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Abstract

The free-boundary compressible one-dimensional Euler equations with moving

physical vacuum boundary are a system of hyperbolic conservation laws that are

both characteristic and degenerate. The physical vacuum singularity (or rate of

degeneracy) requires the sound speed c2 D ����1 to scale as the square root of

the distance to the vacuum boundary and has attracted a great deal of attention

in recent years. We establish the existence of unique solutions to this system on

a short time interval, which are smooth (in Sobolev spaces) all the way to the

moving boundary. The proof is founded on a new higher-order, Hardy-type in-

equality in conjunction with an approximation of the Euler equations consisting

of a particular degenerate parabolic regularization. Our regular solutions can be

viewed as degenerate viscosity solutions. © 2010 Wiley Periodicals, Inc.

1 Introduction

1.1 Compressible Euler Equations and the Physical Vacuum Boundary

This paper is concerned with the evolving vacuum state in a compressible gas

flow. For 0 � t � T , the evolution of a one-dimensional compressible gas moving

inside of a dynamic vacuum boundary is modeled by the one-phase compressible

Euler equations:

�Œut C uux�C p.�/x D 0 in I.t/;(1.1a)

�t C .�u/x D 0 in I.t/;(1.1b)

p D 0 on �.t/;(1.1c)

V.�.t// D u;(1.1d)

.�; u/ D .�0; u0/ on I.0/;(1.1e)

I.0/ D I D f0 < x < 1g:(1.1f)

The open, bounded interval I.t/ � R denotes the changing domain occupied by the

gas, �.t/ WD @I.t/ denotes the moving vacuum boundary, and V.�.t// denotes the
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velocity of �.t/. The scalar field u denotes the Eulerian velocity field, p denotes

the pressure function, and � denotes the density of the gas. The equation of state

p.�/ is given by

(1.2) p.x; t/ D C��.x; t/
� for � > 1;

where C� is the adiabatic constant, which we set to 1, and

� > 0 in I.t/ and � D 0 on �.t/:

Equation (1.1a) is the conservation of momentum, (1.1b) is the conservation of

mass, the boundary condition (1.1c) states that the pressure (and hence density)

must vanish along the vacuum boundary, (1.1d) states that the vacuum boundary is

moving with the fluid velocity, and (1.1e)–(1.1f) are the initial conditions for the

density, velocity, and domain. Using the equation of state (1.2), (1.1a) is written as

( 1.1a0) �Œut C uux �C .�� /x D 0 in I.t/:

With the sound speed given by c2.x; t/ D ����1.x; t/, and with c0 D c.x; 0/,

the condition

(1.3) 0 <

ˇ̌̌
ˇ@c

2
0

@x

ˇ̌̌
ˇ < 1 on �

defines a physical vacuum boundary (or singularity) (see [10, 12, 13, 17]). Since

�0 > 0 in I , (1.3) implies that for some positive constant C and x 2 I near the

vacuum boundary � WD @I ,

(1.4) �
��1
0 .x/ � C dist.x; �/:

Equivalently, the physical vacuum condition (1.4) implies that for some ˛ > 0,

(1.5)

ˇ̌̌
ˇ@�

��1
0

@x
.x/

ˇ̌̌
ˇ � C˛ > 0 for any x satisfying d.x; @I / � ˛;

and for a constant C˛ , depending on ˛,

(1.6) �
��1
0 .x/ � C˛ > 0 for any x such that d.x; @I / � ˛:

Because of condition (1.4), the compressible Euler system (1.1) is a degener-

ate and characteristic hyperbolic system to which standard methods of symmetric

(uniformly) hyperbolic conservation laws cannot be applied in standard Sobolev

spaces. In [1], we established a priori estimates for the multidimensional com-

pressible Euler equations with physical vacuum boundary.

The main result of this paper is the construction of unique solutions in the one-

dimensional case, which are smooth all the way to the moving vacuum boundary on

a (short) time interval Œ0; T �, where T depends on the initial data. We combine the

methodology of our a priori estimates [1], with a particular degenerate parabolic

regularization of the Euler equations, which follows our methodology in [2, 3],

as well as a new higher-order Hardy-type inequality that permits the construction

of solutions to this degenerate parabolic regularization. As we describe below in
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Section 1.7, our solutions can be thought of as degenerate viscosity solutions. The

multidimensional existence theory is treated in [4].

1.2 Fixing the Domain and Lagrangian Variables on Reference Interval I

We transform system (1.1) into Lagrangian variables. We let �.x; t/ denote the

“position” of the gas particle x at time t . Thus,

(1.7) @t� D u ı � for t > 0 and �.x; 0/ D x

where ı denotes composition so that Œu ı ��.x; t/ WD u.�.x; t/; t/: We set

v D u ı �(Lagrangian velocity);

f D � ı �(Lagrangian density):

The Lagrangian version of equations (1.1a)–(1.1b) can be written on the fixed

reference domain I as

f vt C .f � /x D 0 in I � .0; T �;(1.8a)

ft C f vx=�x D 0 in I � .0; T �;(1.8b)

f D 0 in I � .0; T �;(1.8c)

.f; v; �/ D .�0; u0; e/ in I � ft D 0g;(1.8d)

where e.x/ D x denotes the identity map on I .

It follows from solving equation (1.8b) that

(1.9) f D � ı � D �0

�x
;

so that the initial density function �0 can be viewed as a parameter in the Euler

equations. Let � WD @I denote the initial vacuum boundary; we write the com-

pressible Euler equations (1.8) as

�0vt C .�
�
0=�

�
x/x D 0 in I � .0; T �;(1.10a)

.�; v/ D .e; u0/ in I � ft D 0g;(1.10b)

�
��1
0 D 0 on �;(1.10c)

with �
��1
0 .x/ � C dist.x; �/ for x 2 I near � .

1.3 Setting � D 2

We will begin our analysis of (1.10) by considering � D 2, in which case we

seek solutions � to the following system:

�0vt C .�2
0=�

2
x/x D 0 in I � .0; T �;(1.11a)

.�; v/ D .e; u0/ on I � ft D 0g;(1.11b)

�0 D 0 on �;(1.11c)

with �0.x/ � C dist.x; �/ for x 2 I near � .
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Equation (1.11a) is equivalent to

(1.12) vt C 2��1
x .�0�

�1
x /x D 0;

and (1.12) can be written as

(1.13) vt C �0.�
�2
x /x C 2.�0/x�

�2
x D 0:

Because of the degeneracy caused by �0 D 0 on � , all three equivalent forms

of the compressible Euler equations are crucially used in our analysis. Equation

(1.11a) is used for energy estimates, while (1.12) and (1.13) are used for additional

elliptic-type estimates that rely on our higher-order Hardy-type inequality.

1.4 Reference Domain I

As we have already noted above, the initial domain I � R at time t D 0 is

given by

I D .0; 1/;

and the initial boundary points are given by � D @I D f0; 1g.

1.5 Higher-Order Energy Function for the Case � D 2

We will consider the following higher-order energy function:

E.t; v/ D
4X

sD0

��@s
tv.t; � /

��2

H 2�s=2.I /
C

2X
sD0

���0@
2s
t v.t; � /

��2

H 3�s.I /

C
��p

�0 @t@
2
xv.t; � /

��2

L2.I /
C

��p
�0 @

3
t @xv.t; � /

��2

L2.I /
:

We define the polynomial function M0 by

(1.14) M0 D P.E.0; v//;

where P denotes a generic polynomial function of its arguments.

1.6 Main Result

THEOREM 1.1 (Existence and Uniqueness for the Case � D 2) Given initial data

.u0; �0/ such that M0 < 1, �0.x/ > 0 in I , and the physical vacuum condition

(1.4) holds for �0, there exists a solution to (1.11) (and hence (1.1)) on Œ0; T � for

T > 0 taken sufficiently small such that

sup
t2Œ0;T �

E.t/ � 2M0:

Moreover, if the initial data satisfies

(1.15)

3X
sD0

��@s
tv.0; � /

��2

3�s
C

3X
sD0

���0@
2s
t v.0; � /

��2

4�s
< 1;

then the solution is unique.

Remark 1.2. The case of arbitrary � > 1 is treated in Theorem 8.1 below.
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Remark 1.3. Given the regularity provided by the energy function (1.14), we see

that the Lagrangian flow map � 2 C.Œ0; T �;H 2.I //. In our estimates for the

multidimensional problem [1], we showed that � gains regularity with respect to

the velocity field v, and this fact is essential to control the geometry of the evolving

free surface. This improved regularity for � also holds in the one-dimensional

setting, but it is not necessary for our estimates, as no geometry is involved.

Remark 1.4. Given u0 and �0, and using the fact that �.x; 0/ D x, the quantity

vt jtD0 is computed using (1.11a):

vt

ˇ̌
tD0

D �
�
1

�0

�
�2

0

�2
x

�
x

�ˇ̌̌
ˇ
tD0

D �2 @�0

@x
:

Similarly, for all k 2 N,

@k
t vjtD0 D �@k�1

t

�
1

�0

�
�2

0

�2
x

�
x

�ˇ̌̌
ˇ
tD0

;

so that each @k
t vjtD0 is a function of space derivatives of u0 and �0.

Remark 1.5. Notice that our functional framework provides solutions that have

optimal Sobolev regularity all the way to the boundary. Hence, in the physical case

that c �
p

dist.@I /, no singular behavior occurs near the vacuum boundary, even

though both families of characteristics cross, and in particular, meet tangentially to

�.t/ at a point.

Remark 1.6. Because of the degeneracy of the density function �0 at the initial

boundary @I , no compatibility conditions are required for the initial data.

