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Abstract

The free-boundary compressible one-dimensional Euler equations with moving
physical vacuum boundary are a system of hyperbolic conservation laws that are
both characteristic and degenerate. The physical vacuum singularity (or rate of
degeneracy) requires the sound speed ¢2 = yp? ! to scale as the square root of
the distance to the vacuum boundary and has attracted a great deal of attention
in recent years. We establish the existence of unique solutions to this system on
a short time interval, which are smooth (in Sobolev spaces) all the way to the
moving boundary. The proof is founded on a new higher-order, Hardy-type in-
equality in conjunction with an approximation of the Euler equations consisting
of a particular degenerate parabolic regularization. Our regular solutions can be
viewed as degenerate viscosity solutions. © 2010 Wiley Periodicals, Inc.

1 Introduction

1.1 Compressible Euler Equations and the Physical Vacuum Boundary

This paper is concerned with the evolving vacuum state in a compressible gas
flow. For 0 <t < T, the evolution of a one-dimensional compressible gas moving
inside of a dynamic vacuum boundary is modeled by the one-phase compressible
Euler equations:

(1.1a) plus +uuy] + p(p)x =0 in 1(2),
(1.1b) pr + (pu)x =0 in (1),
(1.1¢) p=0 on I'(¢),
(1.1d) V(['(1)) = u,

(1.1e) (p.u) = (po. uo) on /(0),
(1.16) 10)=1=4{0<x<1}.

The open, bounded interval /(¢) C R denotes the changing domain occupied by the
gas, ['(¢) := d1(¢) denotes the moving vacuum boundary, and V(I"(¢)) denotes the
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velocity of I'(¢). The scalar field u denotes the Eulerian velocity field, p denotes
the pressure function, and p denotes the density of the gas. The equation of state
p(p) is given by
(1.2) p(x,t) = Cyp(x,t)Y fory >1,
where C), is the adiabatic constant, which we set to 1, and

p>0in/(z) and p =0 on ().

Equation (1.1a) is the conservation of momentum, (1.1b) is the conservation of
mass, the boundary condition (1.1c) states that the pressure (and hence density)
must vanish along the vacuum boundary, (1.1d) states that the vacuum boundary is
moving with the fluid velocity, and (1.1e)—(1.1f) are the initial conditions for the
density, velocity, and domain. Using the equation of state (1.2), (1.1a) is written as

(1.1a") plus +uuyx] + (p¥)x =0 in I(z).
With the sound speed given by ¢?(x,1) = yp¥~!(x,t), and with ¢ = ¢(x,0),

the condition

(1.3) 0<

8c§
— | <oo onl
X

defines a physical vacuum boundary (or singularity) (see [10, 12, 13, 17]). Since
po > 0in I, (1.3) implies that for some positive constant C and x € [ near the
vacuum boundary I" := 9/,

(1.4) p ! (x) = C dist(x,T).

Equivalently, the physical vacuum condition (1.4) implies that for some o > 0,

Bpg_l
)

and for a constant Cy, depending on «,

(1.5) > Cy > 0 for any x satisfying d(x,d/) < «,

(1.6) pg_l(x) > Cy > 0 for any x such that d(x,d/) > «.

Because of condition (1.4), the compressible Euler system (1.1) is a degener-
ate and characteristic hyperbolic system to which standard methods of symmetric
(uniformly) hyperbolic conservation laws cannot be applied in standard Sobolev
spaces. In [1], we established a priori estimates for the multidimensional com-
pressible Euler equations with physical vacuum boundary.

The main result of this paper is the construction of unique solutions in the one-
dimensional case, which are smooth all the way to the moving vacuum boundary on
a (short) time interval [0, T'], where 7" depends on the initial data. We combine the
methodology of our a priori estimates [1], with a particular degenerate parabolic
regularization of the Euler equations, which follows our methodology in [2, 3],
as well as a new higher-order Hardy-type inequality that permits the construction
of solutions to this degenerate parabolic regularization. As we describe below in
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Section 1.7, our solutions can be thought of as degenerate viscosity solutions. The
multidimensional existence theory is treated in [4].

1.2 Fixing the Domain and Lagrangian Variables on Reference Interval /

We transform system (1.1) into Lagrangian variables. We let n(x, ¢) denote the
“position” of the gas particle x at time ¢. Thus,

1.7 dim=uon fort>0andn(x,0) =x

where o denotes composition so that [u o n](x, ) := u(n(x,t),t). We set
v = u o n(Lagrangian velocity),
f = p o n(Lagrangian density).

The Lagrangian version of equations (1.1a)—(1.1b) can be written on the fixed
reference domain / as

(1.8a) fur+(f")x=0 in I x (0,71,
(1.8b) ft+ fux/ne =0 in I x (0,71,
(1.8¢) f=0 in I x (0,71,
(1.8d) (fiv.m) = (po.uo.e) inl x{r =0},

where e(x) = x denotes the identity map on /.
It follows from solving equation (1.8b) that

0

(1.9) f=pon="2

Nx
so that the initial density function pg can be viewed as a parameter in the Euler
equations. Let I' := 9/ denote the initial vacuum boundary; we write the com-
pressible Euler equations (1.8) as
(1.10a) pove + (pg/1%)x = 0 in 1 x(0,7],
(1.10b) (n,v) = (e,ug) inl x{t = 0},
(1.10¢) pg_l =0 on T,

with pg_l(x) > C dist(x,T") for x € I near I'.

1.3 Setting y =2

We will begin our analysis of (1.10) by considering y = 2, in which case we
seek solutions 7 to the following system:

(1.11a) pov: + (0§ /M)x =0 in I x (0, T,
(1.11b) (n,v) = (e,up) onl x{t =0},
(1.11¢) po =0 onT,

with pg(x) > C dist(x, ") for x € [ near I'.
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Equation (1.11a) is equivalent to

(1.12) ve + 203" (oot )z = 0,

and (1.12) can be written as

(1.13) v+ po(n?)x + 2(po)x1lx > = 0.

Because of the degeneracy caused by pg = 0 on I', all three equivalent forms

of the compressible Euler equations are crucially used in our analysis. Equation
(1.11a) is used for energy estimates, while (1.12) and (1.13) are used for additional
elliptic-type estimates that rely on our higher-order Hardy-type inequality.

1.4 Reference Domain 7

As we have already noted above, the initial domain / C R at time t = 0 is
given by
I =(0,1),

and the initial boundary points are given by I' = 0/ = {0, 1}.
1.5 Higher-Order Energy Function for the Case y = 2

We will consider the following higher-order energy function:

4 2
E(t,v) = Y [050( ) | jamsagy + 2 100020 ) |35y
s=0 s=0

2 2
+ ” +/ Po 8ta)zcv([7 ')”Lz(]) + ” A/ Po a?axv([a ')”Lz(])-
We define the polynomial function My by
(1.14) Moy = P(E(0,v)),

where P denotes a generic polynomial function of its arguments.

1.6 Main Result

THEOREM 1.1 (Existence and Uniqueness for the Case y = 2) Given initial data
(1o, po) such that Moy < oo, po(x) > 0in I, and the physical vacuum condition
(1.4) holds for pg, there exists a solution to (1.11) (and hence (1.1)) on [0, T] for
T > 0 taken sufficiently small such that

sup E(t) <2M,.
t€[0,T]

Moreover, if the initial data satisfies

3 3
(1.15) S 300,93, + D e0dZv0.)];_, < .
s=0 s=0

then the solution is unique.

Remark 1.2. The case of arbitrary y > 1 is treated in Theorem 8.1 below.
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Remark 1.3. Given the regularity provided by the energy function (1.14), we see
that the Lagrangian flow map n € C([0,T], H*(1)). In our estimates for the
multidimensional problem [1], we showed that 1 gains regularity with respect to
the velocity field v, and this fact is essential to control the geometry of the evolving
free surface. This improved regularity for 1 also holds in the one-dimensional
setting, but it is not necessary for our estimates, as no geometry is involved.

Remark 1.4. Given ug and pg, and using the fact that n(x,0) = x, the quantity
V¢|r=0 is computed using (1.11a):

1 (p3 dpo
o=~ (3) )L -7
0 \Nx/x/ lt=0
Similarly, for all k € N,
1 (P
! ! pO 77)25 X =0

so that each 8’; v|¢=0 is a function of space derivatives of 1 and pg.

Remark 1.5. Notice that our functional framework provides solutions that have
optimal Sobolev regularity all the way to the boundary. Hence, in the physical case
that ¢ ~ /dist(d/), no singular behavior occurs near the vacuum boundary, even
though both families of characteristics cross, and in particular, meet tangentially to
I'(¢) at a point.

