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REGULARITY OF THE VELOCITY FIELD FOR EULER

VORTEX PATCH EVOLUTION

DANIEL COUTAND AND STEVE SHKOLLER

Abstract. We consider the vortex patch problem for both the 2-D and
3-D incompressible Euler equations. In 2-D, we prove that for vortex patches
with Hk−0.5 Sobolev-class contour regularity, k ≥ 4, the velocity field on both
sides of the vortex patch boundary has Hk regularity for all time. In 3-D, we
establish existence of solutions to the vortex patch problem on a finite-time
interval [0, T ], and we simultaneously establish the Hk−0.5 regularity of the
two-dimensional vortex patch boundary, as well as the Hk regularity of the
velocity fields on both sides of vortex patch boundary, for k ≥ 3.

1. Introduction

1.1. The incompressible Euler equations. Global existence for the Euler 2-D
vortex patch problem was first established by Chemin [4,5], Bertozzi & Constantin
[3], and Serfati [18]; see also [1,2,9,11,14] for further results on the 2-D vortex patch.
Local existence for the 3-D vortex patch problem was first proved by Gamblin &
Saint Raymond [13]; see also [12, 15, 22, 23]. A very nice summary of results on
vortex patch problems can be found in [20].

We are interested in the regularity properties of the velocity field associated
to the vortex patch evolution. In particular, we analyze the incompressible Euler
equations on Rn, n = 2, 3, written as

ut +Duu+Dp = 0,(1.1a)

div u = 0,(1.1b)

where u(x, t) is the velocity vector field and p(x, t) is the pressure function, where
the advection term Duu denotes

∑n
j=1

∂u
∂xj

uj .

1.2. The 2-D vortex patch problem. Letting D⊥ = (−∂x2
, ∂x1

), we define
the 2-D vorticity function ω(x, t) = D⊥ · u(x, t) = u2,1 −u1,2. The vorticity ω is
transported and satisfies

(1.2) ωt +Duω = 0 .

Letting ψ(x, t) denote the stream function, given by u = D⊥ψ, we have that Δψ =
ω, so that ψ(x, t) = 1

2π

∫
R2 log |x − y|ω(y)dy. Thanks to the Biot-Savart kernel
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K(x) = 1
2πD

⊥ log |x|,

(1.3) u(x, t) =

∫
R2

K(x− y)ω(y)dy .

For each time t ∈ [0,∞), let Ω+(t) denote an open, simply-connected, and
bounded subset of R2 with boundary Γ(t) := ∂Ω+(t) given by a closed curve which

is diffeomorphic to the circle S1. Let Ω−(t) denote Ω+(t)
c
. The 2-D vortex patch

problem consists of the following initial data for the Euler equations:

(1.4) ω0(x) =

{
1, x ∈ Ω+(0),
0, x ∈ Ω−(0) .

The time-dependent open set Ω+(t) is thus termed the vortex patch; the vortex
patch boundary Γ(t) := ∂Ω+(t) moves with the velocity of the fluid, given by
u(x, t) =

∫
Ω+(t)

K(x− y)dy. It follows that

(1.5) Du(x, t) =

∫
Ω+(t)

DK(x− y)dy .

Given an initial 2-D vortex patch boundary Γ(0) of Hölder-class Ck,α, it was es-
tablished by Chemin [4] and Bertozzi & Constantin [3] that a unique solution exists
for all time, that the Ck,α contour regularity propagates, and that the gradient of
the velocity remains bounded for all time. Their proof of Ck,α contour regularity (in
2-D) can also be used to establish Hk contour regularity (we provide a proof for the
n-dimensional case, n = 2 or 3 in Section 5), and we state one of their fundamental
results as follows: Given an initial vortex patch boundary Γ(0) of class Hk−0.5,
k ≥ 3, for all t ∈ [0,∞), there exists a unique solution to the vortex patch problem,
with non-self-intersecting boundary Γ(t), and satisfying the following estimate:

1

|z|∗(t)
+ ‖z(·, t)‖Hk−0.5(S1) + ‖Du(·, t)‖L∞(R2) ≤ F (t),(1.6)

where z(·, t) : S1 → Γ(t) denotes an Hk−0.5-class parameterization of the vortex
patch boundary Γ(t),

(1.7) |z|∗(t) = inf
θ1 �=θ2

|z(θ1, t)− z(θ2, t)|
|θ1 − θ2|

,

and 0 < F (t) < ∞ for any t < ∞. We see that (1.6) provides a strictly positive
lower-bound on |z|∗(t) which, in turn, provides a strictly positive lower-bound for
the metric |∂θz(θ)| and ensures that Γ(t) does not self-intersect (see, for example,
Majda & Bertozzi [17]). We identity S1 with the interval [0, 2π].

1.3. The 3-D vortex patch problem. In three space dimensions, the 3-D vor-
ticity ω = curlu is a vector field, and satisfies the vector equation

(1.8) ωt +Duω = Dωu,

where in components and for each i = 1, 2, 3, [Duω]
i =

∑3
j=1

∂ωi

∂xj
uj and [Dωu]

i =∑3
j=1

∂ui

∂xj
ωj .

Letting ψ(x, t) denote the vector stream function, given by u = − curlψ, we have

that Δψ = ω, and hence ψ(x) = 1
4π

∫
R3

ω(y)
|x−y|dy. It follows that

(1.9) u(x, t) =

∫
R2

K(x− y)ω(y)dy,
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where K(x) = 1
4π

x×·
|x|3 is the Biot-Savart 3x3 matrix kernel.