1.7 Prior Results for Compressible Euler Equations with Vacuum Boundary

Some of the early developments in the theory of vacuum states for compress-

ible gas dynamics can be found in [8, 11]. We are aware of only a handful of

previous theorems pertaining to the existence of solutions to the compressible and

undamped Euler equations with moving vacuum boundary. Makino [14] consid-

ered compactly supported initial data and treated the compressible Euler equations

for a gas as being set on R
3 � .0; T �. With his methodology, it is not possible to

track the location of the vacuum boundary (nor is it necessary); nevertheless, an

existence theory was developed in this context, by a variable change that permitted

the standard theory of symmetric hyperbolic systems to be employed. Unfortu-

nately, the constraints on the data are too severe to allow for the evolution of the

physical vacuum boundary.

In [9], Lindblad proved existence and uniqueness for the three-dimensional com-

pressible Euler equations modeling a liquid rather than a gas. For a compressible

liquid, the density � � � > 0 is assumed to be a strictly positive constant on the

moving vacuum boundary �.t/ and is thus uniformly bounded from below by a

positive constant. As such, the compressible liquid provides a uniformly hyper-

bolic, but characteristic, system. Lindblad used Lagrangian variables combined
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with Nash-Moser iteration to construct solutions. More recently Trakhinin [16]

provided an alternative proof for the existence of a compressible liquid, employing

a solution strategy based on symmetric hyperbolic systems combined with Nash-

Moser iteration.

In the presence of damping, and with mild singularity, some existence results of

smooth solutions are available, based on the adaptation of the theory of symmetric

hyperbolic systems. In [12], a local existence theory was developed for the case

that c˛ (with 0 < ˛ � 1) is smooth across � , using methods that are not applica-

ble to the local existence theory for the physical vacuum boundary. An existence

theory for the small perturbation of a planar wave was developed in [17]. See also

[13, 18] for other features of the vacuum state problem.

The only existence theory for the physical vacuum boundary condition that we

know of can be found in the recent paper by Jang and Masmoudi [6] for the one-

dimensional compressible gas, wherein weighted Sobolev norms are used for the

energy estimates. From these weighted norms, the regularity of the solutions can-

not be directly determined. Letting d denote the distance function to the boundary

@I , and letting k � k0 denote the L2.I /-norm, an example of the type of bound that

is proved for the rescaled velocity field in [6] is the following:

kdvk2
0 C kdvxk2

0 C kdvxx C 2vxk2
0 C kdvxxx C 2vxx � 2d�1vxk2

0

C kdvxxxx C 4vxxx � 4d�1vxxk2
0 < 1:

(1.16)

The problem with inferring the regularity of v from this bound can already be seen

at the level of an H 1.I /-estimate. In particular, the bound on the norm kdvxx C
2vxk2

0 only implies a bound on kdvxxk2
0 and kvxk2

0 if the integration by parts on

the cross-term,

4

Z
I

dvxxvx D �2
Z
I

dx jvx j2

can be justified, which in turn requires having better regularity for vx than the

a priori bounds provide. Any methodology that seeks regularity in (unweighted)

Sobolev spaces for solutions must contend with this type of issue. We overcome

this difficulty by constructing (sufficiently) smooth solutions to a degenerate par-

abolic regularization, and thus the sort of integration-by-parts difficulty just de-

scribed is overcome. One can view our solutions as degenerate viscosity solutions.

The key to their construction is our higher-order Hardy-type inequality that we

provide below.

2 Notation and Weighted Spaces

2.1 Differentiation and Norms in the Open Interval I

Throughout the paper the symbol D will be used to denote @
@x

.
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For integers k � 0, we define the Sobolev space Hk.I / to be the completion of

C1.I / in the norm

kukk WD
�X

a�k

Z
�

jDau.x/j2 dx
�1=2

:

For real numbers s � 0, the Sobolev spaces H s.I / and the norms k � ks are defined

by interpolation. We use H 1
0 .I / to denote the subspace of H 1.I / consisting of

those functions u.x/ that vanish at x D 0 and x D 1.

2.2 Embedding of a Weighted Sobolev Space

Let d denote the distance function to the boundary � , and let p D 1 or 2. Then

the weighted Sobolev space H 1
d p.I /, with norm given by

R
I d.x/

p.jF.x/j2 C
jDF.x/j2/ dx for any F 2 H 1

d p.I /, satisfies the following embedding:

H 1
d p .I / ,! H 1�p=2.I /;

so that there is a constant C > 0 depending only on I and p such that

(2.1) kF k2
1�p=2 � C

Z
I

d.x/p.jF.x/j2 C jDF.x/j2/dx:

See, for example, [7, sec. 8].

2.3 Sobolev Embedding and Interpolation Inequalities

For s < 1
2

,

kukL2=.1�2s/.I / � Cskuks:

We will also make use of the standard interpolation inequality:

kuk3=4 � Ckuk1=2

1=2
kuk1=2

1 :

3 A Higher-Order Hardy-Type Inequality

We will make fundamental use of the following generalization of the well-

known Hardy inequality to higher-order derivatives:

LEMMA 3.1 (Higher-Order Hardy-Type Inequality) Let s � 1 be a given integer,

and suppose that

u 2 H s.I / \H 1
0 .I /:

If d.x/ > 0 for x 2 I , d 2 H r.I /, r D max.s � 1; 2/, and d is the distance

function to @I near @I , then u
d

2 H s�1.I / with

(3.1)

����ud
����

s�1

� Ckuks :
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PROOF: We use an induction argument. The case s D 1 is of course the clas-

sical Hardy inequality. Let us now assume that inequality (3.1) holds for a given

s � 1, and suppose that

u 2 H sC1.I / \H 1
0 .I /:

Using D to denote @
@x

, a simple computation shows that for m 2 N,

(3.2) Dm

�
u

d

�
D f

dmC1
;

with

f D
mX

kD0

C k
mD

m�kukŠ.�1/kdm�k

for a constant C k
m depending on k and m. From the regularity of u, we see that

f 2 H 1
0 .I /. Next, with D D @

@x
, we obtain the identity

Df D
sX

kD0

C k
s D

sC1�kukŠ.�1/kd s�k

C
s�1X
kD0

C k
s D

s�kukŠ.�1/kd s�k�1.s � k/

D DsC1usŠ.�1/sd s C
sX

kD1

C k
s D

sC1�kukŠ.�1/kd s�k

C
s�1X
kD0

C kC1
s Ds�ku.k C 1/Š.�1/kd s�k�1

D DsC1usŠ.�1/sd s:

(3.3)

Since f 2 H 1
0 .I /, we deduce from (3.3) that for any x 2 .0; 1

2
�,

f .x/ D .�1/ssŠ
Z x

0

DsC1u.y/ys dy;

which by substitution in (3.2) yields the identity

Ds

�
u

d

�
.x/ D .�1/ssŠ R x

0 D
sC1u.y/ysdy

xsC1
;

which by a simple majoration provides the boundˇ̌̌
ˇDs

�
u

d

�
.x/

ˇ̌̌
ˇ � sŠ

 1.x/
R x

0 jDsC1u.y/jdy
d.x/

;

where  1 is the piecewise affine function equal to 1 on Œ0; 1
2
� and to 0 on Œ3

4
; 1�.
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Next, for any x 2 Œ1
2
; 1/, we similarly obtain that

ˇ̌̌
ˇDs

�
u

d

�
.x/

ˇ̌̌
ˇ � sŠ

 2.x/
R 1

x jDsC1u.y/jdy
d.x/

;

where  2 is the piecewise affine function equal to 0 on Œ0; 1
4
� and to 1 on Œ1

2
; 1�, so

that for any x 2 I :

(3.4)

ˇ̌̌
ˇDs

�
u

d

�
.x/

ˇ̌̌
ˇ � sŠ

 1.x/
R x

0 jDsC1u.y/jdy C  2.x/
R 1

x jDsC1u.y/jdy
d.x/

:

Now, with g D  1.x/
R x

0 jDsC1u.y/jdy C  2.x/
R 1

x jDsC1u.y/jdy, we notice

that g 2 H 1
0 .I /, with

kgk1 � CkDsC1uk0:

Therefore, by the classical Hardy inequality, we infer from (3.4) that

(3.5)

����Ds

�
u

d

�����
0

� Ckgk1 � CkDsC1uk0:

Since we assumed in our induction process that our generalized Hardy inequality

is true at order s, we then have that����ud
����

s�1

� Ckuks ;

which, together with (3.5), implies that����ud
����

s

� CkuksC1;

and thus establishes the property at order s C 1 and concludes the proof. �

In order to obtain estimates independent of a regularization parameter � defined

in Section 4, we will also need the following lemma, whose proof can be found in

[2, lemma 1, sec. 6]:

LEMMA 3.2 Let � > 0 and g 2 L1.0; T IH s.I /// be given, and let f 2
H 1.0; T IH s.I // be such that

f C �ft D g in .0; T / � I:

Then,

kf kL1.0;T IH s.I // � C maxfkf .0/ks; kgkL1.0;T IH s.I //g:
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4 An Asymptotically Consistent Degenerate Parabolic

�-Approximation of the Compressible Euler Equations in Vacuum

4.1 Smoothing the Initial Data

For the purpose of constructing solutions, we will smooth the initial velocity

field u0. We will also smooth the initial density field �0 while preserving the

conditions that �.x/ > 0 for x 2 I and that �0 satisfies (1.4) near � .

For � > 0, let 0 � %� 2 C1
0 .R/ denote the standard family of mollifiers with

spt.%�/ � B.0; �/, and let EI denote a Sobolev extension operator mappingH s.I /

to H s.R/ for s � 0.