Remark 1.6. Because of the degeneracy of the density function po at the initial
boundary 9/, no compatibility conditions are required for the initial data.

1.7 Prior Results for Compressible Euler Equations with Vacuum Boundary

Some of the early developments in the theory of vacuum states for compress-
ible gas dynamics can be found in [8, 11]. We are aware of only a handful of
previous theorems pertaining to the existence of solutions to the compressible and
undamped Euler equations with moving vacuum boundary. Makino [14] consid-
ered compactly supported initial data and treated the compressible Euler equations
for a gas as being set on R3 x (0, T']. With his methodology, it is not possible to
track the location of the vacuum boundary (nor is it necessary); nevertheless, an
existence theory was developed in this context, by a variable change that permitted
the standard theory of symmetric hyperbolic systems to be employed. Unfortu-
nately, the constraints on the data are too severe to allow for the evolution of the
physical vacuum boundary.

In [9], Lindblad proved existence and uniqueness for the three-dimensional com-
pressible Euler equations modeling a liquid rather than a gas. For a compressible
liquid, the density p > A > 0 is assumed to be a strictly positive constant on the
moving vacuum boundary I'(¢) and is thus uniformly bounded from below by a
positive constant. As such, the compressible liquid provides a uniformly hyper-
bolic, but characteristic, system. Lindblad used Lagrangian variables combined
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with Nash-Moser iteration to construct solutions. More recently Trakhinin [16]
provided an alternative proof for the existence of a compressible liquid, employing
a solution strategy based on symmetric hyperbolic systems combined with Nash-
Moser iteration.

In the presence of damping, and with mild singularity, some existence results of
smooth solutions are available, based on the adaptation of the theory of symmetric
hyperbolic systems. In [12], a local existence theory was developed for the case
that ¢® (with 0 < @ < 1) is smooth across I', using methods that are not applica-
ble to the local existence theory for the physical vacuum boundary. An existence
theory for the small perturbation of a planar wave was developed in [17]. See also
[13, 18] for other features of the vacuum state problem.

The only existence theory for the physical vacuum boundary condition that we
know of can be found in the recent paper by Jang and Masmoudi [6] for the one-
dimensional compressible gas, wherein weighted Sobolev norms are used for the
energy estimates. From these weighted norms, the regularity of the solutions can-
not be directly determined. Letting d denote the distance function to the boundary
91, and letting || - ||o denote the L2(/)-norm, an example of the type of bound that
is proved for the rescaled velocity field in [6] is the following:

||dv||(2) + ”dvx”% + ldvxx + 2Ux||% + |dvexx 4+ 20xx — 2d_1vx||%

(1.16) —1 2
+ ”dvxxxx + 4vxxy —4d vxx”O < 00.

The problem with inferring the regularity of v from this bound can already be seen
at the level of an H!(I)-estimate. In particular, the bound on the norm ||[dvyyx +
20y ||% only implies a bound on ||d vy ||% and ||vy ||% if the integration by parts on

the cross-term,
_ 2
4/dvxxvx _— _Z/dx|vx|

1 1

can be justified, which in turn requires having better regularity for v, than the
a priori bounds provide. Any methodology that seeks regularity in (unweighted)
Sobolev spaces for solutions must contend with this type of issue. We overcome
this difficulty by constructing (sufficiently) smooth solutions to a degenerate par-
abolic regularization, and thus the sort of integration-by-parts difficulty just de-
scribed is overcome. One can view our solutions as degenerate viscosity solutions.
The key to their construction is our higher-order Hardy-type inequality that we
provide below.

2 Notation and Weighted Spaces

2.1 Differentiation and Norms in the Open Interval 7

Throughout the paper the symbol D will be used to denote %.
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For integers k > 0, we define the Sobolev space H*(I) to be the completion of
C°°(I) in the norm

1/2
lull = (Z / ID“u(x)Izdx) |

aka

For real numbers s > 0, the Sobolev spaces H* (/) and the norms || - ||s are defined
by interpolation. We use HO1 (I) to denote the subspace of H!(I) consisting of
those functions u(x) that vanish at x = 0 and x = 1.

2.2 Embedding of a Weighted Sobolev Space

Let d denote the distance function to the boundary I', and let p = 1 or 2. Then
the weighted Sobolev space Ha}p(l), with norm given by [, d(x)?(|F(x)|* +
|DF(x)|?) dx for any F € Ha} » (1), satisfies the following embedding:

H,(I) = H'™P(1),

so that there is a constant C > 0 depending only on / and p such that

@1 IF13 2 =€ [ d@P(F@P +DF@P)dx.
1

See, for example, [7, sec. 8].

2.3 Sobolev Embedding and Interpolation Inequalities

For s < %,
lellz2ra=20ry < Cslulls.

We will also make use of the standard interpolation inequality:

lullsa < Cllully) lully’

3 A Higher-Order Hardy-Type Inequality

We will make fundamental use of the following generalization of the well-
known Hardy inequality to higher-order derivatives:

LEMMA 3.1 (Higher-Order Hardy-Type Inequality) Lets > 1 be a given integer,
and suppose that

ue HS(I)n H) ().

Ifd(x) >0forx € I, d € H"(I), r = max(s — 1,2), and d is the distance
function to 1 near 91, then 7 € HS™Y(I) with

< Cllulls.

s—1

u
o E
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PROOF: We use an induction argument. The case s = 1 is of course the clas-
sical Hardy inequality. Let us now assume that inequality (3.1) holds for a given
s > 1, and suppose that

ue HTH 1)y n Hy (I).

Using D to denote %, a simple computation shows that for m € N,

m( ¥ f

with
m
f=> cEpmFuki(—1nkam*
k=0

for a constant C,’,‘l depending on k and m. From the regularity of u, we see that
f e HO1 (I). Next, with D = %, we obtain the identity

N
Df =Y Ckpst1=Fyki(—1)kas*

k=0
s—1

+ > CEDSTRuki(-*a T+ (s — k)
k=0

(3.3) s+1 S 7S : k ns+1—k k js—k
= D" lusl(=1)*d* + Y CfD uk!(—1)kd
k=1

s—1

+ Y CEIDS Rk + DI(—1FasTF!
k=0

= DStlysi(—=1)*d".
Since f € HO1 (1), we deduce from (3.3) that for any x € (0, %]
X
76 = st [ Dty dy,
0

which by substitution in (3.2) yields the identity

s (=1)°s! 5 D lu(y)y*dy
(4 ) = e S,

which by a simple majoration provides the bound

’DS(%)()C) V1) Jo D u(y)ldy

' d(x) ’
where 17 is the piecewise affine function equal to 1 on [0, %] and to 0 on [% 1].

<y
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Next, for any x € [%, 1), we similarly obtain that

(M| = g Y200 [ DS u(y)ldy
‘D (Z)(x)‘ = d(x) |

where 15 is the piecewise affine function equal to 0 on [0, %] and to 1 on [% 1], so
that for any x € I:

(3.4) ‘DS(%)()C)

Now, with g = ¥1(x) [ DS u(y)|dy + ya(x) fxl | DSt u(y)|dy, we notice
that g € H} (1), with

V100 Jo D u)ldy + y2(x) [¢ 1D u(n)ldy
! o .

<s

lglh < CIID*Hulo.

Therefore, by the classical Hardy inequality, we infer from (3.4) that

s(X
o o)

Since we assumed in our induction process that our generalized Hardy inequality
is true at order s, we then have that

<Cligli < C|ID*ullo.
0

u

= Cllulls.

s—1

which, together with (3.5), implies that

< Cllu|ls+1,
S

u
d
and thus establishes the property at order s 4+ 1 and concludes the proof. (]

In order to obtain estimates independent of a regularization parameter « defined
in Section 4, we will also need the following lemma, whose proof can be found in
[2, lemma 1, sec. 6]:

LEMMA 3.2 Let k > 0 and g € L°(0,T; H5(I))) be given, and let f €
HY(0,T; H5(I)) be such that

f+kfr=g in(0,T)x1I.
Then,

I fllLoeo,1;ms 1)) < C maxi]| f(O)ls, lgllLooco,7:H5 (1))}
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4 An Asymptotically Consistent Degenerate Parabolic
k-Approximation of the Compressible Euler Equations in Vacuum

4.1 Smoothing the Initial Data

For the purpose of constructing solutions, we will smooth the initial velocity
field ug. We will also smooth the initial density field pp while preserving the
conditions that p(x) > 0 for x € I and that pg satisfies (1.4) near I

For k > 0, let 0 < g, € C§°(R) denote the standard family of mollifiers with

spt(ox) C B(0,«), and let &7 denote a Sobolev extension operator mapping H*([)
to H5(R) for s > 0.
For x € (0, %), we set

“4.1) ug = 01)ink| * €1 (o),

so that for any fixed ¥ € (0, %), ug € C (Q). More importantly, due to the
standard properties of convolution, we also have the following estimates:

4.2) Vs> 1,k € (0,3),  [u§lls < Cs x [«|*[luollo.