What type of vortex evolution in three space dimension is analogous to the
2-D vortex patch problem? The answer is as follows: we suppose that at time
t = 0, Ω+(0) denotes an open bounded subset of R3 which is diffeomorphic to
a C∞, connected, bounded, open set B (so that the boundary ∂B is a smooth
surface, which can be a sphere, a donut, etc.). We then let Γ(0) = ∂Ω+(0), and

define Ω−(0) = Ω+(0)
c
. We choose an initial divergence-free velocity field u0(x) =

u+
0 (x)1Ω+(0)

+ u−
0 (x)1Ω−(0) such that the initial vorticity vector ω0 = curlu0 ∈

L∞(R3) and satisfies

ω0(x) =

{
curlu+

0 (x), x ∈ Ω+(0),
curlu−

0 (x), x ∈ Ω−(0),
(1.10a)

[[ω0 · n(·, 0)]] = 0,(1.10b)

where n(·, 0) denotes the outward unit normal to ∂Ω+(0). If [[ω0(x)× n(x, 0)]] �=
0 for some x ∈ Γ(0), then the tangential components of ω0 are discontinuous,
while the velocity u0 is continuous across Γ(0). The 3-D analogue of a 2-D vortex
patch amounts to choosing u0 in such a way that curlu−

0 = 0 on Ω−(0) and hence,
necessarily, curlu+

0 · n(0) = 0 so that ω0 is tangent to Γ(0).
To explain this analogy, we first state the following existence theorem for the

Euler equations (1.1) with initial data u(x, 0) = u0(x). Gamblin & Saint Raymond
[13] proved that whenever Γ(0) is C1,α, α ∈ (0, 1), u0 ∈ Lp(R3), 1 < p < ∞, and
ω0 ∈ Lq(R3), 1 ≤ q < 3 such that ω0 has C

α regularity in directions tangent to Γ(0);
then there exists a unique solution u ∈ L∞(0, T ;W 1,∞(R3)) ∩W 1,∞(0, T ;Lp(R3))
to (1.1). Furthermore, letting η(x, t) denote the Lagrangian flow of u, so that

∂tη(x, t) = u(η(x, t), t) for t > 0,(1.11a)

η(x, 0) = x,(1.11b)

and for each t ∈ (0, T ], setting Γ(t) = η(Γ(0), t); then Γ(t) is a closed surface of
class C1,α and ω(t) ∈ Lq(R3) such that ω(t) has Cα regularity in directions tangent
to Γ(t).

For each t ∈ [0, T ], the Lagrangian flow η(·, t) is a diffeomorphism with Jacobian
determinant detDη(x, t) = 1. We set Ω+(t) = η(Ω+(0), t) and Ω−(t) = η(Ω−(0), t).
Integrating the vorticity equation (1.8), we see that

(1.12) ω(η(x, t), t) = Dη(x, t) · ω0(x),

where in components, [Dη · ω0]
i =

∑3
j=1

∂ηi

∂xj
ωj
0.

We will set the 3-D vortex patch problem inside of a periodic box. We let Ω
denote a periodic box [−	, 	]3 in R3 with opposite sides of the box identified with

one another, and with 	 taken sufficiently large so that Ω+(0) ⊂ Ω. Functions
defined on Ω are 2	-periodic in each of the three coordinate directions, i.e.,

u(x+ 2	ei) = u(x) ∀x ∈ R
3, i = 1, 2, 3,

where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).
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The 3-D vortex patch problem has the following initial data:

Γ(0) is a closed surface diffeomorphic to ∂B,(1.13a)

Ω+(0) is an open set diffeomorphic to B ⊂ R
3,(1.13b)

Ω−(0) = Ω− Ω+(0),(1.13c)

u0(x) = u0+(x)1Ω+(0)
+ u0−(x)1Ω−(0),(1.13d)

div u0 = 0,(1.13e)

ω0 = curlu0,(1.13f)

ω0(x) =

{
curlu+

0 (x), x ∈ Ω+(0),
0, x ∈ Ω−(0),

(1.13g)

curlu+
0 · n(·, 0) = 0 on Γ(0),(1.13h) ∫
Ω

u0(x)dx = 0 .(1.13i)

We then call Ω+(0) the initial vortex patch and Γ(0) the initial vortex patch bound-
ary. The identity (1.12) shows that for each t ∈ [0, T ], ω(·, t) = 0 in Ω−(t) and
that ω(·, t) · n(·, t) = 0 on Γ(t). In particular, if the initial vorticity is supported
in a set which is diffeomorphic to B, then the vorticity stays supported in a set
diffeomorphic to B for all time t ∈ [0, T ] for which the solution exists. In (1.13),

we could instead set Ω−(0) = R
3 − Ω+(0).

Of particular interest are those solutions for which curl u+
0 (x) × n(x, 0) �= 0 for

almost all points x ∈ Γ(0).

1.4. Statement of the main result. Because of the singular nature of DK, it
is difficult to establish regularity for higher-order derivatives of u with the formula
(1.5). By taking a different approach, however, we shall prove that the velocity
field indeed enjoys higher-order Sobolev regularity on both sides of the vortex patch
boundary. In particular, for the 2-D vortex patch problem defined in Section 1.2,
we have the following

Theorem 1 (Regularity of velocity field in 2-D). Given initial data (1.4) and a
global-in-time solution to the 2-D vortex patch problem satisfying

1

|z|∗(t)
+ ‖z(·, t)‖Hk−0.5(S1) + ‖Du(·, t)‖L∞(R2) ≤ F (t)

for t ∈ [0,∞) and k ≥ 4, the velocity field satisfies u+(·, t) ∈ Hk(Ω+(t)) and
u−(·, t) ∈ Hk

loc(Ω
−(t)), and

‖u+(·, t)‖Hk(Ω+(t)) + ‖u−(·, t)‖Hk(Ω−(t))∪B(0,R(t))) ≤ G(t),

where B(0, R(t)) is a ball centered at 0 with radius R(t) > 0 such that Γ(t) ⊂
B(0, R(t)), and G(t) > 0 is a function of F (t), defined in (1.6), with G(t) < ∞ for
any t < ∞.