For � 2 .0; 1
2
/, we set

(4.1) u�
0 D %1jln �j � EI .u0/;

so that for any fixed � 2 .0; 1
2
/, u�

0 2 C1.�/. More importantly, due to the

standard properties of convolution, we also have the following estimates:

(4.2) 8s � 1;8� 2 .0; 1
2
/; ku�

0ks � Cs � j�jsku0k0:

The smoothed initial density function ��
0 is defined as the solution of the elliptic

equation

@2
x�

�
0 D @2

x Œ%1=jln �j � EI .�0/� in I;(4.3a)

��
0 D 0 on �:(4.3b)

By elliptic regularity, ��
0 2 C1.�/, and by choosing � > 0 sufficiently small,

we see that ��
0.x/ > 0 for x 2 �, and that the physical vacuum condition (1.4) is

satisfied near � . This follows from the fact that @x�
�
0 < 0 on � for � > 0 taken

sufficiently small, which implies that ��
0.x/ > 0 for x 2 I very close to � . On

the other hand, ��
0.x/ > 0 for all x 2 J for any open subset J � I by taking �

sufficiently small. We also have the estimate

(4.4) 8s � 1;8� 2 .0; 1
2
/; k��

0ks � Csjln �js k�0k0:

Until Section 7.4, for notational convenience, we will denote u�
0 by u0 and ��

0

by �0. In Section 7.4, we will show that Theorem 1.1 holds with the optimal

regularity stated therein.

4.2 Degenerate Parabolic Approximation to Compressible Euler Equations:

The �-Problem

For � > 0, we consider the following nonlinear degenerate parabolic approxi-

mation of the compressible Euler system (1.11):

�0vt C .�2
0=�

2
x/x D �Œ�2

0vx �x in I � .0; T �;(4.5a)

.�; v/ D .e; u0/ on I � ft D 0g;(4.5b)

�0 D 0 on �;(4.5c)
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with the smoothed u0 given by (4.1), and the smoothed �0 given by (4.3) and thus

satisfying the physical vacuum condition (1.4).

We will first obtain the existence of a solution to (4.5) on a short time interval

Œ0; T� � (with T� depending a priori on �). We will then perform energy estimates

on this solution that will show that the time of existence, in fact, does not depend

on �, and moreover that our a priori estimates for this sequence of solutions are also

independent of �. The existence of a solution to the compressible Euler equations

(1.11) is then obtained as the weak limit as � ! 0 of the sequence of solutions

to (4.5).

5 Solving the Parabolic �-Problem (4.5) by a Fixed-Point Method

For notational convenience, we will write

�0 D @�

@x

and similarly for other functions.

5.1 Assumption on Initial Data

Given u0 and �0 and using the fact that �.x; 0/ D x, we can compute the

quantity vt jtD0 for the degenerate parabolic �-problem by using (4.5a):

vt jtD0 D
�
�

�0

�
�2

0v
0
�0 � 1

�0

�
�2

0

�02

�0�ˇ̌̌
ˇ
tD0

D
�
�

�0

�
�2

0u
0
0

�0 � 2�0
0

�
:

Similarly, for all k 2 N,

(5.1) uk WD @k
t vjtD0 D @k�1

t

�
�

�0
Œ�2

0v
0�0 � 1

�0

�
�2

0

�02

�0�ˇ̌̌
ˇ
tD0

:

These formulae make it clear that each @k
t vjtD0 is a function of space derivatives

of u0 and �0. In the following, we will mostly use the notation @k
t vjtD0 for time

derivatives evaluated at t D 0, as it is more descriptive than uk.

5.2 Functional Framework for the Fixed-Point Scheme

and Some Notational Conventions

For T > 0, we shall denote by XT the following Hilbert space:

(5.2)

XT D fv 2 L2.0; T IH 2.I // j
@4

t v 2 L2.0; T IH 1.I //; �0@
4
t v 2 L2.0; T IH 2.I //;

@3
t v 2 L2.0; T IH 2.I //; �0@

3
t v 2 L2.0; T IH 3.I //g;

endowed with its natural Hilbert norm

kvk2
XT

D kvk2
L2.0;T IH 2.I //

C k@4
t vk2

L2.0;T IH 1.I //
C k�0@

4
t vk2

L2.0;T IH 2.I //

C k@3
t vk2

L2.0;T IH 2.I //
C k�0@

3
t vk2

L2.0;T IH 3.I //
:
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For M > 0 to be made precise below, we define the following closed, bounded,

convex subset of XT :

(5.3) CT .M/ D fv 2 XT W @a
t vjtD0 D ua for a D 0; 1; 2; 3; kvkXT

� M g;
where ua is defined in (5.1), and where CT .M/ is indeed nonempty if M is large

enough. Henceforth, we assume that T > 0 is given such that independently of the

choice of v 2 CT .M/,

�.x; t/ D x C
Z t

0

v.x; s/ds

is injective for t 2 Œ0; T �, and that 1
2

� �0.x; t/ � 3
2

for t 2 Œ0; T � and x 2 I .

This can be achieved by taking T > 0 sufficiently small: with e.x/ D x so that

e0.x/ D 1, notice that

k�0. � ; t/ � 1k1 D
����
Z t

0

v0. � ; s/ds
����

1

�
p
T M:

The space XT will be appropriate for our fixed-point methodology to prove exis-

tence of a solution to our �-regularized parabolic problem (4.5).

Finally, we define a polynomial function N0 of norms of the nonsmoothed initial

data u0 and �0 as follows:

(5.4) N0 D P�.ku0k0; k�0k0/;

where P� is a generic polynomial with coefficients depending on powers of jln �j.
We then set

M D N0 C 1:

Thanks to the properties of the convolution (4.2) and (4.4), we then have for the

quantities defined in (5.1) (using the smoothed initial data u�
0 and ��

0):

(5.5) 8s � 1;8k 2 f0; 1; 2; 3; 4; 5g;
��@k

t v.0/
��

s
� CsP�.ku0k0; k�0k0/ � N0:

As the coefficients of P� depend on powers of jln �j, we then see that

(5.6)
8s � 1;8k 2 f0; 1; 2; 3; 4; 5g;

�
��@k

t v.0/
��

s
� Cs

p
�P.ku0k0; k�0k0/ ! 0 as � ! 0:

where P is a polynomial with coefficients independent of �, and where we have

the fact that �jln �js � p
� for any power s � 0 and � small enough.

5.3 Theorem for Existence and Uniqueness of Solutions

to the Parabolic �-Problem

We will make use of the Tychonoff fixed-point theorem in our fixed-point pro-

cedure (see, for example, [5]). Recall that this states that for a reflexive separa-

ble Banach space XT and CT .M/ � XT a closed, convex, bounded subset, if

F W CT .M/ ! CT .M/ is weakly sequentially continuous into XT , then F has at

least one fixed point.
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THEOREM 5.1 (Solutions to Parabolic �-Problem) Given our smooth data, for

T > 0 taken sufficiently small, there exists a unique solution v 2 XT to the degen-

erate parabolic �-problem (4.5).

5.4 Linearizing the Degenerate Parabolic �-Problem

Given Nv 2 CT .M/ and defining N�.x; t/ D x C R t
0 Nv.x; 	/d	 , we consider the

linear equation for v:

(5.7) �0vt C
�
�2

0

N�02

�0

� �Œ�2
0v

0�0 D 0:

We will prove the following:

(1) v is a unique solution to (5.7);

(2) v 2 CT .M/ for T taken sufficiently small;

(3) the map Nv 7! v W CT .M/ ! CT .M/ and is sequentially weakly continu-

ous in XT .

The solution to our parabolic �-problem (4.5) will then be obtained as a fixed point

of the map Nv 7! v in XT via the Tychonoff fixed-point theorem.

In order to use our higher-order Hardy-type inequality, Lemma 3.1, it will be

convenient to introduce the new variable

X D �0v
0;

which then belongs toH 1
0 .I /. By a simple computation, we see that (5.7) is equiv-

alent to

v0
t C

�
2

N�0

�
�0

N�0

�0�0

� �
�
1

�0
Œ�2

0v
0�0

�0

D 0;

and hence that

Xt

�0
� �

�
1

�0
.�0X/

0

�0

D �
�
2

N�0

�
�0

N�0

�0�0

in Œ0; T � � I;(5.8a)

X D 0 on Œ0; T � � @I;(5.8b)

X
ˇ̌
tD0

D �0u
0
0 on I:(5.8c)

We shall therefore solve the degenerate linear parabolic problem (5.8) with Dirich-

let boundary conditions, which (as we will prove) will surprisingly admit a solution

with arbitrarily high space regularity (depending on the regularity of the right-hand

side and the initial data, of course), and not just an H 1
0 .I /-type weak solution. Af-

ter we obtain the solution X , we will then easily find our solution v to (5.7).

In order to construct our fixed point, we will need to obtain estimates for X (and

hence v) with high space regularity; in particular, we will need to study the fifth

time-differentiated problem. For this purpose, it is convenient to define the new

variable

(5.9) Y D @5
tX D �0@

5
t v

0
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and consider the following equation for Y :

Yt

�0
� �

�
1

�0
.�0Y /

0

�0

D �@5
t

�
2

N�0

�
�0

N�0

�0�0

in Œ0; T � � I;(5.10a)

Y D 0 on Œ0; T � � @I;(5.10b)

Y jtD0 D Yinit in I;(5.10c)

where Yinit D �0@
5
t v

0jtD0.