The smoothed initial density function pg is defined as the solution of the elliptic
equation

(4.3a) 9208 = 92[01/me| * E1(po)] in1,
(4.3b) pg =0 onT.

By elliptic regularity, pg € C*(R), and by choosing x > 0 sufficiently small,
we see that pg(x) > 0 for x € €2, and that the physical vacuum condition (1.4) is
satisfied near I". This follows from the fact that dyp5 < 0 on I' for k > 0 taken
sufficiently small, which implies that pg(x) > 0 for x € I very close to I". On
the other hand, pg(x) > 0 for all x € J for any open subset J C I by taking «
sufficiently small. We also have the estimate

(4.4) Vs> 1,k €(0.3), loblls < Csllnkl® [lpollo-

Until Section 7.4, for notational convenience, we will denote ug by 1o and pg
by po. In Section 7.4, we will show that Theorem 1.1 holds with the optimal
regularity stated therein.

4.2 Degenerate Parabolic Approximation to Compressible Euler Equations:
The «-Problem

For « > 0, we consider the following nonlinear degenerate parabolic approxi-
mation of the compressible Euler system (1.11):
(4.52) pove + (03 /me)x = klpgualx in 1 x (0.7,
(4.5b) (n,v) = (e,up)  onl x{r=0j,
(4.5¢) po=0 onl,
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with the smoothed u¢ given by (4.1), and the smoothed pg given by (4.3) and thus
satisfying the physical vacuum condition (1.4).

We will first obtain the existence of a solution to (4.5) on a short time interval
[0, T] (with T, depending a priori on ). We will then perform energy estimates
on this solution that will show that the time of existence, in fact, does not depend
on k, and moreover that our a priori estimates for this sequence of solutions are also
independent of x. The existence of a solution to the compressible Euler equations
(1.11) is then obtained as the weak limit as xk — 0 of the sequence of solutions
to (4.5).

5 Solving the Parabolic «-Problem (4.5) by a Fixed-Point Method

For notational convenience, we will write

g =2
ax
and similarly for other functions.
5.1 Assumption on Initial Data
Given ug and po and using the fact that n(x,0) = x, we can compute the

quantity vs|;=¢ for the degenerate parabolic «-problem by using (4.5a):

2\ /

K 2.1 I(Po)) (K 2.7 /)

Velr=0o = | —|pgv' | — — | — = —]|pouo| — 200 |-

oo = (S0 = (48 £ [ggus] - 26
Similarly, for all k € N,

_1( Kk 1 p(z) !
(5.1 ug = Fvlimo = 1(_[/020/]/ - _(_)
e ! po 0 po \ 12

These formulae make it clear that each 8’; v|r=o is a function of space derivatives

t=0

t=0

of ug and pg. In the following, we will mostly use the notation af V|¢=0 for time
derivatives evaluated at t = 0, as it is more descriptive than uy.

5.2 Functional Framework for the Fixed-Point Scheme
and Some Notational Conventions

For T > 0, we shall denote by A7 the following Hilbert space:
Xr={veL*0.T:H*())|
(5.2) dtv e L2(0,T: H (1)), podtv € L*(0,T: H*(I)),
33v e L2(0,T: H*(1)), podiv € L2(0,T; H*(1))},
endowed with its natural Hilbert norm
I, = 1002200 ra20 + 183012200,y + 1000301220, 212000

+ 197020, m200y) + 1037V 20,7 10300
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For M > 0 to be made precise below, we define the following closed, bounded,
convex subset of X'r:

(5.3) Cr(M)={veXr:dfvli=o =ug fora=0,1,2,3, |[v|lx, <M},

where u, is defined in (5.1), and where C7 (M) is indeed nonempty if M is large
enough. Henceforth, we assume that 7 > 0 is given such that independently of the
choice of v € Cr (M),

n(x,t) =x + /Ot v(x,s)ds

is injective for ¢ € [0, T], and that % < 7'(x,t) < % fort € [0,T] and x € 1.
This can be achieved by taking T > 0 sufficiently small: with e(x) = x so that

e’(x) = 1, notice that
t
/ v'(-,8)ds
0

The space X7 will be appropriate for our fixed-point methodology to prove exis-
tence of a solution to our x-regularized parabolic problem (4.5).

Finally, we define a polynomial function Ny of norms of the nonsmoothed initial
data ug and pg as follows:

(5.4) No = Pe(lluollo. llpollo).

where Py is a generic polynomial with coefficients depending on powers of |Ink|.
We then set

') = 1l =

<JT M.
1

M:N0+1.

Thanks to the properties of the convolution (4.2) and (4.4), we then have for the
quantities defined in (5.1) (using the smoothed initial data ug and pg):

¥ v(0), = CsPe(luollo. llpollo) < No.
As the coefficients of P, depend on powers of |In x|, we then see that

Vs > 1,Vk € {0,1,2,3,4,5},
€3], < CsvkP(luollo. lIpollo) = 0 ask —o.

where P is a polynomial with coefficients independent of k, and where we have
the fact that k|Ink|* < /k for any power s > 0 and « small enough.

(5.5 Vs> 1Yk €{0,1,2,3,4,5},

(5.6)

5.3 Theorem for Existence and Uniqueness of Solutions
to the Parabolic «-Problem

We will make use of the Tychonoff fixed-point theorem in our fixed-point pro-
cedure (see, for example, [5]). Recall that this states that for a reflexive separa-
ble Banach space X7 and Cr(M) C Xr a closed, convex, bounded subset, if
F :Cr(M) — Cr(M) is weakly sequentially continuous into X7, then F has at
least one fixed point.
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THEOREM 5.1 (Solutions to Parabolic «-Problem) Given our smooth data, for
T > 0 taken sufficiently small, there exists a unique solution v € X to the degen-
erate parabolic k-problem (4.5).

5.4 Linearizing the Degenerate Parabolic «-Problem

Given v € Cr(M) and defining 7(x,t) = x + f(; v(x, r)d 1, we consider the
linear equation for v:

2 =7
(5.7) povs + [%] — k[pgv] = 0.

We will prove the following:

(1) v is aunique solution to (5.7);

(2) v € C7(M) for T taken sufficiently small;

(3) themap v — v : C7(M) — Cr(M) and is sequentially weakly continu-
ous in Xp.

The solution to our parabolic x-problem (4.5) will then be obtained as a fixed point
of the map v — v in X7 via the Tychonoff fixed-point theorem.

In order to use our higher-order Hardy-type inequality, Lemma 3.1, it will be
convenient to introduce the new variable

X = pov/,

which then belongs to HO1 (1). By a simple computation, we see that (5.7) is equiv-

alent to
o) 00 1/ 1 ’
U,+|:_—(_—)] — x| —[pgv']| =0,
t 7\ 7 %0 [ogv']
and hence that

(5.82) Xe K[i(poX)/:| — —[3’ (p—‘f) } in[0,T] x I,
Po Po AN
(5.8b) X =0 on [0,T] x o1,

(5.8¢) X|,_o = poug on /.

We shall therefore solve the degenerate linear parabolic problem (5.8) with Dirich-
let boundary conditions, which (as we will prove) will surprisingly admit a solution
with arbitrarily high space regularity (depending on the regularity of the right-hand
side and the initial data, of course), and not just an HO1 (I)-type weak solution. Af-
ter we obtain the solution X, we will then easily find our solution v to (5.7).

In order to construct our fixed point, we will need to obtain estimates for X (and
hence v) with high space regularity; in particular, we will need to study the fifth
time-differentiated problem. For this purpose, it is convenient to define the new
variable

(5.9) Y =33X = poddv’
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and consider the following equation for Y :

Yt 1 , ! 5 2 Lo ok .
(5.10a) % —K %(pOY) = —0; W W in[0,T] x 1,
(5.10b) Y =0 on [0, T] x oI,
(5.10c) Y|t=0 = Yinit in/,

— 5,/
where Yinic = pod7v'[1=0.

