
<q−g98v+i

t(9v
+i
tt(8dx

∣∣∣∣ ≤ C.+
(

sup
t∈)0(T*

(&t'
)
/

By interpolating v+t ∈ H1&"+' between L2&"+' and H1/5&"+',

∣∣∣∣
∫

-
<q−g98v+i

t(9v
+i
t(8dx

∣∣∣∣ ≤ C)q−)L6&"−')v+t )W 1(3&"+')v+t )1(+

≤ C8.

[
*0 + T sup

t∈)0(T*
(&t'

]
)v+t )21(+ + .8)v+t )21/5(+(

≤ C8.

[
*0 + T sup

t∈)0(T*
(&t'

]
+ .8 sup

t∈)0(T*
(&t'/ (4.27)
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Therefore,
∣∣∣∣
∫ t

0

∫

#

√
gg98q−&v+t(9 · n'q+

t(8dS ds

∣∣∣∣

≤ .*0 + C.T+
(

sup
t∈)0(T*

(&t'
)
+

∣∣∣∣

[ ∫

-
<q−g98v+i

t(9v
+i
t(8dx

]
&t'

∣∣∣∣

≤ C8.*0 + C8.T+
(

sup
t∈)0(T*

(&t'
)
+ .8 sup

t∈)0(T*
(&t'/ (4.28)

It remains to estimate 1
=

∫
#

√
gg98q−&v+t(9 · n'q−

t(8dS. By adding and subtracting q+,
using (1.3d) and (4.28) we find that

1
.

∣∣∣∣
∫ t

0

∫

#

√
gg98q−&v+t(9 · n'q−

t(8dS ds

∣∣∣∣

= 1
.

∣∣∣∣
∫ t

0

∫

#

√
gg98q−&v+t(9 · n'&q− − q+ + q+'t(8dS ds

∣∣∣∣

≤ C8*0 + C8T+
(

sup
t∈)0(T*

(&t'
)
+ 8 sup

t∈)0(T*
(&t'

+ 1
.

∣∣∣∣
∫ t

0

∫

#

√
gg98q−&v+t(9 · n'

[
1√
g
&
√
gg1:6(1'(: · n

]

t(8

dS ds

∣∣∣∣/

As for the last term, since 6(1 · n = 0, the most problematic term appears when the
time derivative hits 6(1. Integrating by parts with respect to %̄: for that term, we
obtain that

∫

#

√
gg98q−&v+t(9 · n'

[
1√
g

(√
gg1:6(1

)
(:
· n

]

t(8

dS

= −
∫

#

√
gg1:g98q−&v+t(:9 · n'&v+(18 · n'dS +

∫

#
%̄q−&%̄v+t · n'+&%̄6'%̄2v+dS

+
∫

#
q−&%̄v+t · n'+i&%̄6( %̄v

+'%̄36idS

+
∫

#
q−&%̄v+t · n'

[
+1

ij&%̄6( %̄v
+'%̄26j ++2

ij&%̄6( %̄v
+'%̄2v+j

]
%̄26idS

= −1
2
%

%t

∫

#

√
gg1:g98q−v+(:9v

+
(18 +,/

Consequently,

1
.

∣∣∣∣
∫ t

0

∫

#

√
gg98q−&v+t(9 · n'

[
1√
g
&
√
gg1:6(1'(: · n

]

t(8

dS ds

∣∣∣∣

≤ C8*0 + C8T+
(

sup
t∈)0(T*

(&t'
)
+ 8 sup

t∈)0(T*
(&t'

+ C

.

∣∣∣∣

[ ∫

#

√
gg98q−&v+(18 · n'&v+(:9 · n'dS

]
&t'

∣∣∣∣/
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Similar to (4.27), we find that

1
.

∣∣∣∣

[ ∫

#

√
gg98q−&v+(18 · n'&v+(:9 · n'dS

]
&t'

∣∣∣∣

≤ C8

[
*0 + T+

(
sup
t∈)0(T*

(&t'
)]

+ 8 sup
t∈)0(T*

(&t'/

The estimate of J3 then follows from combining the above estimates:

∣∣∣∣
∫ t

0
J3ds

∣∣∣∣ ≤ C8*0 + C8T+
(

sup
t∈)0(T*

(&t'
)
+ 8 sup

t∈)0(T*
(&t'/ (4.29)

Combining (4.22), (4.24), (4.26) and (4.29), we find that

sup
t∈)0(T*

[
)v+tt &t')20(+ + .)v−tt &t')20(− + *%̄v+t &t' · n&t'*20

]

≤ C8*0 + 8 sup
t∈)0(T*

(&t'+ C8T+
(

sup
t∈)0(T*

(&t'
)
/

It follows that

sup
t∈)0(T*

[
)v+tt &t')20(+ + .)v−tt &t')20(− + *%̄vt&t' · N *20(±

]

≤ C8*0 + 8 sup
t∈)0(T*

(&t'+ C8T+
(

sup
t∈)0(T*

(&t'
)

(4.30)

by the jump condition v+ · n = v− · n and the fact that n&t' = N +
∫ t

0 ntds.