5.5 Existence of a Weak Solution to Linear Problem (5.10)

by a Galerkin Scheme

Let .en/n2N denote a Hilbert basis of H 1
0 .I /, with each en being of class

H 2.I /. Such a choice of basis is indeed possible as we can take for instance

the eigenfunctions of the Laplace operator on I with vanishing Dirichlet boundary

conditions. We then define the Galerkin approximation at order n � 1 of (5.8) as

being under the form Yn D Pn
iD0 �

n
i .t/ei such that 8k 2 f0; : : : ; ng,

(5.11a)

�
Ynt

�0
; ek

�
L2.I /

C �

�
.�0Yn/

0;
e0

k

�0

�
L2.I /

D
�
@5

t

�
2

N�0

�
�0

N�0

�0�
e0

k

�
L2.I /

in Œ0; T �;

(5.11b) �n
i .0/ D .Yinit; ei /L2.I /:

Since each ei is in Hk.I / \ H 1
0 .I / for all k � 1, we have by our high-order

Hardy-type inequality (3.1) that

ei

�0
2 Hk�1.I / for all k � 1I

therefore, each integral written in (5.11a) is well-defined. Furthermore, as the ei

are linearly independent, so are the ei=
p
�0 and therefore the determinant of the

matrix ��
eip
�0
;
ejp
�0

�
L2.I /

�
.i;j /2NnDf0;1;:::;ng

is nonzero. This implies that (5.11a), our finite-dimensional Galerkin approxima-

tion, is a well-defined first-order differential system of order nC1, which therefore

has a solution on a time interval Œ0; Tn�, where Tn a priori depends on the dimension

n of the Galerkin approximation. In order to prove that Tn D T , with T indepen-

dent of n, we notice that since Yn is a linear combination of the ei (i 2 Nn), we

have that

(5.12)

�
Ynt

�0
� �

�
1

�0
.�0Yn/

0

�0

; Yn

�
L2.I /

D
�
@5

t

�
2

N�0

�
�0

N�0

�0�
Y 0

n

�
L2.I /

:
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Since Yn 2 H 1
0 .I / and 1

�0
.�0Yn/

0 2 H 1.I /, integration by parts yields

(5.13) �
Z
I

�
1

�0
.�0Yn/

0

�0

Yn D
Z
I

�
1

�0
.�0Yn/

0

�
Y 0

n D
Z
I

Y 0
n

2 C
Z
I

�0
0

Yn

�0
Y 0

n:

Next, using our higher-order Hardy-type inequality, we see that Yn

�0
2 H 1.I /, and

thus Z
I

�0
0

Yn

�0
Y 0

n D �
Z
I

�0
0

1

�0
Y 0

nYn C
Z
I

�02
0

�2
0

Y 2
n �

Z
I

�00
0

Y 2
n

�0
;

which implies that Z
I

�0
0

Yn

�0
Y 0

n D 1

2

Z
I

�02
0

�2
0

Y 2
n � 1

2

Z
I

�00
0

Y 2
n

�0
:

Substitution of this identity into (5.12) and (5.13) yields

1

2

�
d

dt

Z
I

Y 2
n

�0
� �

Z
I

�00
0

Y 2
n

�0

�
C �

Z
I

Y 02
n C 1

2
�

Z
I

�02
0

�2
0

Y 2
n D

�
Z
I

@5
t

�
2

N�0

�
�0

N�0

�0�
Y 0

n;

which shows that (since our given Nv 2 CT .M/)

d

dt

Z
I

Y 2
n

�0
� �

���00
0

��
L1

Z
I

Y 2
n

�0
C �

Z
I

Y 02
n C �

Z
I

�02
0

Y 2
n

�2
0

�

C�

����@5
t

�
2

N�0

�
�0

N�0

�0�����
2

0

for a constant C� depending on 1
�

. Consequently, Tn D T with T independent of

n, and

(5.14) sup
Œ0;T �

Z
I

Y 2
n

�0
C �

Z T

0

Z
I

Y 02
n � C�CM C CN0;

where CM is a constant that depends on M , and where N0 is defined in (5.4).

Thus, there exists a subsequence of .Yn/ that converges weakly to some Y 2
L2.0; T IH 1

0 .I //, which satisfies

(5.15) sup
Œ0;T �

Z
I

Y 2

�0
C �

Z T

0

Z
I

Y 02 � C�CM C CN0:

With (5.9), we see that

(5.16)
���0@

5
t v

0
��

L2.0;T IH 1.I //
� C�CM C CN0:
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Note that �0@
5
t v

0 is not in our fixed-point space XT and does not need a small

bound; on the other hand, this estimate will provide a small bound (for short time)

for the quantity �0@
4
t v

0, which is part of our fixed-point space XT .

Furthermore, it can also be shown using standard arguments that Y is a solution

of (5.10) (where (5.10a) is satisfied almost everywhere in Œ0; T �� I and holds in a

variational sense for all test functions in L2.0; T IH 1
0 .I //), and that

Yt

�0
2 L2.0; T IH�1.I //:

Now, with the functions

Xi D �0
@iv0

@t i

ˇ̌̌
ˇ
tD0

for i D 0; 1; 2; 3; 4;

we define

Z.t; x/ D
Z t

0

Y. � ; x/ D �0.x/

Z t

0

@5
t v

0. � ; x/

D �0.x/@
4
t v

0.t; x/ �X4.x/

(5.17)

and

(5.18) X.t; x/ D
4X

iD0

Xi t
i

i Š
C

Z t

0

Z t4

0

Z t3

0

Z t2

0

Z.t1; x/dt1 dt2 dt3 dt4:

We then see that X 2 C 0.Œ0; T �IH 1
0 .I // is a solution of (5.8), with @5

tX D Y .

In order to obtain a fixed point for the map Nv 7! v, we need to establish better

space regularity for Z, and hence X and v.

5.6 Improved Space Regularity for Z

We introduce the variable Lv defined by

Lv.t; x/ D
Z x

0

X.t; � /
�0. � / ;

so that Lv vanishes at x D 0, and hence will allow us to employ the Poincaré

inequality with this variable; note that it is not necessary to have Lv vanish at x D 1

as well, as the condition Lv D 0 at x D 0 suffices for the Poincaré inequality to

hold. For this reason, it is more convenient to work with the variable Lv rather

than v itself.

It is easy to see that

X D �0 Lv0

and

(5.19) Z D �0@
4
t Lv0:

Thanks to the standard Hardy inequality, we thus have that��@4
t Lv0

��
0

� CkZk1;



344 D. COUTAND AND S. SHKOLLER

and hence by Poincaré’s inequality,

(5.20)
��@4

t Lv.t; � /
��

1
� CkZ.t; � /k1:

With

F0 D Yinit

�0
C @4

t

�
2

N�0

�
�0

N�0

�0�0 ˇ̌̌
ˇ
tD0

;

our starting point is the equation

Y

�0
� �

�
1

�0
.�0Z/

0

�0

D �@4
t

�
2

N�0

�
�0

N�0

�0�0

C F0 in Œ0; T � � I;

which follows from our definition of Z given in (5.17) and time integration of

(5.10a). From this equation, we infer that

�

����
�
1

�0
.�0Z/

0

�0����
0

�
����@4

t

�
2

N�0

�
�0

N�0

�0�0����
0

C
���� Y�0

����
0

C kF0k0:

By the standard Hardy inequality and the fact that Nv 2 CT .M/, we obtain the

estimate

�

����
�
1

�0
.�0Z/

0

�0����
0

� CM C
���0 Nv000

t t t.t/
��

0
C

�� Nv00
t t t.t/

��
0
CkY k1 C N0;

where CM is a constant that depends on M , and where the second and third terms

on the right, k�0 Nv000
t t t .t/k0 and k Nv00

t t t .t/k0, will be absorbed by CM once we inte-

grate in time. The remaining terms are lower-order and are bounded by CM ; for

example, one such term is given by k`.t/ �0 Nv00
t t .t/ Nv0.t/k0, where `.t/ is in L1.I /.

Given that k�0 Nvt t tkL2.0;T IH 3.I / is bounded byM , by the fundamental theorem of

calculus, we see that supt2Œ0;T � k�0 Nv00
t t.t/k0 � N0 C CTM , so that Hölder’s in-

equality shows that k`.t/�0 Nv00
t t .t/ Nv0.t/k0 � CM .

In particular, using (5.19), we see that

1

�0
.�0Z/

0 D �0@
4
t Lv00 C 2�0

0@
4
t Lv0

so that

�
���0@

4
t Lv000 C 3�0

0@
4
t Lv00 C 2�00

0@
4
t Lv0

��
0

�
CM C

���0 Nv000
t t t.t/

��
0

C
�� Nv00

t t t.t/
��

0
C CkY k1 C N0;

which implies that

(5.21)

�
��.�0@

4
t Lv/000

��
0

� CM C
���0 Nv000

t t t.t/
��

0
C

�� Nv00
t t t.t/

��
0

C CkY k1 C N0 C �
���000

0 @
4
t Lv

��
0

C �
��3�00

0@
4
t Lv0

��
0

� CM C
���0 Nv000

t t t.t/
��

0
C

�� Nv00
t t t.t/

��
0

C CkY k1 C N0

C �
����000

0

��
L1

C 3
���00

0

��
L1

	kZk1;
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where we have used (5.20) in the second inequality above. Having established in

(5.20) that @4
t Lv 2 H 1.I /, (5.15) together with (5.17) show that .�0@

4
t Lv/00, .�0@

4
t Lv/0,

and �0@
4
t Lv are bounded in L2.I / by the right-hand side of (5.21). Therefore,

(5.22)
�
���0@

4
t Lv

��
3

� CM C
���0 Nv000

t t t.t/
��

0
C

�� Nv00
t t t.t/

��
0

C CkY k1 C N0

C �
����000

0

��
L1

C 3
���00

0

��
L1

	kZk1:

Now, thanks to our high-order Hardy-type inequality, we infer from (5.22) that

�
��@4

t Lv
��

2
� CM C

���0 Nv000
t t t.t/

��
0

C
�� Nv00

t t t.t/
��

0
C CkY k1 C N0

C �
����000

0

��
L1

C 3
���00

0

��
L1

	kZk1:
(5.23)

Next we see that (5.22) implies that

�
���0@

4
t Lv0 C �0@4

t Lv
��

2
� CM C

���0 Nv000
t t t.t/

��
0

C
�� Nv00

t t t.t/
��

0
C CkY k1 C N0

C �
����000

0

��
L1

C 3
���00

0

��
L1

	kZk1;

which thanks to (5.23) and (5.19) implies that

�kZk2 � CM C
���0 Nv000

t t t.t/
��

0
C

�� Nv00
t t t.t/

��
0

C CkY k1 C N0

C �
����000

0

��
L1

C 3
���00

0

��
L1

	kZk1:
(5.24)

5.7 Definition of v and Existence of a Fixed Point

We are now in a position to define v in the following fashion: let us first define

on Œ0; T �

f .t/ D u0.0/ �
Z t

0

1

�0

�
�2

0

N�02

�0

. � ; 0/C �

Z t

0

1

�0
Œ�0X�

0. � ; 0/;

which is well-defined thanks to (5.24) and (5.15). We next define

(5.25) v.t; x/ D f .t/C Lv.t; x/:
We then notice that from (5.8), we immediately have that

v0
t C

�
1

�0

�
�2

0

N�02

�0�0

� �
�
1

�0
Œ�2

0v
0�0

�0

D 0;

from which we infer that in Œ0; T � � I

vt C 1

�0

�
�2

0

N�02

�0

� � 1
�0
Œ�2

0v
0�0 D g.t/

for some function g depending only on t . By taking the trace of this equation on

the left endpoint x D 0, we see that

vt .t; 0/C 1

�0

�
�2

0

N�02

�0

.t; 0/ � � 1
�0
Œ�2

0v
0�0.t; 0/ D g.t/;

which together with the identity

vt .t; 0/ D ft .t/ D � 1

�0

�
�2

0

N�02

�0

.t; 0/C �
1

�0
Œ�2

0v
0�0.t; 0/
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shows that g.t/ D 0. Therefore, v is a solution of (5.7), and also satisfies by

construction v.0; � / D u0. � /.
We can now establish the existence of a fixed point for the mapping Nv ! v

in CT .M/, with T taken sufficiently small and depending a priori on �. We first

notice that, thanks to the estimates (5.24) and (5.15), we have the inequality��@4
t f .t/

��
L2.0;T /

� N0 C CM ;

which together with (5.23) and (5.15) provides the estimate

(5.26)
��@4

t v
��

L2.0;T IH 2.I //
� CN0 C C�CM :

Then, (5.22) implies that

(5.27)
���0@

4
t v

��
L2.0;T IH 3.I //

C
��@4

t v
��

L2.0;T IH 2.I //
� CN0 C C�CM :

Using equation (5.7), we then see that��@5
t v

��
L2.0;T IL2.I //

� CN0 C C�CM ;

and combining this with (5.16) shows that

(5.28)
��@5

t v
��

L2.0;T IH 1.I //
C

���0@
5
t v

0
��

L2.0;T IH 1.I //
� CN0 C C�CM :

The fundamental theorem of calculus applied to (5.27) and (5.28) then shows

that

(5.29)

���0@
3
t v

��
L2.0;T IH 3.I //

C
��@3

t v
��

L2.0;T IH 2.I //

C
��@4

t v
��

L2.0;T IH 1.I //
C

���0@
4
t v

0
��

L2.0;T IH 1.I //

� N0 C
p
T .CN0 C C�CM /:

In turn, (5.29) shows that for

(5.30) T � 1

.CN0 C C�CM /2
;

v 2 CT .M/. It is also clear that there is only one solution v 2 L2.0; T IH 2.I //

of (5.7) with v.0/ D u0 (where this initial condition is well-defined due to the

fact that kvtkL2.0;T IH 1.I // � N0 C C�

p
TCM ), since if we denote by w another

solution with the same regularity, the difference ıv D v �w satisfies ıv.0; � / D 0

with �0ıvt � �Œ�2
0ıv

0�0 D 0, which implies

1

2

d

dt

Z
I

�0ıv
2 C �

Z
I

�2
0ıv

2 D 0;

which with ıv.0; � / D 0 implies ıv D 0. So the mapping Nv ! v is well-defined

and, thanks to (5.26), is a mapping from CT .M/ into itself for T D T� satisfying

inequality (5.30)).

Because it is furthermore clear that, in the L2.0; T� IH 2.I // norm, the mapping

is weakly continuous, the Tychonoff fixed-point theorem [5] provides us with the

existence of a fixed point to this mapping. Such a fixed point, which we denote by
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v� , is a solution of the nonlinear degenerate parabolic �-problem (4.5), with initial

condition v�.0; � / D u0. � /. It should be clear that the fixed point v� also satisfies

(5.16) and (5.27) so that

(5.31)

���0@
4
t v�

��
L2.0;T IH 3.I //

C
��@4

t v�

��
L2.0;T IH 2.I //

C
���0@

5
t v

0
�

��
L2.0;T IH 1.I //

C
��@5

t v�

��
L2.0;T IH 1.I //

� C;

In the next section, we establish for v� in L2.0; T� IH 2.I // �-independent es-

timates (which are indeed possible because our parabolic approximate �-problem

respects the structure of the original compressible Euler equations (1.11)), from

which we infer a short time interval of existence Œ0; T �, with T independent of �.

These �-independent estimates will allow us to pass to the weak limit of the se-

quence v� as � ! 0 to obtain the solution to (1.11).

6 Asymptotic Estimates for v� That Are Independent of �

6.1 Higher-Order Energy Function Appropriate

for Asymptotic Estimates as � ! 0

Our objective in this section is to show that the higher-order energy function E

defined in (1.14) satisfies the inequality

(6.1) sup
t2Œ0;T �

E.t/ � M0 C CTP. sup
t2Œ0;T �

E.t//;

where P denotes a generic polynomial function of its argument, for T > 0 taken

sufficiently small, with M0 defined in (1.14). The norms in E.t/ WD E.t; v�/

are for solutions v� to our degenerate parabolic �-problem (4.5). According to

Theorem 5.1, v� 2 XT�
with the additional bound k@4

t v�kL2.0;T� IH 2.I // < 1
provided by (5.26). As such, the energy function E is continuous with respect to

t , and inequality (6.1) would thus establish a time interval of existence and bound

that are both independent of �. For the sake of notational convenience, we shall

denote v� by Qv.

6.2 A �-Independent Energy Estimate

on the Fifth Time-Differentiated Problem

Our starting point shall be the fifth time-differentiated problem of (4.5) for which

we have, by naturally using @5
t Qv 2 L2.0; T� IH 1.I // as a test function, the follow-

ing identity:

(6.2)
1

2

d

dt

Z
I

�0

ˇ̌
@5

t Qv
ˇ̌2

„ ƒ‚ …
I1

�
Z
I

@5
t

�
�2

0

Q�02

�
@5

t Qv0

„ ƒ‚ …
I2

C �

Z
I

�2
0

�
@5

t Qv0
	2 D 0

„ ƒ‚ …
I3

:

In order to form the exact time derivative in the term I1, we rely on the fact that the

solutions we constructed to (4.5) satisfy @6
t v 2 L2.0; T� IL2.I //, which follows
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from the relation

@6
t Qv D @5

t

�
2

Q�0

�
�0

Q�0

�0�
C �

�0

�
�2

0@
5
t v

0
�0
;

and estimate (5.31). Upon integration in time, both the terms I1 and I3 provide

sign-definite energy contributions, so we focus our attention on the nonlinear esti-

mates required of the term I2.

We see that

�I2 D 2

Z
I

@4
t Qv0

�
�2

0

Q�03

�
@5

t Qv0 C
4X

aD1

ca

Z
I

@5�a
t

1

Q�0
@a

t

1

Q�0
�2

0@
5
t Qv0

D d

dt

Z
I

�
@4

t Qv0
	2 �

2
0

Q�03
C 3

Z
I

�
@4

t Qv0
	2 Qv0 �

2
0

Q�04
C

4X
aD1

ca

Z
I

@5�a
t

1

Q�0
@a

t

1

Q�0
�2

0@
5
t Qv0:

Hence integrating (6.2) from 0 to t 2 Œ0; T� �, we find that

(6.3)

1

2

Z
I

�0@
5
t Qv2.t/C

Z
I

�
@4

t Qv0
	2 �

2
0

Q�03
.t/C �

Z t

0

Z
I

�2
0

�
@5

t Qv0
	2

D 1

2

Z
I

�0@
5
t Qv2.0/C

Z
I

�
@4

t Qv0
	2 �

2
0

Q�03
.0/ � 3

Z t

0

Z
I

�
@4

t Qv0
	2 Qv0 �

2
0

Q�04

�
4X

aD1

ca

Z t

0

Z
I

@5�a
t

1

Q�0
@a

t

1

Q�0
�2

0@
5
t Qv0:

We next show that all of the error terms, comprising the right-hand side of (6.3),

can be bounded by CtP.supŒ0;t �E/. For the first space-time integral appearing on

the right-hand side of (6.3), it is clear that

(6.4) � 3
Z t

0

Z
I

�
@4

t Qv0
	2 Qv0 �

2
0

Q�04
� CtP.sup

Œ0;t �

E/:

We now study the last integrals on the right-hand side of (6.3). Using integration

by parts in time, we have that

(6.5)

Z t

0

Z
I

@5�a
t

1

Q�0
@a

t

1

Q�0
�2

0@
5
t Qv0 D

�
Z t

0

Z
I

�
@5�a

t

1

Q�0
@a

t

1

Q�0

�
t

�2
0@

4
t Qv0 C

Z
I

@5�a
t

1

Q�0
@a

t

1

Q�0
�2

0@
4
t Qv0

ˇ̌̌
ˇ
t

0

:

We first consider the space-time integral on the right-hand side of (6.5). As the

sum is taken for a D 1 to 4, we then see that it will be written under the form of
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the sum of space-time integrals of the following type:

I1 D
Z t

0

Z
I

�0@
4
t Qv0R. Q�/�0@

4
t Qv0;

I2 D
Z t

0

Z
I

�0@
3
t Qv0v0@t Qv0R. Q�/�0@

4
t Qv0;

I3 D
Z t

0

Z
I

�0@
2
t Qv0v0@2

t Qv0R. Q�/�0@
4
t Qv0;

I4 D
Z t

0

Z
I

�0@
2
t Qv0v0R. Q�/.@t Qv0/2�0@

4
t Qv0;

where R. Q�/ denotes a rational function of Q�0. We immediately see that

(6.6) jI1j � CtP.sup
Œ0;t �

E/:

Next, we have that

(6.7)

jI2j � C

Z t

0

Z
I

���0@
3
t Qv0

��
L4 kv0kL1

��@t Qv0
��

L4 kR. Q�/kL1

���0@
4
t Qv0

��
0

� C

Z t

0

Z
I

���0@
3
t Qv0

��
H

1
2

kv0kL1

��@t Qv0
��

H 1=2 kR. Q�/kL1

���0@
4
t Qv0

��
0

� CtP.sup
Œ0;t �

E/:

Similarly,

(6.8)
jI3j � C

Z t

0

���0@
2
t Qv0

��
L1

kv0kL1

��@2
t Qv0

��
0

kR. Q�/kL1

���0@
4
t Qv0

��
0

� CtP.sup
Œ0;t �

E/;

and

jI4j � C

Z t

0

���0@
2
t Qv0

��
L1

kv0kL1

��@t Qv0
��2

L4 kR. Q�/kL1

���0@
4
t Qv0

��
0

� CtP.sup
Œ0;t �

E/;(6.9)

where we have used the fact that in one dimension, k � kL1 � Ck � kH 1 and

k � kL4 � Ck � kH 1=2 .
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Next, we treat the second term on the right-hand side of (6.5), beginning with

the case a D 1. We see that for ı > 0Z
I

@4
t

1

Q�0
@t
1

Q�0
�2

0@
4
t Qv0

ˇ̌̌
ˇ
t

0

D
Z
I

�
R. Q�/@3

t Qv0 Qv0�2
0@

4
t Qv0

	
.t/

�
Z
I

�
R. Q�/@3

t Qv0 Qv0�2
0@

4
t Qv0

	
.0/;

andZ
I

�
R. Q�/@3

t Qv0 Qv0�2
0@

4
t Qv0

	
.t/

D
Z
I

�
�0@

3
t Qv0.0/C

Z t

0

�0@
4
t Qv0

�
R. Q�.t// Qv0.t/�0@

4
t Qv0.t/

� CtP. sup
Œ0;T �

E/C
Z
I

�0@
3
t Qv0.0/R. Q�.t// Qv0.t/�0@

4
t Qv0.t/

� CtP. sup
Œ0;T �

E/C ı
���0@

4
t Qv0.t/

��2

0
C Cı

���0@
3
t Qv0.0/R. Q�.t//

��2

L4.I /
k Qv0.t/k2

L4.I /

� CtP. sup
Œ0;T �

E/C ı
���0@

4
t Qv0.t/

��2

0

C Cı

���0@
3
t Qv0.0/R. Q�.t//

��2

L4.I /

���� Qv0.0/C
Z t

0

Qv0
t

����
2

L4.I /

� M0 C CtP. sup
Œ0;T �

E/C ı
���0@

4
t Qv0.t/

��2

0
;

where the last inequality follows from the fact that

kR. Q�/k2
L1.I / � M0 C CtP. sup

Œ0;T �

E/;

which itself follows from the fundamental theorem of calculus. The case when a D
2; 3; 4 can be estimated in the same fashion; hence, by taking ı > 0 sufficiently

small so that ık�0@
4
t Qv0.t/k2

0 is absorbed by the left-hand side of (6.3), we obtain

the desired inequality. In particular, putting together estimates (6.3)–(6.7) with the

inequality directly above provides us with

1

2

Z
I

�0@
5
t Qv2.t/C

Z
I

�
@4

t Qv0
	2 �

2
0

Q�03
.t/C �

Z t

0

Z
I

�2
0

�
@5

t Qv0
	2 � M0 C CtP.sup

Œ0;t �

E/;
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and thus, employing the fundamental theorem of calculus,

(6.10)

1

2

Z
I

�0@
5
t Qv2.t/C

Z
I

�
�0@

4
t Qv0

	2
.t/C �

Z t

0

Z
I

�2
0

�
@5

t Qv0
	2

� M0 C CtP.sup
Œ0;t �

E/C 3

Z
I

�
@4

t Qv0
	2
.t/�2

0

Z t

0

Qv0

Q�04

� M0 C CtP.sup
Œ0;t �

E/:

Note that although our definition ofM0 lacks the term kp
�0@

5
t v.0/k2

0, it is implic-

itly bounded by M0 using equation (5.1) with k D 5, as well as estimate (5.6) for

the highest-order term that has the �-coefficient.

6.3 Elliptic and Hardy-Type Estimates for @2

t
v.t/

Having obtained the energy estimate (6.10) for the fifth time-differentiated prob-

lem, we can begin our bootstrapping argument. We now consider the third time-

differentiated version of (4.5a),�
@3

t

�2
0

Q�02

�0

� ��
�2

0@
3
t Qv0

�0 D ��0@
4
t Qv;

which can be written as

�2
�
�2

0@
2
t Qv0

Q�03

�0

� ��
�2

0@
3
t Qv0

�0 D ��0@
4
t Qv C c1

�
�2

0@t Qv0 Qv0

Q�04

�0

C c2

�
�2

0 Qv03

Q�05

�0

;

and finally rewritten as the following identity:

�2��2
0@

2
t Qv0

�0 � ��
�2

0@
3
t Qv0

�0 D � �0@
4
t Qv C c1

�
�2

0@t Qv0 Qv0

Q�04

�0

C c2

�
�2

0 Qv03

Q�05

�0

� 2��2
0@

2
t Qv0

�0
�
1� 1

Q�03

�
� 6�2

0@
2
t Qv0 Q�00

Q�04
:

(6.11)

Here c1 and c2 are constants whose exact value is not important.

Therefore, using Lemma 3.2 together with the fundamental theorem of calculus

for the fourth term on the right-hand side of (6.11), we obtain that for any t 2
Œ0; T� �,

sup
Œ0;t �

���� 2�0

�
�2

0@
2
t Qv0

�0

����
0

� sup
Œ0;t �

��@4
t Qv

��
0

C sup
Œ0;t �

���� c1

�0

�
�2

0@t Qv0 Qv0

Q�04

�0����
0

C sup
Œ0;t �

���� c2

�0

�
�2

0 Qv03

Q�05

�0����
0

C sup
Œ0;t �

���� 2�0

�
�2

0@
2
t Qv0

�0

����
0

����3
Z �

0

Qv0

Q�04

����
L1

C 6 sup
Œ0;t �

�����0@
2
t Qv0 Q�00

Q�04

����
0

:

(6.12)
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We next estimate each term on the right-hand side of (6.12). For the first term,

we will use our estimate (6.10), from which we infer for each t 2 Œ0; T� �

Z
I

�2
0

�
@4

t Qv2 C @4
t Qv02

�
.t/ � M0 C CtP.sup

Œ0;t �

E/:

Note that the first term on the left-hand side of (6.13) comes from the first term of

(6.10), together with the fact that @4
t v.t; x/ D v4.x/ C R t

0 @
5
t v. � ; x/: Therefore,

the Sobolev weighted embedding estimate (2.1) provides us with the following

estimate:

(6.13)

Z
I

@4
t Qv2.t/ � M0 C CtP.sup

Œ0;t �

E/:

The remaining terms will be estimated by simply using the definition of the energy

function E. For the second term on the right-hand side of (6.12), we have that

���� 1�0

�
�2

0@t Qv0 Qv0

Q�04

�0����
0

�
���
�0v

0
t

	0��
0

���� Qv0

Q�04

����
L1

C
���� Qv0

t

�
�0 Qv0

Q�04

�0����
0

� C
���
�0 Qv0

t

	0��
0

k Qv0k3=4 C
���� Qv0

t

�
�0

0 Qv0

Q�04

�����
0

C
���� Qv0

t

�
�0 Qv00

Q�04

�����
0

C 4

���� Qv0
t

�
�0 Qv0 Q�00

Q�05

�����
0

� C

�����
�0v

0
1

	0 C
Z �

0

�
�0v

0
t t

	0

����
0

k Qv0k1=2
1

����v0
1 C

Z �

0

Qv0
t

����
1=2

1=2

C C

����v0
1 C

Z �

0

Qv0
t t

����
0

k Qv0k3=4 C C
�� Qv0

t

��
0

���0v
00
��

3=4

C Ck Qv0k3=4

����
Z �

0

Qv00

����
0

�����0v
0
1 C

Z �

0

�0 Qv0
t t

����
1

�
�����
�0v

0
1

	0 C
Z �

0

�
�0v

0
t t

	0

����
0

k Qv0k1=2
1

����v0
1 C

Z �

0

Qv0
t

����
1=2

1=2

C C

����v0
1 C

Z �

0

Qv0
t t

����
0

k Qv0k1=2
1

����v0
1 C

Z �

0

Qv0
t

����
1=2

1=2

C C
�� Qv0

t

��
0

���0v
00
��3=4

1

�����0v
00
0 C

Z �

0

�0v
00
t

����
1=4

0

;
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where we have used the fact that k � kL1 � Ck � k3=4. Thanks to the definition

of E, the previous inequality provides us, for any t 2 Œ0; T� �, with

(6.14) sup
Œ0;t �

���� 1�0

�
�2

0@t Qv0 Qv0

Q�04

�0����
0

� C sup
Œ0;t �

E3=4.M0 C tP.sup
Œ0;t �

E//:

For the third term on the right-hand side of (6.12), we similarly have that���� 1�0

�
�2

0 Qv03

Q�05

�0����
0

�
��.�0v

0/0
��

L1

���� Qv02

Q�05

����
L2

C
���� Qv0

�
�0 Qv02

Q�05

�0����
0

� C
���
�0 Qv0

	0��
3=4

k Qv0k2
1=2 C

���� Qv0

�
�0

0 Qv02

Q�05

�����
0

C 2

���� Qv0

�
�0 Qv00 Qv0

Q�05

�����
0

C 5

���� Qv0

�
�0 Qv02 Q�00

Q�06

�����
0

� C

�����
�0v

0
0

	0 C
Z �

0

�
�0v

0
t

	0

����
1=4

0

���
�0 Qv0

	0��3=4

1

���� Qv0
0 C

Z �

0

Qv0
t

����
2

1=2

C C

���� Qv0
0 C

Z �

0

Qv0
t

����
3

1=2

C Ck Qv0k2
1=2

���0v
00
��

L4 C Ck Qv0k3
1=2

���0 Q�00
��

L4

� C

�����
�0v

0
0

	0 C
Z �

0

�
�0v

0
t

	0

����
1=4

0

���
�0 Qv0

	0��3=4

1

���� Qv0
0 C

Z �

0

Qv0
t

����
2

1=2

C C

���� Qv0
0 C

Z �

0

Qv0
t

����
3

1=2

C C

���� Qv0
0 C

Z �

0

Qv0
t

����
2

1=2

�����0v
00
0 C

Z �

0

�0v
00
t

����
1=2

0

k�0 Qv00k1=2
1

C C

���� Qv0
0 C

Z �

0

Qv0
t

����
3

1=2

����
Z �

0

�0v
00

����
1

;

where we have used the fact that k � kLp � Cpk � k1=2 for all 1 < p < 1. Again,

using the definition ofE, we obtain from the previous inequality for any t 2 Œ0; T� �

(6.15) sup
Œ0;t �

���� 1�0

�
�2

0 Qv03

Q�05

�0����
0

� C sup
Œ0;t �

E1=2.M0 C tP.sup
Œ0;t �

E//:

For the fourth term of the right-hand side of (6.12), we see that

(6.16)

���� 2�0

�
�2

0@
2
t Qv0

�0

����
0

����3
Z �

0

Qv0

Q�04

����
L1

.t/ �

C
����0@

2
t v

00
��

0
C

��@tv
0
��

0

�
t sup

Œ0;t �

k Qvk2 � CtP.sup
Œ0;t �

E/:
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Similarly, the fifth term of the right-hand side of (6.12) yields the following esti-

mate: �����0@
2
t Qv0 Q�00

Q�04

����
0

.t/ � C
���0@

2
t Qv0

��
L1

k Q�00k0 � C
���0@

2
t Qv0

��
1

����
Z �

0

Qv00

����
0

� CtP.sup
Œ0;t �

E/:
(6.17)

Combining estimates (6.14)–(6.17), we obtain the inequality

(6.18) sup
Œ0;t �

���� 2�0

�
�2

0@
2
t Qv0

�0

����
0

� CtP.sup
Œ0;t �

E/C C sup
Œ0;t �

E3=4.M0 C tP.sup
Œ0;t �

E//:

At this stage, we remind the reader that the solution Qv to our parabolic �-problem

is in XT�
, so that for any t 2 Œ0; T� �, @

2
t Qv 2 H 2.I /. Notice that

1

�0

�
�2

0@
2
t Qv0

�0 D �0@
2
t Qv00 C 2�0

0@
2
t Qv0;

so (6.18) is equivalent to

(6.19) sup
Œ0;t �

���0@
2
t Qv00 C 2�0

0@
2
t Qv0d

��
0

�

CtP.sup
Œ0;t �

E/C C sup
Œ0;t �

E3=4.M0 C tP.sup
Œ0;t �

E//:

From this inequality, we would like to conclude that both k@2
t Qv0k0 and k�0@

2
t Qv00k0

are bounded by the right-hand side of (6.19); the regularity provided by solutions

of the �-problem allow us to arrive at this conclusion.

By expanding the left-hand side of (6.19), we see that

sup
Œ0;t �

���0@
2
t Qv00 C 2�0

0@
2
t Qv0

��2

0
D

���0@
2
t Qv00

��2

0
C 4

���0
0@

2
t Qv0

��2

0

C 4

Z
I

�0@
2
t Qv00�0

0@
2
t Qv0:

(6.20)

Given the regularity of @2
t Qv provided by our parabolic �-problem, we notice that

the cross-term in (6.20) is an exact derivative,

4

Z
I

�0@
2
t Qv00�0

0@
2
t Qv0 D 2

Z
I

�0�
0
0

@

@x

ˇ̌
@2

t Qv0
ˇ̌2
;

so that by integrating by parts, we find that

4

Z
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2
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2
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2
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��2
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Z
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2
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and hence (6.20) becomes

sup
Œ0;t �

���0@
2
t Qv00 C 2�0
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2
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��2

0
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2
t Qv00

��2

0
C 2

���0
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2
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�
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t Qv0�00
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2
t Qv0:

(6.21)

Since the energy function E contains �0@
2
t Qv.t/ 2 H 2.I / and @2

t Qv.t/ 2 H 1.I /, the

fundamental theorem of calculus shows thatZ
I

�0@
2
t Qv0�00

0@
2
t Qv0 � CtP.sup

Œ0;t �

E/C C sup
Œ0;t �

E3=4.M0 C tP.sup
Œ0;t �

E//:

Combining this inequality with (6.21) and (6.18) yields
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Œ0;t �

����0@
2
t Qv00
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C
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2
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E//;

and thus
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Œ0;t �

����0@
2
t Qv00
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C
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t Qv0

��
0

C
���0@

2
t Qv0
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M0 C CtP.sup
Œ0;t �

E/C C sup
Œ0;t �

E3=4.M0 C tP.sup
Œ0;t �

E//;

and hence with the physical vacuum conditions on �0 given by (1.5) and (1.6), we

have that
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Œ0;t �

����0@
2
t Qv00
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C
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t Qv0
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� �

M0 C CtP.sup
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E3=4.M0 C tP.sup
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E//;

which, together with (6.13), provides us with the estimate

(6.22) sup
Œ0;t �

����0@
2
t Qv00
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C
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t Qv
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1

� �

M0 C CtP.sup
Œ0;t �

E/C C sup
Œ0;t �

E3=4.M0 C tP.sup
Œ0;t �

E//:

6.4 Elliptic and Hardy-Type Estimates for v.t/

Having obtained the estimates for @2
t Qv.t/ in (6.22), we can next obtain our esti-

mates for Qv.t/. To do so, we consider the first time-differentiated version of (4.5a),

which yields the equation

�2
�
�2

0 Qv0

Q�03

�0

� ��
�2

0@t Qv0
�0 D ��0@

2
t Qv;
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which we rewrite as the following identity:

(6.23) � 2

�0

�
�2

0 Qv0
�0 � �

�0

�
�2

0@t Qv0
�0 D �@2

t Qv � 2

�0

�
�2

0 Qv0
�0

�
1� 1

Q�03

�
:

Using Lemma 3.2, we see that for any t 2 Œ0; T� �,

(6.24)
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C C
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0 Qv0
�0 Q�00

Q�04

����
0

We next estimate each term on the right-hand side of (6.24). The bound for the

first term on the right-hand side of (6.24) is provided by (6.22). The second term

of the right-hand side of (6.24) is estimated as follows:

���� 1�0

�
�2

0 Qv0
�0

����
1

����
Z �

0

Qv0

Q�04

����
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.t/ � C
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�
t sup
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� CtP.sup
Œ0;t �

E/:(6.25)

For the third term on the right-hand side of (6.24),

(6.26)
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�
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0 Qv0
�0

� Q�00
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����0 Qv000

��
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� CtP.sup
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E/:

Combining these estimates provides the inequality

sup
Œ0;t �

���� 1�0

�
�2

0 Qv0
�0

����
1

� CtP.sup
Œ0;t �

E/C C sup
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E//;

which leads us immediately to

(6.27) sup
Œ0;t �

���0 Qv000 C 3�0
0v

00
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0
� CtP.sup

Œ0;t �

E/CC sup
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Œ0;t �

E//:
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Now, since for any t 2 Œ0; T� �, the solution Qv to our parabolic �-problem is in

H 3.I /, we infer that �0v
000 2 L2.I /. We can then apply the same integration-by-

parts argument as in [1] to find that

(6.28)
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Combined with (6.27), this yields
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Œ0;t �

����0 Qv000
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0
C

���0
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E/C C sup
Œ0;t �

E3=4.M0 C tP.sup
Œ0;t �

E//

CM0 C C

����
Z t

0

p
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and thus
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Œ0;t �

����0 Qv000
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0
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���0
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With (1.5) and (1.6), it follows that
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0
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and hence
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(6.29)

6.5 Elliptic and Hardy-Type Estimates for @3

t
v.t/ and @tv.t/

We consider the fourth time-differentiated version of (4.5a):�
@4

t

�2
0

Q�02

�0

� ��
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4
t Qv0

�0 D ��0@
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t Qv;
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which can be rewritten as

�2
�
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for some constants c1 and c2. By employing the fundamental theorem of calculus

and dividing by �
1=2
0 , we obtain the equation
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For any t 2 Œ0; T� �, Lemma 3.2 provides the �-independent estimate
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(6.30)

We estimate each term on the right-hand side of (6.30). The first term on the

right-hand side is bounded by M0 C CtP.supŒ0;t �E/ thanks to (6.10). For the

second term on the right-hand side of (6.30) we have that
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where we have again used the fact that k�kL1 � Ck�k3=4. Thanks to the definition

of E, the previous inequality shows that for any t 2 Œ0; T� �,
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For the third term on the right-hand side of (6.30), we similarly have that���� 1p
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(6.32)

where 0 < a < 1
2

is given and 0 < ˛ D 3�3a
4C3a

< 1.
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The only term on the right-hand side of (6.32) that is not directly contained in

the definition of E is k.p�0 @t Qv0/0k˛
L2�a . To this end, we notice that
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(6.33)

where we have used the fact that k � kLp � Cpk � k1=2 for all 1 < p < 1. Thanks

to the definition of E, the previous inequality and (6.32) provides us with, for any

t 2 Œ0; T� �,

(6.34) sup
Œ0;t �

���� 1�0

�
�2

0 Qv03

Q�05

�0����
0

� C sup
Œ0;t �

E˛.M0 C tP.sup
Œ0;t �

E//;

where we again recall that 0 < ˛ D 3�3a
4C3a

< 1.

The fourth term on the right-hand side of (6.30) is easily treated:
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(6.35)

Similarly, the fifth term on the right-hand side of (6.30) is estimated as follows:
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Combining estimates (6.30)–(6.36), we can infer that
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Now, since for any t 2 Œ0; T� �, solutions to our parabolic �-problem have the

regularity @2
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(6.38)

Combining this with (6.37) and using the fact that �0@
3
t Qv0 D �0 Qv3 C R t
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t Qv0 for

the second term on the right-hand side of (6.38), we find that
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estimates (6.37) and (6.39) also imply that
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so that with (1.5) and (1.6),
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Together with (6.13) and the weighted embedding estimate (2.1), the above in-

equality shows that
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By studying the second time-differentiated version of (4.5a) in the same manner,

we find that
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7 Proof of Theorem 1.1

7.1 Time of Existence and Bounds Independent of �

and Existence of Solutions to (1.11)

Summing inequalities (6.10), (6.22), (6.29), (6.41), and (6.42), we find that

sup
t2Œ0;T �

E.t/ � M0 C CtP.sup
Œ0;t �

E/C C sup
Œ0;t �

E˛.M0 C tP.sup
Œ0;t �

E//:

As ˛ < 1, by employing Young’s inequality and readjusting the constants, we

obtain

sup
t2Œ0;T �

E.t/ � M0 C C T P. sup
t2Œ0;T �

E.t//:

Just as in [2, sec. 9], this provides us with a time of existence T1 independent of

� and an estimate on .0; T1/ independent of � of the type

(7.1) sup
t2Œ0;T1�

E.t/ � 2M0:

In particular, our sequence of solutions .v�/ satisfies the �-independent bound (7.1)

on the �-independent time interval .0; T1/.

7.2 Limit as � ! 0

By the �-independent estimate (7.1), there exists a subsequence of fv�g that

converges weakly to v in L2.0; T IH 2.I //. With �.t; x/ D x C R t
0 v.s; x/ds, by

standard compactness arguments we see that a further subsequence of v� and �0
�

uniformly converges to v and �0, respectively, which shows that v is the solution to

(1.11) and v.0; x/ D u0.x/.

7.3 Uniqueness of Solutions to Compressible Euler Equations (1.11)

For uniqueness, we require the initial data to have one space derivative better

regularity than for existence. Given assumption (1.15) on the data .u0; �0/, repeat-

ing our argument for existence, we can produce a solution v on Œ0; T1� that satisfies

the estimate

3X
sD0

���@2s
t v.t; � /

��2

H 3�s.I /
C

���0@
2s
t v.t; � /

��2

H 4�s.I /

�
< 1
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and has the flow �.t; x/ D x C R t
0 v.s; x/ds. For the sake of contradiction, let us

assume that w is also a solution on Œ0; T1� with initial data .u0; �0/, satisfying the

same estimate, with flow  .t; x/ D x C R t
0 w.s; x/ds.

We define

ıv D v � w;
in which case we have the following equation for ıv:

�0ıvt C �
�2

0

�
�0�2 �  0�2�	0 D 0 in I � .0; T1�;(7.2a)

ıv D 0 on I � ft D 0g;(7.2b)

�0 D 0 on @I:(7.2c)

By considering the fifth time-differentiated version of (7.2a) and taking the

L2.I / inner product with @5
t ıv, we obtain the analogue of (6.10) (with � D 0) for

ıv. The additional error terms that arise are easily controlled by the fact that both v

and w have one space derivative better regularity than the energy function E. This

produces a good bound for @4
t ıv 2 L1.0; T1IL2.I //. By repeating the elliptic and

Hardy-type estimates for @2
t ıv 2 L1.0; T1IH 1.I // and ıv 2 L1.0; T1IH 2.I //

and using (7.2b), we obtain the inequality

sup
t2Œ0;T1�

���@4
t ıv.t/

��2

0
C

��@2
t ıv.t/

��2

1
C kıv.t/k2

2

	 �

CT1P
�

sup
t2Œ0;T1�

���@4
t ıv.t/

��2

0
C

��@2
t ıv.t/

��2

1
C kıv.t/k2

2

		
;

which shows that ıv D 0.

7.4 Optimal Regularity for Initial Data

We smoothed our initial data .u0; �0/ in order to construct solutions to our de-

generate parabolic �-problem (4.5). Having obtained solutions that depend only

on E.0; v/, a standard density argument shows that the initial data only needs to

satisfy M0 < 1.

8 The Case � ¤ 2

In this section, we describe the modifications to the energy function and the

methodology for the case that � ¤ 2. We denote by a0 the integer satisfying the

inequality

1 < 1C 1

� � 1 � a0 � 2:

Letting

d.x/ D dist.x; @I /;
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we consider the following higher-order energy function:

E� .t; v/ D
4X

sD0

��@s
tv.t; � /

��2

2� s
2

C
2X

sD0

��d@2s
t v.t; � /

��2

3�s

C
��p

d @tv
00.t; � /

��2

0
C

��p
d @3

t v
0.t; � /

��2

0

C
a0X

aD0

��p
d

1C 1
��1

�a
@

4Ca0�a
t v0.t; � /

��2

0
;

and define the polynomial function M
�
0 D P.E� .0; v//. Notice the last sum in E�

appears whenever � < 2, and the number of time-differentiated problems increases

as � ! 1.

We explain this last summation of norms in E� with a particular example;

namely, consider the case � D 3
2

. Then �0 � d2 near � , a0 D 1, and the last

summation is written as

a0X
aD0

��p
d

1C 1
��1

�a
@

4Ca0�a
t v0.t; � /

��2

0
D

��d3=2@5
t v

0.t/
��2

0
C

��d1=2@4
t v

0.t/
��2

0
;

which is equivalent to

(8.1)

Z
I

�
3=2
0

ˇ̌
@5

t v
0.t/

ˇ̌2
dx C

Z
I

�
1=2
0

ˇ̌
@4

t v
0.t/

ˇ̌2
dx:

The Euler equations with � D 3
2

are written as

(8.2) �0vt C �
�

3=2
0 ��3=2

x

	
x

D 0:

Energy estimates on the sixth time-differentiated problem produce the first integral

in (8.1), while the second integral is obtained using our elliptic-type estimates on

the fourth time-differentiated version of (8.2). (Notice that the value of � does not

play a role in our elliptic-type estimates.) Having control on the two integrals in

(8.1) then shows that we are back in the situation for the case that � � 2; namely,

we see that @4
t v.t/ is even better than L2.I /, which allows us to proceed as be-

fore. In particular, for � < 2 the power on �0 in the first integral in (8.1) is greater

than 1, and by weighted embedding estimates, this means that the embedding oc-

curs into a less regular Sobolev space; this accounts for the need to have more

time-differentiated problems when � < 2.

Using the same procedure as we have detailed for the case that � D 2, we have

the following:

THEOREM 8.1 (Existence and Uniqueness for Any � > 1) Given initial data

.u0; �0/ such that M
�
0 < 1, �0.x/ > 0 for x 2 I , and the physical vacuum

condition (1.4) holds, there exists a solution to (1.10) (and hence (1.1)) on Œ0; T� �
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for T� > 0 taken sufficiently small such that

sup
t2Œ0;T �

E� .t/ � 2M
�
0 :

Moreover, if the initial data satisfies

3X
sD0

��@s
tv.0; � /

��2

H 3�s.I /
C

3X
sD0

��d@2s
t v.0; � /

��2

H 4�s.I /

C
a0X

aD0

��p
d

1C 1
��1

�a
@

6Ca0�a
t v0.0; � /

��2

0
< 1;

then the solution is unique.
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