5.5 Ecxistence of a Weak Solution to Linear Problem (5.10)
by a Galerkin Scheme
Let (en)nen denote a Hilbert basis of HO1 (1), with each e, being of class
H?2(I). Such a choice of basis is indeed possible as we can take for instance
the eigenfunctions of the Laplace operator on / with vanishing Dirichlet boundary

conditions. We then define the Galerkin approximation at order n > 1 of (5.8) as
being under the form ¥, = Y 7_, A7 (t)e; such that Vk € {0, ..., n},

Yot ;¢ _
(5.11a) [ —==, e + k| (poYn)', — =
) L2(I) PO/ L2(I)

2 L0 ! .
85[_—[_—] i|e/) in [0, T1],
( ANAN k L2(I)

(5.11b) A7(0) = (Yinit, €)1.2(1)-

Since each e; is in H*(I) N HO1 (1) for all k > 1, we have by our high-order
Hardy-type inequality (3.1) that

e HFY(1) forallk > 1;

Po
therefore, each integral written in (5.11a) is well-defined. Furthermore, as the e;
are linearly independent, so are the ¢; /./po and therefore the determinant of the
matrix

e; ej ) )
((«//00’\/00 L2(I)/ (i,j)eN,={0,1,...,n}

is nonzero. This implies that (5.11a), our finite-dimensional Galerkin approxima-
tion, is a well-defined first-order differential system of order n + 1, which therefore
has a solution on a time interval [0, T, ], where T}, a priori depends on the dimension
n of the Galerkin approximation. In order to prove that 7,, = T, with 7" indepen-
dent of n, we notice that since Y is a linear combination of the ¢; (i € Ny), we
have that

o (otmn]n),, =B
£0 Po L2(I) nmLn L2(I)
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Since Y, € HO1 (1) and p—lo(po Y,) € H'(I), integration by parts yields

1 ! 1 Y,
(5.13) —/[%(Pan)'] Yy =/[E(pan)’}Y,{ =/Y,;2+/p()—”y,i
1 1 1 1

Next, using our higher-order Hardy-type inequality, we see that % € H'(I), and

thus 5
Y, 1 Y,
[onovie o Lvms [Aor [ e
Po Po /Oo Po

I I I I

which implies that
Y, 1 [ pg 1 Y2
/pé—"Yn/=5 p—ozYnz—E/pé’—”-
Lo y /00 y Po

1
Substitution of this identity into (5.12) and (5.13) yields

ird (v, , Y2 1 o2
Y2 Z o Y2
[dt K/po Po]+K/ " +2K Po
1 1 1

which shows that (since our given v € C7(M))

d Y7 Y7
- + Y/2+//2_n§
el [ [ [

1

55111

0

for a constant C, depending on % Consequently, 7,, = T with T independent of
n, and

(5.14) sup | = + K/ /Y’2 < C¢Cp + CNy,
[o, T]

where Cyps is a constant that depends on M, and where Ny is defined in (5.4).
Thus, there exists a subsequence of (Y,) that converges weakly to some Y €
L2(0,T; Hy (1)), which satisfies

(5.15) sup | — +K/ /Y < CcCp + CNp.
[o, T]
With (5.9), we see that

(5.16) 10830 2072111 (1)) < CxCm + CNo.
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Note that pod; v’ is not in our fixed-point space X7 and does not need a small
bound; on the other hand, this estimate will provide a small bound (for short time)
for the quantity pod7v’, which is part of our fixed-point space X7 .

Furthermore, it can also be shown using standard arguments that ¥ is a solution
of (5.10) (where (5.10a) is satisfied almost everywhere in [0, T'] x I and holds in a
variational sense for all test functions in L2(0, T’; HO1 (1))), and that

Y,
L eL?>0,T;H'(1)).
Po

Now, with the functions

oy’ )
Xi = po o7 - fori =0,1,2,3,4,
we define
t t
Z(t,x) = Y(-,x) = X v (-, x
51 (0 = [ ¥C0 =pe [ 95
= po(x)07v' (1, x) — X4(x)
and
4 .
X,tl t |23 13 2]
5.18)  X(tx)=) = +// / / Z(t1,x)dt; dtr dts dis.
= ! o Jo Jo Jo

We then see that X € C°([0, T]; Hy (1)) is a solution of (5.8), with 92X =Y.
In order to obtain a fixed point for the map v +— v, we need to establish better
space regularity for Z, and hence X and v.

5.6 Improved Space Regularity for Z
We introduce the variable ¥ defined by

N
= [

so that v vanishes at x = 0, and hence will allow us to employ the Poincaré
inequality with this variable; note that it is not necessary to have ¥ vanish at x = 1
as well, as the condition ¥ = 0 at x = 0 suffices for the Poincaré inequality to
hold. For this reason, it is more convenient to work with the variable v rather
than v itself.

It is easy to see that

X = pov
and
(5.19) Z = podtv'.
Thanks to the standard Hardy inequality, we thus have that
[at'], = ClIZII.
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and hence by Poincaré’s inequality,

(5.20) |ato@, )|, < ClZ@, .

With
9/
)
00 nLn |

our starting point is the equation

Y 1 / P /
——K[—(poZ)/] —84[ |: (/):| 4+ Fy in[0,T]x1,
Po 7Ln ]

’

t=0

Po
which follows from our definition of Z given in (5.17) and time integration of
(5.10a). From this equation, we infer that

1 / 2T po 197
00 0 nmLn 0 Po |lo

By the standard Hardy inequality and the fact that v € Cr (M), we obtain the
estimate

¢ [i(PoZ)/:|
pO 0

where Cys is a constant that depends on M, and where the second and third terms
on the right, [|pov7},(t)|lo and ||v7,,(¢)] 0, Will be absorbed by Cas once we inte-
grate in time. The remaining terms are lower-order and are bounded by Cjy; for
example, one such term is given by [|[£(¢) pov7,(t) v'(¢)| 0, where £(z) is in L*°(1).
Given that || poVrs¢|1,2(0,7;F3(1) 18 bounded by M, by the fundamental theorem of
calculus, we see that sup,¢po 77 [l0o 7 (t)lo < No + CTM, so that Holder’s in-
equality shows that [|[£(¢)po v}, (1)V'(¢)]lo < Cpm.
In particular, using (5.19), we see that

Y
+ [ Follo-

-

< Cwm + |lpov7; ]| + |57 O [, CIIY lI1 + No.

1 . “
%(pOZ)/ = pod7 0" + 2pp 070’
so that

K”p034 ///+3p084v//+2p a4v/
o + ool + [0 + CIT L1 + o

0=

which implies that
[ Good7®)"
=Cum + ”Povm(f)”o + Hvttt(t)”() +CY 1 +No + K”p”/84ﬁ
(5.21) + k|30 84”
<Cu + !Ipov;’;tmilo + |57 @l + CIY 1+ No
+&([06'| oo + 3[05 [ L)1 Z 1.

0
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where we have used (5.20) in the second inequality above. Having established in
(5.20) that 370 € H(I), (5.15) together with (5.17) show that (pgd70)", (pod77)’,
and pgd7 v are bounded in L2(I) by the right-hand side of (5.21). Therefore,

€leods 5 = Cu + podit g + 372 ) ]g + CIY I +No
+ (][00 oo + 3]0 | o) 1211
Now, thanks to our high-order Hardy-type inequality, we infer from (5.22) that
clotdl, = Ca + oot g + [07 O [ + CIY Il + Mo
1 ([[00"] Lo + 3001 L) I1Z -
Next we see that (5.22) implies that
€llpodr’ + P97, < Car + | po0[7 (O] o + 57O g + CIY I + Ny
+ (00" Lo + 315 ] L) 1211
which thanks to (5.23) and (5.19) implies that
k|| Z|l2 < Cy + “Poﬁ;/t/t(l)“o + Hvttt([)HO + ClIY |l1 +No
+ (00" oo + 315 ] L) 1211

5.7 Definition of v and Existence of a Fixed Point

(5.22)

(5.23)

(5.24)

We are now in a position to define v in the following fashion: let us first define
on [0, T]

t t
ﬂﬂ=udm—/11[%]((D+KL;%mXWwW

o polL7
which is well-defined thanks to (5.24) and (5.15). We next define
(5.25) v(t,x) = f(t) + 0(t, x).