Step 4 (Estimates for *'̄v ·N *1/5(± and *'̄!+ ·N *3). Our goal is to establish an
inequality of the type

sup
t∈)0(T*

(&t' ≤ C8M0 + 8 sup
t∈)0(T*

(&t'+ C8+
(

sup
t∈)0(T*

(&t'
)

with .-independent C8. By (2.4), we only need (4.30)–(4.32) to ensure the .-
independence of C8. The real difficult part is estimate (4.30) which we prove in
details. Following the proof of (12.33) and (12.34) in [6], by defining

(k&t' = *%̄6 · N *23 +
k∑

2=0

)%2t v)23−1/52(±

the proof in [6] implies

*%̄v · N *21/5(± ≤ C8*0 + 8(1&t'+ C8+
(

sup
t∈)0(T*

(1&t'

)
(

*%̄6 · N *23 ≤ C8*0 + 8(0&t'+ C8+
(

sup
t∈)0(T*

(0&t'

)
/
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Since (k&t' ≤ (&t', we obtain that

sup
t∈)0(T*

*%̄v&t' · N *21/5(± ≤ C8*0 + 8 sup
t∈)0(T*

(&t'+ C8T+
(

sup
t∈)0(T*

(&t'
)
( (4.31)

and

sup
t∈)0(T*

*%̄6&t' · N *23 ≤ C8*0 + 8 sup
t∈)0(T*

(&t'+ C8T+
(

sup
t∈)0(T*

(&t'
)
/ (4.32)

Estimates (4.30)–(4.32) then conclude Theorem 4.1. !

4.5. A Uniform Bound for ((("t$

Using (2.3), combining estimates (2.4) and (4.30)–(4.32), we find that for all t ∈ )0(T*,

(&t' ≤ *0 + CT+
(

sup
t∈)0(T*

(&t'
)
/

This is the polynomial inequality (2.5) that we had sought. It follows that by taking
T > 0 sufficiently small,

sup
t∈)0(T*

(&t' ≤ 2*0/ (4.33)

Finally, choose T > 0 even smaller so that the fundamental theorem of calculus
ensures that the basic assumptions of Section 3.2 are satisfied.

5. The Limit as % → 0

Having established our .-independent estimate (4.33), we can now pass to the limit
as . → 0, and show that we recover the solutions of the one-phase Euler equations
(1.4a).

Let > ∈ %0&#!' so that > · N = 0 on %". Testing (1.3) against >, since > is
continuous across # , we find that

∫

"+
v+i
t >

idx −
∫

"+
q+Ak

i>
i
(kdx +

∫

#
&q+ − q−'Ak

i Nk>
idS

+ .
∫

"−
v−i
t >

idx + .
∫

"−
wjv−i

(j >
idx −

∫

"−
q−Ak

i>
i
(kdx = 0/ (5.1)

Note that v+, v−, q+ and q− above depend on . implicitly. Our a priori bound (4.33)
allows us to find sequences, still parameterized by ., such that . → 0,

v+t ⇀ .t in L2&0(T0H1/5&"+''( (5.2a)

v+ → . in L2&0(T0H2&"+''( (5.2b)

v+ ⇀ . in L2&0(T0H3&"+''( (5.2c)

q+ ⇀ / in L2&0(T0H2/5&"+''/ (5.2d)
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Let 6̃ = e+
∫ t

0 .ds. By (5.2b), 6 → 6̃ in L0&0(T0H2&"+''; hence A → & $=
&D6̃'−1 in L0&0(T0H1&"+'' and 7g6 ⇀ 7g̃6̃ in L0&0(T0H0/5&#'' with g̃1: = 6̃(1 · 6̃(:

because of (5.2c). Therefore, by (1.3d), (5.1) converges to

∫

"+
.it>

idx −
∫

"+
/&k

i>
i
(kdx +

∫

#
0&k

i Nk>
idS = 0(

where 0 = −7g̃6̃ · ñ. This shows that U = . 1 6̃−1 and P = / 1 6̃−1 solve (1.4).
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