Remark 1. Notice that both velocity vector fields u+ and u− gain a half-derivative
of regularity with respect to the regularity of the vortex patch boundary Γ(t). This
is very natural in Sobolev spaces Hk, but requires us to locally extend our 1-D
parameterization z(·, t) to a 2-D local diffeomorphism θ+(·, t) and θ−(·, t) which
also gains a half-derivative of regularity. This is accomplished by a specially chosen
elliptic extension which we describe in Section 3. On the other hand, if we had
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assumed instead that the parameterization z(·, t) ∈ Hk(S1), then a standard local
“graph” extension would have sufficed. More specifically, if z(·, t) is given locally
by the graph (x1, h(x1)), then (x1, x2 + h(x1)) provides a local extension to a
diffeomorphism, but does not gain a half-derivative of regularity.

Remark 2. Without any change to our proof, the initial data (1.4) can be replaced
by the more general initial data

ω0(x) =

{
ω+
0 (x), x ∈ Ω+(0),

ω−
0 (x), x ∈ Ω−(0),

for any functions ω+
0 ∈ Hk−1(Ω+

0 ) and ω−
0 ∈ Hk−1

loc (Ω−
0 ), k ≥ 4.

Remark 3. In fact, Theorem 1 is true for k ≥ 3, but the proof requires one less
regularization step for k ≥ 4.

Whereas Chemin [5] and Bertozzi & Constantin [3] have established regularity
of the contour Γ(t) for the 2-D vortex patch problem, the regularity of the 3-D
vortex patch boundary Γ(t) is considered in C1,α in the analysis of Gamblin & Saint
Raymond [13] and in Besov spaces by Danchin [10] for fluids in dimension d ≥ 2. As
our final result, we simultaneously establish an existence theory in Sobolev spaces
for the 3-D vortex patch problem, as well as the Sobolev-class regularity of the 2-D
closed surface Γ(t) and the velocity fields u+ and u−.

Theorem 2 (Existence and regularity for the 3-D vortex patch boundary and
velocity fields). For k ≥ 3, if Γ(0) is a closed surface of Sobolev-class Hk−0.5, and
u0 ∈ H1(Ω) with u+

0 ∈ Hk(Ω+(0)), u−
0 ∈ Hk(Ω−(0)) and satisfying (1.13), then

there is a time T > 0 such that there exists a unique solution to the 3-D vortex
patch problem, and for each t ∈ [0, T ], the vortex patch boundary Γ(t) is in Hk−0.5,
u+(·, t) ∈ Hk(Ω+(t)), and u−(·, t) ∈ Hk(Ω−(t)).

Remark 4. The more general initial data (1.10) can replace (1.13) in Theorem 2.

Notation. We will denote the partial derivative ∂f
∂xj

by f,j for j = 1, 2, or 3. We

will use the Einstein summation convention, wherein repeated indices are summed
from 1 to n, with n equaling either 2 or 3.

1.5. Outline of the paper. In Section 2, we define the strong form of the two-
phase elliptic problem that the two-dimensional stream function must satisfy, and
we also define the associated variational formulation. In Section 3, we define the
local diffeormorphisms that we use to locally flatten the vortex patch boundary;
these diffeomorphisms gain one-half derivative of interior regularity in Hk spaces
relative to the regularity of the vortex patch boundary. Section 4 is devoted to
the Sobolev regularity theory of the fluid velocities u+(·, t) and u−(·, t) in the 2-D
vortex patch problem.

The 3-D vortex patch problem is studied in Section 5. After defining the two-
phase elliptic problem for the fluid velocity, we simultaneously prove existence of
solutions and establish the regularity theory for both the vortex patch boundary
Γ(t) and the velocity fields u+(·, t) and u−(·, t); this is done in the Lagrangian
framework. Finally, in Section 6, we establish the fundamental regularity estimates
for the two-phase elliptic problem with Sobolev-class coefficients in n-dimensions
(which arises in many applications, including the vortex patch problem). For com-
pleteness, we include a short appendix with some basic inequalities that are used
in Section 6.
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2. A two-phase elliptic problem for the 2-D stream function

The 2-D vortex patch problem has been previously studied using the evolution
equation for the parameterization of the contour z(·, t) ([3, 4]); see also [6] for
perturbations of circular patches and [7] for elliptical patches. We will take a
different approach.

While not necessary, it is convenient to introduce the stream function formulation
of the problem. Let ψ(x, t) = ψ+(x, t)1

Ω+(t)
+ ψ−(x, t)1Ω−(t). We set [[F ]] =

F+−F− on Γ(t), and let n(·, t) denote the outward unit normal to Γ(t), and τ (·, t)
denote the unit tangent vector to Γ(t).

For each time t ∈ [0,∞), the bounds (1.6) show that Du(·, t) ∈ L∞(R2); thus,
u(·, t) ∈ H1

loc(R
2) and so the stream function ψ(·, t) ∈ H2

loc(R
2) is a solution to the

following two-phase elliptic problem for each fixed t ∈ [0,∞):

−Δψ+(·, t) = −1 in Ω(t)+,(2.1a)

Δψ−(·, t) = 0 in Ω(t)−,(2.1b)

[[ψ(·, t)]] = 0 on Γ(t),(2.1c) [[∂ψ
∂n

(·, t)
]]
= 0 on Γ(t) .(2.1d)

The fact that ψ(·, t) ∈ H2
loc(R

2) means that the interface jump condition (2.1d)
holds in H0.5(Γ(t)).

For each time t ∈ [0,∞), (2.1) has the following weak formulation:
(2.2)∫

Ω+(t)

Dψ+(·, t) ·Dφdx+

∫
Ω−(t)

Dψ−(·, t) ·Dφdx = −
∫
Ω+(t)

φ dx ∀φ ∈ H1(R2) .