We then notice that from (5.8), we immediately have that

1 102 /7 1 /
vy + [—[_—0i| ] — k| —[p3v | =0,
" Lpo L7 po " °

from which we infer that in [0, T'] x [

1[p27 1

v + —|:_—,02:| —k—[pgv'] = g()
PolL"N Po

for some function g depending only on ¢. By taking the trace of this equation on

the left endpoint x = 0, we see that

1 1
v,(1,0) + — [ﬂym)x—%M%mzam
Po Po

which together with the identity

2
0 (1.0) = £1(1) = %bﬂam+x—m]ﬁm
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shows that g(¢) = 0. Therefore, v is a solution of (5.7), and also satisfies by
construction v(0, -) = ug(-).

We can now establish the existence of a fixed point for the mapping v — v
in Cr (M), with T taken sufficiently small and depending a priori on k. We first
notice that, thanks to the estimates (5.24) and (5.15), we have the inequality

” a;‘-f(t) ”Lz(O’T) = NO + CM;
which together with (5.23) and (5.15) provides the estimate

(5.26) 1920] 2072217y = CNo + CeCr
Then, (5.22) implies that
(5.27) 100020 20,730y + 18701 20712019y = CNo + CeCt-

Using equation (5.7), we then see that
5
HatUHL2(o,T;L2(1)) < CNo + CCy.
and combining this with (5.16) shows that
(5.28) 1970 207211y + 100370 | 20,711 1y = CNoO + CicCa -

The fundamental theorem of calculus applied to (5.27) and (5.28) then shows
that

3 3
”poatUHL2(0,T;H3(1)) + ”alUHL2(0,T;H2(I))
4 4
(5.29) + Hatv”L2(0,T;H1(I)) + Hpoatv/”L2(0,T;H1(I))
< No + VT(CNp + CeCip).
In turn, (5.29) shows that for
1
= ,
(CNO + CICCM)2
v € Cr(M). It is also clear that there is only one solution v € L2(0,T; H*(I))
of (5.7) with v(0) = ug (where this initial condition is well-defined due to the
fact that [|vs]lL2(0,7: 11 (1)) < No + Ci VT Cyy), since if we denote by w another
solution with the same regularity, the difference v = v — w satisfies §v(0, -) = 0
with poSvy — k[p38v') = 0, which implies
1d
27 podv? + / pg(sz =0,
1 1
which with §v(0, -) = 0 implies 6v = 0. So the mapping v — v is well-defined
and, thanks to (5.26), is a mapping from C7 (M) into itself for T = T} satisfying
inequality (5.30)).
Because it is furthermore clear that, in the L2(0, T,c; H?(I)) norm, the mapping

is weakly continuous, the Tychonoff fixed-point theorem [5] provides us with the
existence of a fixed point to this mapping. Such a fixed point, which we denote by

(5.30) T
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U, 18 a solution of the nonlinear degenerate parabolic «-problem (4.5), with initial
condition v, (0, -) = ug(-). It should be clear that the fixed point v, also satisfies
(5.16) and (5.27) so that

(5.31) Hpoa?v’CHL2(O,T;H3(I)) + ” 8?')'6 HL2(0,T;H2(I))

+ |l pod? v ”L2(O,T;H1(1)) + Ha?UKHLz(O,T;Hl(I)) =6

In the next section, we establish for v, in L?(0, T,c; H?(I)) k-independent es-
timates (which are indeed possible because our parabolic approximate k-problem
respects the structure of the original compressible Euler equations (1.11)), from
which we infer a short time interval of existence [0, T'], with T independent of «.
These «-independent estimates will allow us to pass to the weak limit of the se-
quence v, as k — 0 to obtain the solution to (1.11).

6 Asymptotic Estimates for v, That Are Independent of «

6.1 Higher-Order Energy Function Appropriate
for Asymptotic Estimates as k — 0

Our objective in this section is to show that the higher-order energy function £
defined in (1.14) satisfies the inequality

6.1) sup E(t) < Mo+ CTP( sup E(1)),
t€[0,T] t€[0,T]

where P denotes a generic polynomial function of its argument, for 7 > 0 taken
sufficiently small, with M defined in (1.14). The norms in E(¢) := E(t,vy)
are for solutions v, to our degenerate parabolic k-problem (4.5). According to
Theorem 5.1, v, € X7, with the additional bound ||3?UK||L2(0,TK;H2(I)) < o0
provided by (5.26). As such, the energy function E is continuous with respect to
t, and inequality (6.1) would thus establish a time interval of existence and bound
that are both independent of k. For the sake of notational convenience, we shall
denote v, by v.

6.2 A k-Independent Energy Estimate
on the Fifth Time-Differentiated Problem

Our starting point shall be the fifth time-differentiated problem of (4.5) for which
we have, by naturally using 379 € L2(0, Ty; H!(I)) as a test function, the follow-
ing identity:

6.2 ld 85~2 55 P(% 354 285“’2—0
(6.2) EEI PO‘ t“‘ _I tﬁTz tU+KI pO(tU) =0.

7 ) 13

In order to form the exact time derivative in the term Z;, we rely on the fact that the
solutions we constructed to (4.5) satisfy d%v € L2(0, Ty.; L*(I)), which follows
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~ 2 ( po ' K ’
86U — 85|:~—(~—) ] 4+ — ZaSU/ ’
¢ t 7\ 7 Py [Po t ]

and estimate (5.31). Upon integration in time, both the terms Z; and Z3 provide
sign-definite energy contributions, so we focus our attention on the nonlinear esti-
mates required of the term Z5.

We see that

—12:2/34 '[f’g]as ’+an/85 “—8‘; 7 P57 0"
1

from the relation

d 2 P} - P u 1
d[/(a4 /) nO /(84 / / 0 Z /85 a_actz ﬁ, 285 /
7 a=1

Hence integrating (6.2) from O to ¢ € [0, T)], we find that

%/p08f52(1)+/(84 ’2’00(:)+K/ /po (979")
1
1 5~2 4~n2 Po 4/ T
63 :5/ p0d37 (0)+/(a ~/3(0)—3/ / (545 ~/4

_an/ /85 ”—8‘,’ ~/ 28?5/.

We next show that all of the error terms, comprising the right-hand side of (6.3),
can be bounded by CP (supyg ;1 E). For the first space-time integral appearing on
the right-hand side of (6.3), it is clear that

6.4) —3/ / (947 ”pT" < CtP(sup E).

[0.7]

We now study the last integrals on the right-hand side of (6.3). Using integration
by parts in time, we have that

(6.5) //35‘1—3;&/ Py =
t
ff[a”—a‘; ~,] pa 3D + /35‘1—3‘; — pgd7v| .
t 0
1

We first consider the space-time integral on the right-hand side of (6.5). As the
sum is taken for a = 1 to 4, we then see that it will be written under the form of
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the sum of space-time integrals of the following type:

t
h= [ [ oot Rppoots.
1
t
L= [ [ s Rt
0 1
t
I =/ /poaiﬁ/v/aiﬁ/ze(ﬁ)poa;‘ﬁ/,
0 1
t
o= [ [ s RGD@ o001
0
1

where R(7]) denotes a rational function of 7. We immediately see that

(6.6) [11] < CtP(sup E).
[0.7]

Next, we have that

t
12 =€ [ [ 1oodt e 191 06| VRGD o 0t
I

t
€1 <c /0 / 00325y W/ lzoe 005 172 I RGD Ios [ 00375
1

< CtP(sup E).
[0.¢]

Similarly,

t
Il =C /0 00025 [ oo 10120 | 825 IR@ o> | 203iT |,

(6.8)
< CtP(sup E),
[0,7]

and

t

- /112 - ~
] < C/O 100870 | ool llzoo 020 | 7a IR ILoo || 00070

(6.9) < CtP(sup E),

[0,2]
where we have used the fact that in one dimension, || - |[zc < C| - |51 and

I-lls < Cll - llpre
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Next, we treat the second term on the right-hand side of (6.5), beginning with
the case @ = 1. We see that for § > 0

/8, = 8, 7 pa 07’

t

—/(R(n)83vvp284 ()

0

_/ (RT3 p2047)(0).
1

and

[ (R ot

1

t
= /[poa?ﬁ’(O)Jr/O poa‘}ﬁ’]R(ﬁ(r))ﬁ’(z)poa;‘ﬁ’(t)
1

< Ctp(sup B) + [ b O RGO (000
[0,T7] 7

< Crpsp £) + 8 pod?5' )] + Cs ]| o835 OV RGO | Lagry 171124
0,

< CtP(sup E) + 8| podv' (0) |2
[0,7]

2
+ Cs | pod3 0" OV RGO | 24

t
v’(0) + / v}
0

<My+ CtP(sup E) + 5“/003?17/(0”37
[0,T7]

L)

where the last inequality follows from the fact that

||R(77)||Loo(1) < Mo + CZP([suTE)] E),
0

which itself follows from the fundamental theorem of calculus. The case whena =
2,3, 4 can be estimated in the same fashion; hence, by taking § > 0 sufficiently
small so that §pod%’(¢)||3 is absorbed by the left-hand side of (6.3), we obtain
the desired inequality. In particular, putting together estimates (6.3)—(6.7) with the
inequality directly above provides us with

[0.7]

1
5/poafaz(z)Jr/(a“ i) ?g (l)—l—K/ /po (977") > < Mo + CtP(sup E),
1
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and thus, employing the fundamental theorem of calculus,

t
%/poaiﬁZ(z)+f(poa;‘5')2(z)+;c/0 /pg(afa')z
1

1 1

t =/
(6.10) < Mo + CtP(sup E) +3/(8‘;ﬁ’)2(z)pg/ =
[0.£] 0
1

< Mo+ CtP(sup E).
[0,7]

Note that although our definition of My lacks the term || \/pd3 v (0) ||%, it is implic-
itly bounded by My using equation (5.1) with k = 5, as well as estimate (5.6) for
the highest-order term that has the «-coefficient.

6.3 Elliptic and Hardy-Type Estimates for va(t)

Having obtained the energy estimate (6.10) for the fifth time-differentiated prob-
lem, we can begin our bootstrapping argument. We now consider the third time-
differentiated version of (4.5a),

3 Po 3~ 4~
[at ﬁ/2i| — «[p503 /] = —pod; U,
which can be written as
292~/ ~/~) 2~/37/
o 203~ 4 00:0 pav
—2|: ﬁ/; :| —K[pOB,v/] —p00; U+C1|:T + ¢ 7|

and finally rewritten as the following identity:
N 020,00 P22 7
{533 ~sl30] == potto + e[ BT o 20

202~/ 1 2 /ﬁ//
—2[p2d?v'] l_ﬁ — 603070 =

Here c; and ¢; are constants whose exact value is not important.

Therefore, using Lemma 3.2 together with the fundamental theorem of calculus
for the fourth term on the right-hand side of (6.11), we obtain that for any 7 €
[09 TK ] ’

(6.11)

2 -
sup —[pgagv']/
[0,z]11 PO 0
0.0’ ! 25/3 /
61 = sp [atol, + sup| LTALTTT] 4 sp 2T
[0,¢] [0,¢] n o [orsllPOL 7N 0
2 202~/ " 2~/ f]”
+ sup | —[pgd70"]'|| |3 | =3 + 6 sup || pod7 D
[0,:71 Po oll Jo M7 liLee  [0,] 7* o
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We next estimate each term on the right-hand side of (6.12). For the first term,
we will use our estimate (6.10), from which we infer for each ¢ € [0, T]

/pg[a;*ﬁz + 079"](t) < Mo + CtP(sup E).

7 [0,7]

Note that the first term on the left-hand side of (6.13) comes from the first term of
(6.10), together with the fact that dfv(z, x) = vg(x) + fé d3v(-, x). Therefore,

the Sobolev weighted embedding estimate (2.1) provides us with the following
estimate:

(6.13) / 315%(t) < Mo + CtP(sup E).

7 [0,7]

The remaining terms will be estimated by simply using the definition of the energy
function E. For the second term on the right-hand side of (6.12), we have that

28 ~/~/ /
‘Po[ Ul }

0
pot’ 7’
< Voot o) )+ |71 57 ||,
! =~ ~/!
< [(po) HO||v||3/4 ~'[’j§,ﬁj} vt[”}i]H
0 n 0

+4

~/ p05,ﬁ//
Uy =15
n 0

SCH(pov’l)# /0 (pov;,)/H 19112

/ ~/
vy —I—/ Vyy
0 0

1/2

’+/ﬁ;
0

19"l13/4 + C 52 lov" |4

1/2

+C

+ e / 5 | pov) + / ooi,
0 0 0 1
"/ . ’ 1/2 / .~/ 1/2
(povl) + (vatt) ||U K Uy
0 o 2
.12
tc v’1+/ A WL /ﬁ;
0 o iz
1/4

+ vl Hf>ov”H3/4

’

" 14
Povy + / PoV;
0 0
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where we have used the fact that || - || < C|| - [l3/4. Thanks to the definition
of E, the previous inequality provides us, for any ¢ € [0, Ty ], with
< C sup E3/4(M0 + tP(sup E)).

28 ~/ 19/
[ i } 0 [0.1] [0.]

For the third term on the right-hand side of (6.12), we similarly have that

1 pgﬁ/3/
‘p_o[ 7S ]

(6.14) sup
[0,]

0

5/2 pOﬁIZ
< ooVl e |+ ]2 ]|
_ _ _ ~/2 5//1]/
< L) 178 + |7 2| +2)7[ 25|
n 0 n 0
pov/zn//
> U[ i'e i| 0
/ . 1A 3/4 ~/ o 2
< C|(povo) + [ (povy) | (00 ” Ut
0 0 1/2

~/

/ . +CI'I13 )5 [ 00" o + CHT'IT 5 [ 007" 0
1

+fm
0

1/4

ooty |* |5 2

= C” (povg) + /0 (oov;)’

1/2

. 3
+C ﬁg+/ﬁ;
0

1/2
. 2 . 1/2
+C 176"‘/ Uz pov({—i-/ pov) | llpod” Il
0 1/2 0 0

’

1

. 3
+C ﬁ(,+/ﬁ;
0 1/2

/ /OOU//
0

where we have used the fact that || - [L» < Cpl| - ||1/2 forall 1 < p < co. Again,

using the definition of E, we obtain from the previous inequality for any ¢ € [0, T]
1 [P 1/2

(6.15) sup —[ = ] <Csup E"/*(Mgy + tP(sup E)).

[olPOL T 0 [0,2] [0,£]

For the fourth term of the right-hand side of (6.12), we see that
. 5/
N CE
o 4 L

ClInodio" o + 000" lole sup I3ll2 = CeP(sup £).
0 0,z

(6.16) H 3[;%8%5/]’
Po

0
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Similarly, the fifth term of the right-hand side of (6.12) yields the following esti-

mate:
/. 5//
0 0

=

n

ﬁ

) = Clpot?'] o 170 = C o2,
0

pod7 v’

6.17)
< CtP(sup E).
[0.¢]

Combining estimates (6.14)—(6.17), we obtain the inequality

< CtP(sup E) + C sup E3/4(M0 + tP(sup E)).
0 [0,7] [0.¢] [0,¢]

2 -
%[pgafv/]/

(6.18) sup
[0,]

At this stage, we remind the reader that the solution v to our parabolic x-problem
isin X7, so that for any 7 € [0, T)], 3?0 € H?(I). Notice that

1
%[pﬁa?ﬁ']' = pod70" +2p37 0",
so (6.18) is equivalent to
(6.19) sup ”pofitzﬁ// + 200%0'd ”0 <
[0.¢]
CtP(sup E) + C sup E3/4(M0 + tP(sup E)).
[0,¢] [0,¢] [0,7]

From this inequality, we would like to conclude that both ||0?%'(| and || 09?3 o
are bounded by the right-hand side of (6.19); the regularity provided by solutions
of the «-problem allow us to arrive at this conclusion.
By expanding the left-hand side of (6.19), we see that
- ) 1|2 )

sup |00 + 291 llg = [0 5" o + 40227,

0,
(6.20)
+ 4f 0927 py 027 .

1

Given the regularity of 9?9 provided by our parabolic «-problem, we notice that
the cross-term in (6.20) is an exact derivative,

ad
4/ pod; " pyd7 0’ =2 / poro 5|70,
1 1
so that by integrating by parts, we find that

4fp08?5”p68?5/ = —2||p63?17’||§—fpoaiﬁ/pé/a?ﬁﬁ
1 1
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and hence (6.20) becomes
~ <12 <1112 /12

sup | w0 " + 20077 = [t 15 -+ 2027
0,

(6.21) 3 _

— / pod? 1 o021

1
Since the energy function E contains pgd?#(¢) € H?(I) and 8?5 (¢) € H'(I), the

fundamental theorem of calculus shows that

/poagﬁ/pgafi/ < CtP(sup E) + C sup E3/4(M0 + tP(sup E)).