From the bounds (1.6), the stream-function satisfies

(2.3) ‖ψ(·, t)‖H2(B(0,R(t))) ≤ F (t),

where B(0, R(t)) is a ball centered at 0 with radius R(t) > 0 such that Γ(t) ⊂
B(0, R(t)).

3. Locally flattening the boundary Γ(t)

We construct local diffeomorphisms in small neighborhoods of Γ(t) which locally
“flatten” the vortex patch boundary, and which gain one-half derivative of regularity
in the interior with respect to the regularity of the parameterization z(·, t). There
are other methods to construct regularizing diffeomorphisms (see, for example, [8,
16,19]), but the method we present appears quite natural for arbitrary geometries.

Let D+ = {x ∈ R2 : |x| < 1} denote the open unit ball in R2 with boundary
S
1 = {x ∈ R

2 : |x| = 1}, the unit circle. For each t ∈ [0,∞), we solve the following
elliptic equation for Z(r, θ, t):

Δ2Z+ = 0 in D+,(3.1a)

Z+ = z on S
1,(3.1b)

∂Z+

∂r
=

∂z⊥

∂θ
on S

1 .(3.1c)

The unique solution Z+(r, θ, t) to (3.1) satisfies the estimate

(3.2) ‖Z+(·, ·, t)‖Hk(D+) ≤ C‖z(·, t)‖Hk−0.5(S1),
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and we are considering integers k ≥ 4. The boundary conditions (3.1b,c) show that

detDZ+(1, θ, t) = |∂θz(θ, t)|2 .
From the definition (1.7) of |z|∗(t) and its lower-bound given by (1.6), it is proven
in [17] that there exists a function α(t) > 0 such that α(t) ≤ minθ∈S1 |∂θz(θ, t)|2.
Hence, detDZ+(1, θ, t) ≥ α(t) > 0. This shows that Z+ is locally injective around
each point on S

1.
Next, we define D− = {x ∈ R2 : 1 < |x| < R(t)}, where R(t) > 0 is chosen

sufficiently large so that the ball B(0, R(t)) contains Γ(t). We let Z−(r, θ, t) solve

Δ2Z− = 0 in D−,(3.3a)

Z− = z on S
1,(3.3b)

Z− = Id on {r = R(t)},(3.3c)

∂Z−

∂r
=

∂z⊥

∂θ
on S

1,(3.3d)

∂Z−

∂r
= er on {r = R(t)},(3.3e)

where er denotes the unit basis vector (cos θ, sin θ). Again, we see that the unique
solution Z−(r, θ, t) to (3.3) satisfies the estimate

(3.4) ‖Z−(·, ·, t)‖Hk(D−) ≤ C‖z(·, t)‖Hk−0.5(S1) .

We define the map Z = Z+1
D+ +Z−1D− . Due to the boundary conditions (3.1b,c)

and (3.3b,d) and the Sobolev embedding theorem, the map (r, θ) �→ Z(r, θ, t) is C1,
and for any point θ ∈ S1, there exists a ball B(θ, ε(t)) ⊂ R2, centered at θ with
radius ε(t) > 0 taken sufficiently small, such that Z(·, ·, t) is injective on B(θ, ε(t)).

Next, we show that for ε > 0 sufficiently small, the image Z+(1 − ε, θ, t) is
contained in Ω+(t), and similarly, that the image Z−(r, θ, t) is contained in Ω−(t).
To that end, let θ0(t) denote the point in [0, 2π] at which the maximum value of
z(θ, t)·e2 occurs. We assume that the tangent vector ∂θz(θ0(t), t) = β(t) e1 for some
β(t) > 0 (for, otherwise, we can reverse the orientation of the parameterization).

Hence, ∂θz
⊥(θ0(t), t) = β(t) e2. This shows that

∂Z+
2

∂x2
(1, θ0(t), t) > 0, which in

turn implies that Z+
2 (1 − ε, θ0(t), t) < Z+

2 (1, θ0(t), t) which proves that, for ε > 0
sufficiently small, for all r ∈ [1− ε, 1) and θ ∈ [θ0(t)− ε, θ0(t) + ε],

Z+(r, θ, t) · e2 < z(θ0(t), t) · e2 .
Therefore, Z+ maps a local neighborhood of θ0(t) (in D+) into Ω+(t). Since Z+

is locally injective around S1, this means that the image of any Z+(1 − ε, ·, t) (for
ε > 0 small enough) stays in Ω+(t), otherwise it would intersect Γ(t), which we
shall next prove cannot occur. Similarly, the image of any Z−(1 + ε, ·, t) stays in
Ω−(t).

We next prove that for ε > 0 sufficiently small,

Z+(1− ε, θ, t) ∩ Γ(t) = ∅ ∀θ ∈ S
1 .

Since detDZ+(1, θ, t) ≥ α(t) > 0 for all θ ∈ S1, by the inverse function theo-
rem, there exists a small ball B(θ,R(θ)) ⊂ R2, centered at θ ∈ S1 with radius
R(θ) > 0, such that Z+(·, ·, t) is a C1-diffeomorphism between D+∩B(θ,R(θ)) and

Z+(D+∩B(θ,R(θ)), t), as well as a homeomorphism between D+ ∩B(θ,R(θ)) and

Z+(D+ ∩B(θ,R(θ)), t). Since the compact set S1 is covered by
⋃

θ∈S1
B(θ,R(θ)),
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we can extract a finite subcover
⋃N

i=1 B(θi,R(θi)), where θi, i = 1, . . . , N are points
in S1.