7 [0,¢] [0,¢] [0,¢]

Combining this inequality with (6.21) and (6.18) yields
sup [”POa?TJNHO + pr)afﬁ'HO] < CtP(sup E)
[0,7] [0,¢]
+ C sup E¥*(Mo + tP(sup E)),
(0] [0.]
and thus

sup [leodz0” |l + [ P6970" [ + | p0d70"] o] <
0.t
Mo + CtP(sup E) + C sup E>/*(My + tP(sup E)),

[0,7] [0,7] [0,7]

and hence with the physical vacuum conditions on pg given by (1.5) and (1.6), we
have that

sup [[lod7 8"l + [979"]o] =
[0.1]

s

My + CtP(sup E) + C sup E3/4(M0 + tP(sup E)),
[0,7] [0,2] [0,7]

which, together with (6.13), provides us with the estimate
(6:22)  sup [[|podz 8", + 075 ,] <
[0.¢]
My + CtP(sup E) + C sup E3/4(M0 + tP(sup E)).
[0.¢] [0,7] [0,7]

6.4 Elliptic and Hardy-Type Estimates for v(7)

Having obtained the estimates for 3% (¢) in (6.22), we can next obtain our esti-
mates for v(¢). To do so, we consider the first time-differentiated version of (4.5a),
which yields the equation

p(2)5/ ' 2q ~17 2~
—2[ E ] —k[pg0: V'] = —pod7 7,
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which we rewrite as the following identity:

2 T4 K 1/ - 2 ~1/
(6.23) - %[p(%v’] - %[pﬁfizv/] = —0;0 — %[ng/] (1 - ,73)

Using Lemma 3.2, we see that for any ¢ € [0, T],

o~
sup | —[p35']'| = C sup 925, + C sup| —[o35'] / S
[0,¢]1l PO 1 [0,¢] [0,:11l PO 1iiJo M |lLee
(6.24) 1 7
+C|— 25/ ,~—
Po (257 7*1lo

We next estimate each term on the right-hand side of (6.24). The bound for the
first term on the right-hand side of (6.24) is provided by (6.22). The second term
of the right-hand side of (6.24) is estimated as follows:

1 2~17 / v’ ~I ~
— — 1)<C + t
et T| 1 ] O = Clleod” Lo + v1] sup 191
(6.25) < CtP(sup E).
[0,7]
For the third term on the right-hand side of (6.24),
1 2~r7 77” < 1 2~/ ~//
E[Pov] 7 1(1)—C E[Pov] . [ [l

t
/ 5//
0

(6.26) < C[]pod”|| + llvl2]

< CtP(sup E).
[0,7]

Combining these estimates provides the inequality

< CtP(sup E) + C sup E3/4(M0 + tP(sup E)),
1 [0,7] [0.¢] [0,¢]

l 2~r7
Po[pov]

sup
[0.7]

which leads us immediately to

(6.27) sup || pot"” +3ppv" ||, < C1P(sup E) + C sup E3*(Mo +tP(sup E)).
[0,] [0,] [0,] [0,]
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Now, since for any ¢ € [0, Ty ], the solution v to our parabolic x-problem is in
H?3(I), we infer that pgv”” € L?(I). We can then apply the same integration-by-
parts argument as in [1] to find that

008" + 3pov" |5 = || 00" g + 9] 5" ||& + 3/P0P0[|~H| I

1
6.28 = oot g+ 9lood” o =3 | [pors + o5 115"
(6.28)
1
= oot + 613" I3 =3 [ port i
1

Combined with (6.27), this yields

sup [”povmuo + ”p/ v”” ] < CtP(sup E) + C sup E3/4(M0 + tP(sup E))
[0,¢] [0,¢] [0,¢] [0,¢]

’

e[ v

and thus

" /=~

[S(;lpl[llpov lo + 069" ¢ + [ 07" |4] =

s

My + CtP(sup E) + C sup E3/4(M0 + tP(sup E)),
[0,¢] [0,¢] [0,¢]

With (1.5) and (1.6), it follows that
[SUP [l eo®” |4 + 115"1l0] <

My + CtP(sup E) + C sup E3/4(M0 + tP(sup E)),

[0,] [0,£] [0,¢]
and hence
sup [l pod”" ||y + I5]12] < Mo + CtP(sup E)
(6.29) o1 [0.1]

+ C sup E3/4(M0 + tP(sup E)).
[0,¢] [0,¢]

6.5 Elliptic and Hardy-Type Estimates for 3?v(t) and d;v(t)

We consider the fourth time-differentiated version of (4.5a):

297/
P ~ ~
o1 28| Tt = i
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which can be rewritten as

2a3~/7/ 2~1~r/ 3/2q ~12
05070 N 05V 0;v
—2|: Oﬁ/; :| —K[p084 /] —p08fv+cl|:7ﬁ/4 ] +c2|:7ﬁ/5 ]

for some constants ¢; and ¢;. By employing the fundamental theorem of calculus

and dividing by pé/ 2

, we obtain the equation

2 - K -
RV [pﬁ(’?i’v']/ 12 [pgf??v']'
Po Po

2~ / 1’ 29 ~27/
_ 5~ €1 a 2 poatv
- | |+

n/S
2 203 1 3/2 7"
= 830/ (1_~_)_ 83 /~
p(l)/z[ 0%t ] 77/3 n/4

For any ¢ € [0, T ], Lemma 3.2 provides the x-independent estimate

2
1/2 [p083 /]
Po

sup
[0.7]

0
2 2~r~r7/
~ C1 8
< sup H«//Oo 8?1}”0 + sup V) [7/4 :|
[0,7] (0,711 g n
(6.30)

0

29 ~127/
c2 [ pg0:V
o pl/Z[ i ] 0
0
2 -~ /4
el 2oty [ f ] somlian
/2 /4
(0,211 pg 0 0 M |Leo [0,¢] i 0

We estimate each term on the right-hand side of (6.30). The first term on the
right-hand side is bounded by Mo + CtP(supjg, E) thanks to (6.10). For the
second term on the right-hand side of (6.30) we have that

1 82///
pé/z[ U :|

0

po?’ 7’
< VA Lo |5+ |vmar | ]|
/ /'
< C|[ V(o7 ||0||v laa + |V o2e | 25 |
J10
~/1=1 "
«fumate | S ||+ o vmate[ ]| <
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~/
0

||5/||3/4 + CHW‘@?WHO ||p0v”||3/4

1/2
19112 |5

< C”W(Poﬁ'z)”r/o. JPo(pod? ')’ .

1/2

+c”m&g +f Vpo 837
0

+ C17 134 /v p3/25'2+/ 32935/
0 0 1

/ ' / 1/2 ' 1/2

< | VPo(po%) +/ Veo(poty,) || 1911391 +/ 0p
0 0 1/2

a . 1/2

+c”ﬁv2 /fov,, 1512| 5, /06; /

1/2

. 1/4
+Clm i y Loov' |3 ot + [ pory
0

/ﬁ; /5// p3/2v/2+/ 3/233 ~/
0 0

where we have again used the fact that || - | cc < C||-||3/4. Thanks to the definition
of E, the previous inequality shows that for any ¢ € [0, T}],

3/4

/1/2 1/2
+ Cll7'|;

1/2 0 )

< C sup E3/4(M0 + tP(sup E)).
0 [0,] [0.¢]

(6.31) sup
[0,¢]

1 82///
ﬁ[ n"‘}

For the third term on the right-hand side of (6.30), we similarly have that

=5 Il
SRR W R Wi g
< cf ity + / m%vHH/_%”m+CWtH oy

R HHJ_&N| “ (VB0 007) [
ey [ (i)

ECH(po )’+/ (00de: ")

+Cloi; A(wv)

1—o

(o) 5o

t
~/ ~/
Uy + / attU
0

0

’

0

Lo _ 3-3a
where 0 <a < s isgivenand 0 <« = 3757 < L.
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The only term on the right-hand side of (6.32) that is not directly contained in
the definition of E is ||(\/po 9:3")'[|{ ,—, To this end, we notice that

0: 0
0,7 / < ” 4 + ~1/
633) H(\/p_o tv) HL2 — 2m 12-a H \/p_ovtt HO
. ] ) )
: ”2xA56 P LK PR N S

where we have used the fact that || - [L» < Cpl| - [l1/2 forall 1 < p < oo. Thanks
to the definition of E, the previous inequality and (6.32) provides us with, for any

t €0, Ty,
1 |:P35,3:|,
pol 77
3-3

where we again recall that 0 <« = 3 32 < 1.
The fourth term on the right-hand side of (6.30) is easily treated:

(6.34) sup
[0,]

< Csup E*(My + tP(sup E)),
0 [0,] [0.¢]

” 1 [ 283@'/]/ /t 5_/ ([)

/—po pO t 0 o ﬁ/4 oo

(6.35) < Cllpg"03v" o + 2o 30| o] sup 7]z
St

< CtP(sup E).
[0,7]

Similarly, the fifth term on the right-hand side of (6.30) is estimated as follows:

(6.36) < CtP(sup E).
[0.¢]

3/2q3 ﬁ//
~/
Py’ 90 7

(1) < C| 32835 | oo 17" ll0
0

< Clllng”02" o + | Vo 030/ )

t
/ ﬁ//
0 0

Combining estimates (6.30)—(6.36), we can infer that

1 -
—7 P70
Po

(6.37) sup
[0,7]

< CtP(sup E) + C sup E*(My + tP(sup E)).
0 [0,2] [0,] [0,¢]




1-D EULER EQUATIONS IN PHYSICAL VACUUM 361

Now, since for any ¢ € [0, Ti], solutions to our parabolic x-problem have the
regularity 3?v € H?(I), we integrate by parts:

1 2q3~/ 2
—751P3070']
Po 0

— 103+ a2t + 2 [ ol )
I

= 632855 15 + ool 335 15— [ ool =2 [ aiior
1 1

(6.38)

— 163035 ; - 2 [ wiedloio P
I
Combining this with (6.37) and using the fact that poaﬁﬁ’ = poV3 + fot poﬁfﬁ’ for
the second term on the right-hand side of (6.38), we find that

(6.39) sup |p3/?835" |, < CtP(sup E) + C sup E%(Mo + tP(sup E)).
[0t [0,7] [0,2] [0,2]

Now, since

1
1/2[0083 /] —p3/2835”+2p 1/2 /83 ’

estimates (6.37) and (6.39) also imply that
(6.40)  sup ”pol/z A 83U'HO < CtP(sup E) + C sup E*(My + tP(sup E)).
[0,¢] [0,7] [0,¢] [0,¢]

Therefore,
[S(;IP[HP3/233 "lo + lopo 2035 o + [ 03/ 203" | 4] <

My + CtP(sup E) + C sup E*(My + tP(sup E)),
[0,7] [0,7] [0,7]

so that with (1.5) and (1.6),

Sup[HP3/233v”llo + lloo*075']] <

St

My + CtP(sup E) + C sup E*(My + tP(sup E)).
[0,7] [0,] [0.,]

Together with (6.13) and the weighted embedding estimate (2.1), the above in-
equality shows that

(6.41) [sup[Hp3/283 5o+ |75, ,] <

My + CtP(sup E) + C sup E*(My + tP(sup E)).
[0,7] [0,] [0,]
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By studying the second time-differentiated version of (4.5a) in the same manner,
we find that

(6.42) [su;;[upg/zatﬁ'"uo +110:8ll3/2] <
0,

My + CtP(sup E) + C sup E*“(My + tP(sup E)).
[0,7] [0,7] [0,]

7 Proof of Theorem 1.1

7.1 Time of Existence and Bounds Independent of «
and Existence of Solutions to (1.11)

Summing inequalities (6.10), (6.22), (6.29), (6.41), and (6.42), we find that

sup E(t) < Mg+ CtP(sup E) + C sup E*(My + tP(sup E)).
t€[0,T] [0.¢] [0,7] [0,7]
As a < 1, by employing Young’s inequality and readjusting the constants, we
obtain
sup E(t) <Mo+CT P( sup E(2)).
t€l0,T1] 1€[0,T]

Just as in [2, sec. 9], this provides us with a time of existence 7 independent of

k and an estimate on (0, 77) independent of « of the type

(7.1) sup E(t) <2M,.

t€[0,T1]
In particular, our sequence of solutions (v, ) satisfies the k-independent bound (7.1)
on the x-independent time interval (0, 77).

7.2 Limitasx — 0

By the «-independent estimate (7.1), there exists a subsequence of {v,} that
converges weakly to v in L2(0, T; H2(1)). With n(t,x) = x + fot v(s, x)ds, by
standard compactness arguments we see that a further subsequence of v, and 7,
uniformly converges to v and 7', respectively, which shows that v is the solution to
(1.11) and v(0, x) = ug(x).

7.3 Uniqueness of Solutions to Compressible Euler Equations (1.11)

For uniqueness, we require the initial data to have one space derivative better
regularity than for existence. Given assumption (1.15) on the data (u¢, po), repeat-
ing our argument for existence, we can produce a solution v on [0, 7] that satisfies
the estimate

> 2 2
2 2
Z[”atsv(t’ ')HHH(I) + [ pod?* (. ')HH“—S(I)] <00

s=0
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and has the flow n(f,x) = x + fé v(s, x)ds. For the sake of contradiction, let us
assume that w is also a solution on [0, 7] with initial data (1, pg), satisfying the
same estimate, with flow ¥ (¢, x) = x + fot w(s, x)ds.

We define

Sv=v—uw,

in which case we have the following equation for §v:

(7.22) podvs + (03[0 2 —=v'2]) =0 inlx (0, T3],
(7.2b) dv=0 onl x{t =0},
(7.2¢) po=0 onal.

By considering the fifth time-differentiated version of (7.2a) and taking the
L2(I) inner product with d38v, we obtain the analogue of (6.10) (with k = 0) for
dv. The additional error terms that arise are easily controlled by the fact that both v
and w have one space derivative better regularity than the energy function E. This
produces a good bound for 9%§v € L>°(0, Ty; L*(I)). By repeating the elliptic and
Hardy-type estimates for 8?8v € L% (0, Ty; H'(1)) and v € L>®(0, Ty; H?*(I))
and using (7.2b), we obtain the inequality

sup(at5v) g + |80+ 100I3) <
CTiP( sup (|otsv g + 280 |7 + I8v()13)).
te|0,17

which shows that §v = 0.

7.4 Optimal Regularity for Initial Data

We smoothed our initial data (1, pg) in order to construct solutions to our de-
generate parabolic x-problem (4.5). Having obtained solutions that depend only
on E(0,v), a standard density argument shows that the initial data only needs to
satisfy My < oo.

8 The Case y # 2

In this section, we describe the modifications to the energy function and the
methodology for the case that y # 2. We denote by ag the integer satisfying the
inequality

1
<14+ ———-ap=2.
y—1
Letting
d(x) = dist(x, dl),
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we consider the following higher-order energy function:

4 2
Ey(tv) = Y 0jue )5y + 4o ue )5
s=0 5=0
+ V0" + [V 935
a 1+515—a
# YV )

a=0

2
0’

and define the polynomial function M) = P(E y(0,v)). Notice the last sum in E),
appears whenever y < 2, and the number of time-differentiated problems increases
asy — 1.

We explain this last summation of norms in E, with a particular example;
namely, consider the case y = % Then pg ~ d? near I, ag = 1, and the last
summation is written as

2
0’

40 I
Z”‘/EH—V_I a8?+a0_av/(fﬂ)H§ _ Hd3/zaiv/(z)H§ + Hdl/za‘;v/(l)‘

a=0

which is equivalent to

(8.1) /p3/2|8fv/(z)\2dx+/p(1,/2\8;‘v/(t)|2dx-
I I

The Euler equations with y = % are written as

(8.2) pove + (03 *n5>/?), =0,

Energy estimates on the sixth time-differentiated problem produce the first integral
in (8.1), while the second integral is obtained using our elliptic-type estimates on
the fourth time-differentiated version of (8.2). (Notice that the value of y does not
play a role in our elliptic-type estimates.) Having control on the two integrals in
(8.1) then shows that we are back in the situation for the case that y > 2; namely,
we see that dFv() is even better than L2?(I), which allows us to proceed as be-
fore. In particular, for y < 2 the power on pg in the first integral in (8.1) is greater
than 1, and by weighted embedding estimates, this means that the embedding oc-
curs into a less regular Sobolev space; this accounts for the need to have more
time-differentiated problems when y < 2.

Using the same procedure as we have detailed for the case that y = 2, we have
the following:

THEOREM 8.1 (Existence and Uniqueness for Any y > 1) Given initial data
(1o, po) such that Moy < 00, po(x) > O for x € I, and the physical vacuum
condition (1.4) holds, there exists a solution to (1.10) (and hence (1.1)) on [0, Ty ]
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for T, > 0 taken sufficiently small such that

sup E,(t) < 2Mg.
t€[0,T]

Moreover, if the initial data satisfies

3 3
B A ')||12L13—s(1) + Y _[dda7° v 0, ')Hil“—S(l)
s=0

s=0

a0 1
+Z”\/d_l+y_l a8t6+ao_avl(0,-)”§<00,

a=0

then the solution is unique.
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