Let Aε = {x ∈ R2 : 1 − ε ≤ |x| < 1} denote an annulus. We choose

ε > 0 small enough so that Aε ⊂
⋃N

i=1 B(θi,R(θi)). With (r, θ) ∈ Aε fixed,
we choose i ∈ {1, . . . , N} such that (r, θ) ∈ B(θi,R(θi)) ∩ D+. Since Z+(·, ·, t)
is a C1 diffeomorphism between D+ ∩ B(θi,R(θi)) and Z+(D+ ∩ B(θi,R(θi)), t),
then Z+(r, θ, t) ∈ Z+(D+ ∩ B(θi,R(θi)), t). Furthermore, as Z+ is a homeomor-

phism between D+ ∩B(θi,R(θi)) and Z+(D+ ∩B(θi,R(θi)), t), then Z+(r, θ, t) �∈
Z+(∂[D+ ∩B(θi,R(θi))], t), which implies that

Z+(r, θ, t) �∈ z([θi −R(θi), θi +R(θi)], t) ⊂ Γ(t).

In summary, we have shown that for (r, θ) ∈ B(θi,R(θi)) ∩D+,

Z+(r, θ, t) is in the interior of Z+(D+ ∩B(θi,R(θi)), t)

with

diameter
(
Z+(D+ ∩B(θi,R(θi)), t)

)
≤ 2‖DZ+‖L∞(D+)R(θi) .

From the positive lower-bound (1.6) on the function |z|∗(t) in (1.7), there exists
ε0 > 0 such that for any x ∈ Γ(t), B(x, ε0) ∩ Ω+(t) does not contain any point of
Γ(t); therefore, choosing the radius R(θ) such that

2‖DZ+‖L∞(D+)R(θi) < ε0,

(and increasing N if necessary) we have that Z+(D+ ∩B(θi,R(θi)), t) does not
contain any point of Γ(t), which shows that Z+(r, θ, t) �∈ Γ(t) as desired. A similar
argument shows that for (r, θ) ∈ B(θi,R(θi))∩D−, Z−(r, θ, t) is contained in Ω−(t).

Thus, for each θi ∈ S1, i ∈ {1, . . . , N}, let Ui(t) = B(θi,R(θi)) ⊂ R2, and let
Vi(t) = Z(Ui(t), t). The map Z is then a C1 diffeomorphism of Ui(t) onto Vi(t), and
due to the estimates (3.2) and (3.4),

Z±(·, ·, t) : D± ∩ Ui(t) → Ω±(t) ∩ Vi(t) is an Hk diffeomorphism .

Next, we flatten the boundary of Ui(t) ∩ S
1. For each i ∈ {1, . . . , N}, Ui(t) ∩ S

1

is a graph given by (x1, hi(x1, t)) where each hi(·, t) is C∞. We define the C∞ local
diffeomorphisms ϑ±

i (t)(x1, x2) = (x1, x2 ± hi(x1, t)) with detDϑ±
i (t) = 1, and we

set

Bi
± = [ϑ±

i (t)]
−1(Ui(t) ∩D±) and Bi

0 = [ϑ+
i (t)]

−1(Ui(t) ∩ S
1) .

The set Bi
0 ⊂ {x2 = 0} is a flat boundary.

Finally, we define θ±i (t) = Z±(t) ◦ ϑ±
i (t). Then

θ±i (t) : B
± → Ω± ∩ Vi(t) is an Hk diffeomorphism,(3.5)

and thanks to (3.2), (3.4), and (1.6), for each i ∈ {1, . . . , N},

(3.6)
∥∥∥ 1

detDθ±i (t)

∥∥∥
L∞(B±)

+ ‖θ±i (t)‖Hk(B±) ≤ P(F (t)),

where P(F (t)) denotes a generic polynomial function of F (t). Furthermore, if we
set θi(t) = θ+i (t)1Bi

+

+θ−i (t)1Bi
−
, then each θi(t) ∈ C1(B), where B = B+∪B−∪B0.
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4. Regularity of the velocity field for 2-D vortex patches:

Proof of Theorem 1

We first use the weak formulation (2.2) to build regularity of the stream-function
ψ±. Interior regularity of Ψ± on sets away from the patch boundary Γ(t) is classical,
so we focus our attention on regularity of Ψ± near Γ(t). We will use the change-
of-variables θi(t) given in (3.5).

Step 1 (The elliptic problem for Ψ± set on B±). The weak formulation (2.2) can
be written as∫
Vi(t)∩Ω+(t)

Dψ+(·, t) ·Dφdx+

∫
Vi(t)∩Ω−(t)

Dψ−(·, t) ·Dφdx = −
∫
Vi(t)∩Ω+(t)

φ dx

for all test functions φ ∈ H1
0 (V(t)) and each i ∈ {1, . . . , N}.

With the collection of diffeomorphisms {θi}Ni=1 given in (3.5) for each t ∈ [0,∞),
we define

A±
i = [Dθ±i (t)]

−1 and J±
i (t) = detDθ±i (t),

and set

A±
i = J±

i [A±
i ][A

±
i ]

T .

It follows from (3.6), and (1.6) that for all t ∈ [0,∞), there exists a function
0 < λi(t) such that

(4.1) wT A±
i (x)w ≥ λi(t)|w|2 ∀w ∈ R

2, x ∈ Bi
± .

To establish (4.1), we drop the i subscript (and superscript), and let w̃±=J
1/2
± A± w.

The left-hand side of (4.1) is simply |w̃±|2, and w = J
−1/2
± Dθ±w̃±; therefore,

|w|2

‖J−1/2
± Dθ±‖2L∞(B+)

≤ |w̃±|2,

so that λ(t) = ‖J−1/2
± (t)Dθ±‖−2

L∞(B±), which has a strictly positive lower-bound

since λ(t)−1 = ‖J−1/2
± Dθ±‖2L∞(B+) ≤ P(F (t)) by (3.6). Additionally, from (3.6),

(4.2) ‖A±‖Hk−1(B±) ≤ CP(F (t)) .

We set

Ψ± = ψ± ◦ θ, Φ = φ ◦ θ .
Since φ ∈ H1

0 (V(t)) and each θi(t) ∈ C1(B), it follows that Φ ∈ H1
0 (B), and can

thus be used as a test function. By another application of the change-of-variables
formula, we then have that∫

B+

Akj
+ Ψ+,k (·, t) Φ,j dx+

∫
B−

Akj
− Ψ−,k (·, t) Φ,j dx(4.3)

= −
∫
B+

Φ J+ dx ∀Φ ∈ H1
0 (B) .

Step 2 (H3 regularity for ψ+ and ψ−). We set k = 4 so that θ± ∈ H4(B±) and
first establish that each ψ± is H3. We let {ζi}Ni=1 denote a smooth partition-of-
unity, subordinate to the open cover Ui(t); in particular, 0 ≤ ζi ≤ 1 in C∞

c (Ui(t))
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denote a smooth cut-off function,
∑N

i=1 ζi = 1, and let ξi = ζi ◦ θi(t). We define
the horizontal convolution operator as follows: for ε > 0 sufficiently small,

ΛεF =

∫
Rn−1

ρε(x1 − y1)F (y1, x2)dy1,

where ρε(x1) = ε−1ρ(x1/ε), and ρ is the standard mollifier on R. We again drop
the i subscript, and substitute

Φ = ξ2Λ2
ε∂

4
1(ξ

2Ψ) ∈ H1
0 (B), Ψ = 1B+

Ψ+ + 1B−Ψ
−,

into (4.3). Since differentiation commutes with convolution, we have that

Φ,j = Λ2
ε∂

4
1(ξ

2Ψ),j +2ξξ,j Λ
2
ε∂

4
1(ξ

2Ψ) .

The variational formulation (4.3) then takes the following form:

(4.4) I±
1 + I±

2 = −
∫
B+

∂2
1J+ ξ2Λ2

ε∂
4
1(ξ

2Ψ) dx,

where

I±
1 =

∫
B±

Λε(ξ
2Akj

± Ψ±,k ),11 Λ2
ε (ξ

2Ψ±),j11 dx,

I±
2 = −2

∫
B±

(ξξ,j Akj
± Ψ±,k ),1 Λ2

ε (ξ
2Ψ±),11 dx .

Next, we see that

I±
1 =

∫
B±

Akj
± Λε(ξ

2Ψ±),k11 Λε(ξ
2Ψ±),j11 dx

︸ ︷︷ ︸
I1

±
a

+

∫
B±

(
{Λε,Akj

± }(ξ2Ψ±),k11
)
Λε(ξ

2Ψ±),j11 dx

︸ ︷︷ ︸
I1

±
b

+

∫
B±

Λε

[
2Akj

± ,1 (ξ
2Ψ),k1+Akj

± ,11(ξ
2Ψ),k −2(ξξ,k Akj

± Ψ),11

]
Λε(ξ

2Ψ±),j11 dx

︸ ︷︷ ︸
I1

±
c

,

where

(4.5) {Λε,Akj
± }(ξ2Ψ±),k11 = Λε(Akj

± (ξ2Ψ±),k11 )−Akj
± Λε(ξ

2Ψ±),k11

denotes the commutator of the horizontal convolution operator and multiplication

by Akj
± . Using the lower-bound (4.1), we see that

(4.6) λ(t)‖∂ 2
1ΛεD(ξ2Ψ±)‖2L2(B+) ≤ I1±a .

We let 0 < δ � 1; we will make use of the Cauchy-Young inequality a b ≤
δλ(t)a2 + 1

4δλ(t)b
2 for a, b ≥ 0.

Using Hölder’s inequality together with the Sobolev inequality ‖f‖Lp(B±) ≤
C‖f‖H1(B±) for all f ∈ H1(B±) and all p ∈ [1,∞), we have that

|I1±c | ≤ C‖Akj
± ,11 ‖H1(B±)‖Ψ±,k ‖H1(B±)‖Λε(ξ

2Ψ±),j11 ‖L2(B±) .
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Thanks to (4.2) and (2.3), we then infer that

|I1±c | ≤ P(F (t))‖Λε(ξ
2Ψ±),j11 ‖L2(B±)

≤ δλ(t)‖Λε(ξ
2Ψ±),j11 ‖2L2(B±) +

P(F (t))

4δλ(t)

≤ δλ(t)‖Λε(ξ
2Ψ±),j11 ‖2L2(B±) + (1 + (δλ(t))−1)P(F (t)),

where we continue to use P(F (t)) to denote a generic polynomial function of F (t).
A similar estimate can be established for the integral I±

2 , which provides us with

|I1±c |+ |I±
2 | ≤ [1 + (δλ(t))−1]P(F (t)) + δλ(t)‖Λε(ξ

2Ψ±),11 ‖2H1(B±) .(4.7)

Also, the integral on the right-hand side of (4.4) has the same upper bound.
It remains to establish such an upper-bound for |I1b|. We set g±k = (ξ2Ψ±),k11;

then,

[Λε(Akj
± g±k )−Akj

± Λεg
±
k ](x1, x2)(4.8)

=

∫ x1+ε

x1−ε

ρε(x1 − y1)[Akj
± (y1, x2)−Akj

± (x1, x2)]g
±
k (y1, x2)dy1 .

From Morrey’s inequality, for all y1 ∈ B(x1, ε),
(4.9)

|Akj
± (x1, x2)−Akj

± (y1, x2)| ≤ Cε sup
y1∈(x1−ε,x1+ε)

|Akj
± ,1 (y1, x2)| ≤ Cε‖A‖H3(B±) .

Substituting (4.9) into (4.8) and using Young’s inequality for convolution, together
with (4.2), we see that

‖{Λε,Akj
± }(ξ2Ψ±),k11 ‖L2(B±) ≤ Cε‖A±‖H3(B±)‖(ξ2DΨ±),11 ‖L2(B±)

≤ CεP(F (t))‖D(ξ2Ψ±),11 ‖L2(B±),

so that

|I1b| ≤ CεP(F (t))‖D(ξ2Ψ±),11 ‖2L2(B±) .

We choose ε sufficiently small so that CεP(F (t)) < λ(t)/2. By choosing δ > 0
sufficiently small, we obtain from (4.4), (4.6) and (4.7) the estimate∫

B±

|DΛε(ξ
2Ψ±),11 |2 dx ≤ [1 + λ(t)−1]P(F (t)) .

Passing to the limit as ε → 0, we find that

(4.10)

∫
B±

ξ2|DΨ±,11 |2 dx ≤ [1 + λ(t)−1]P(F (t)) .

From (2.1a,b), we have the following identity holding at any point of the interior
of B±:

−A22
± Ψ±,221 = 2A21

± Ψ±,211 +A11
± Ψ±,111 +2A21

± ,1 Ψ
±,21 +A11

± ,1 Ψ
±,11

+A22
± ,1 Ψ

±,22 +Ajk
± ,j1 Ψ

±,k +Ajk
± ,j Ψ

±,k1 .

The lower-bound (4.1) shows that A22
± ≥ λ(t); hence from (4.10), (4.2), and (2.3),

(4.11)

∫
B±

ξ2|Ψ±,221 |2 dx ≤ [λ(t)−1 + λ(t)−2]P(F (t)) .
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Then, since

−A22
± Ψ±,222 = 2A21

± Ψ±,221 +A11
± Ψ±,211 +2A21

± ,2 Ψ
±,21 +A11

± ,2 Ψ
±,11

+A22
± ,2 Ψ

±,22 +Ajk
± ,j2 Ψ

±,k +Ajk
± ,j Ψ

±,k2 ,

we use (4.11) to conclude that

(4.12)

∫
B±

ξ2|Ψ±,222 |2 dx ≤ [λ(t)−2 + λ(t)−3]P(F (t)) .

Given the interior estimates, we sum (4.10), (4.11), and (4.12) over our finite
cover index i = 1, . . . , N , and find that

(4.13) ‖ψ+(·, t)‖2H3(Ω+(t)) + ‖ψ−(·, t)‖2H3(Ω−(t)∩B(0,R(t))) ≤ P(F (t)),

where we have used the fact that λ(t)−1 ≤ P(F (t)). Then since u± = D⊥ψ±,
(4.13) shows that

(4.14) ‖u+(·, t)‖2H2(Ω+(t)) + ‖u−(·, t)‖2H2(Ω−(t)∩B(0,R(t))) ≤ P(F (t)) .

Note that the estimate (4.14) has been obtained for the case that Γ(t) is of Sobolev-
class H3.5 so that we can indeed build further regularity for u±.

Step 3 (H3 regularity for u+ and u−). We will now use estimate (4.14) to build the
H3 regularity for u+ and u−. On Γ(t), we let Dτu denote the directional derivative
of u in the direction τ and similarly, we let Dnu denote the directional derivative
of u in the direction n; for example, in components Dτu

i = ui,j τ
j . We make use

of the following identities on Γ(t):

div u = Dτu · τ +Dnu · n,(4.15a)

curlu = Dτu · n−Dnu · τ .(4.15b)

Since u(·, t) is continuous across Γ(t), it follows that
[[Dnu · τ ]] = −[[curlu]] = −1 .

Then, using (4.15a), and the identity

[[Dnu]] = [[Dnu · τ ]]τ + [[Dnu · n]]n,
we see that

[[Dnu]] = −τ .

From (4.14), the velocity field u is a solution to the following two-phase elliptic
problem:

Δu± = 0 in Ω(t)±,

[[u]] = 0 on Γ(t),[[
Dnu

]]
= −τ on Γ(t),

with variational form given by

(4.16)

∫
Ω+(t)

Du+(·, t) : Dw dx+

∫
Ω−(t)

Du−(·, t) : Dw dx

=

∫
Γ(t)

τ (·, t) · w dS(t) ∀w ∈ H1(R2;R2),

where A : B = Ai
jB

i
j for any 2x2 matrices A and B.
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Again dropping the subscript i, we write (4.16) locally as

(4.17)

∫
V(t)∩Ω+(t)

Du+(·, t) : Dw dx+

∫
V(t)∩Ω−(t)

Du−(·, t) : Dw dx

=

∫
V(t)∩Γ(t)

τ (·, t) · w dS(t) .

for all w ∈ H1
0 (V(t);R2). We set U = u ◦ θ and W = w ◦ θ. By the change-of-

variables formula, (4.17) becomes

(4.18)

∫
B+

Akj
+ U+

,k(·, t) ·W,j dx+

∫
B−

Akj
− U−

,k (·, t) ·W,j dx

= −
∫
B0

θ,1 ·W dS ∀W ∈ H1
0 (B;R2) .

We then substitute

W = ξ2Λ2
ε∂

4
1(ξ

2U) ∈ H1
0 (B),

into (4.18). By repeating the identical argument of Step 2 above, we find that

(4.19) ‖u+(·, t)‖2H3(Ω+(t)) + ‖u−(·, t)‖2H3(Ω−(t)∩B(0,R(t))) ≤ P(F (t)) .

Step 4 (H4 regularity for u+ and u−). We continue to assume that k = 4 so that the
boundary Γ(t) is of Sobolev-classH3.5 and our change-of-variables θ±i (t) ∈ H4(B±).
We will now show that u+ and u− have H4 regularity.

To do so, we let the test function W = −ξ2Λ2
ε∂

6
1(ξ

2U) in (4.18). By a slight
modification of Step 3, we find that

(4.20) ‖u+(·, t)‖2H4(Ω+(t)) + ‖u−(·, t)‖2H4(Ω−(t)∩B(0,R(t))) ≤ P(F (t)) .

There are new types of integrals that arise in establishing theH4 regularity; namely,
integrals that have highest-order derivatives on both U± and θ±.

One of these integrals is analogous to one of the integrals in I1±c defined in Step
1 and is written as

J± =

∫
B±

Λε

[
Akj

± ,111 (ξ
2U±),k

]
Λε(ξ

2U±),j111 dx .

We estimate the integral |J ±| using an L2-L∞-L2 Hölder’s inequality:

|J±| ≤ ‖Akj
± ,111 ‖L2(B±)‖(ξ2U)±,k ‖L∞(B±) ‖Λε(ξ

2U)±,j111 ‖L2(B±),

which, with the Sobolev embedding of H2(B±) into L∞(B±), shows that

|J±| ≤ C‖Akj
± ,111 ‖L2(B±)‖U±,k ‖H2(B±) ‖Λε(ξ

2U)±,j111 ‖L2(B±) .

Using the estimate (3.6) with k = 4 together with the previous lower-order estimate
(4.19) of u± in H3, we obtain that

|J±| ≤ P(F (t))‖Λε(ξ
2U±),j111 ‖L2(B±),

which is just a linear term in ‖Λε(ξ
2U±),j111 ‖L2(B±), easily controlled by the energy

integral

I±
1a,4

= λ(t)

∫
B±

|ΛεD(ξ2U)±,111 |2 dx,

analogous to the term I1±a in Step 2 above.
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Other integral terms set on B± of this type arise and can be treated similarly.
There is one slight variation: the boundary integral term

I∂ =

∫
B0

∂3
1Λε(ξ

2θ,1 ) · ∂3
1Λε(ξ

2U) dS,

for which we simply notice that

|I∂ | ≤ ‖∂3
1Λε(ξ

2θ,1 )‖H−0.5(B0)‖∂3
1Λε(ξ

2U)‖H0.5(B0)

≤ C‖θ,1 ‖H3.5(B0)‖∂3
1Λε(ξ

2U)‖H1(B+),

where we have used the properties of the convolution operator for the first norm on
the right-hand side, and the trace theorem for the second norm. This then provides
us with

|I∂ | ≤ P(F (t))‖Λε(ξ
2U±),111 ‖H1(B+),

which is a linear term controlled in a similar manner as I±
1a,4

.

Step 5 (Hk regularity for u+ and u−). Letting W = (−1)k−1ξ2Λ2
ε∂

2(k−1)
1 (ξ2U) in

(4.18) and repeating Step 3, concludes the proof. �

5. Existence and regularity of the 3-D vortex patch boundary Γ(t)
and u±: Proof of Theorem 2

5.1. The two-phase elliptic problem for velocity. As defined in Section 1.3,
the vortex patch boundary Γ(t) is a closed 2-D surface which is diffeomorphic
to a C∞ closed surface ∂B, and that Ω+(t) is an open subset of R3 such that

∂Ω+(t) = Γ(t), and Ω−(t) = T3 − Ω+(0). We denote T3 by Ω in what follows, and
we set Ω± = Ω±(0).

We let τ1(·, t) and τ2(·, t) denote an orthonormal basis of the tangent plane to
each point of Γ(t), so that (τ1, τ2, n) is a direct orthonormal frame of R

3. We
let Dταu (α = 1, 2) denote the directional derivative of u in the direction τα and
similarly, we let Dnu denote the directional derivative of u in the direction n; for
example, in components Dταu

i = ui,j (τα)
j . We make use of the following identities

on Γ(t):

div u = Dταu · τα +Dnu · n,(5.1a)

curlu = (Dτ2u · n−Dnu · τ2)τ1 − (Dτ1u · n−Dnu · τ1)τ2,(5.1b)

where we have used the fact that curlu+ · n = 0 on Γ(t) by (1.13h). Since u(·, t) is
continuous across Γ(t), it follows that

[[Dnu · τ1]] = [[curlu · τ2]] = curlu+ · τ2,(5.2)

−[[Dnu · τ2]] = [[curlu · τ1]] = curlu+ · τ1 .(5.3)

Then, using (5.1a), and the identity

(5.4) [[Dnu]] = [[Dnu · τα]]τα + [[Dnu · n]]n,

we see that

(5.5) [[Dnu]] = curlu+ · τ2 τ1 − curlu+ · τ1 τ2 .
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The velocity field u = u+1Ω+(t)
+ u−1Ω−(t) is a weak solution to the following

two-phase elliptic problem:

−Δu+ = curl curlu+ in Ω(t)+,(5.6a)

Δu− = 0 in Ω(t)−,(5.6b)

[[u]] = 0 on Γ(t),(5.6c) [[
Dnu

]]
= curlu+ · τ2 τ1 − curlu+ · τ1 τ2 on Γ(t),(5.6d)

with variational (or weak) form given as follows: For all vector test-functions w ∈
H1(Ω) given by∫

Ω+(t)

Du+(·, t) : Dw dx+

∫
Ω−(t)

Du−(·, t) : Dw dx =

∫
Ω+(t)

curlu+(·, t) · curlw dx

+

∫
Γ(t)

[n× curlu+] · w dS(t)

+

∫
Γ(t)

[curlu+(·, t) · τ2 τ1 − curlu+(·, t) · τ1 τ2] · w dS(t),

(5.7)

where A : B = Ai
jB

i
j for any 3x3 matrices A and B. Next we notice that

(5.8) n×curlu+ = n×[curlu+ ·τ1 τ1+curlu+ ·τ2 τ2] = curlu+ ·τ1 τ2−curl u+ ·τ2 τ1,

so that the boundary integral terms of (5.7) cancel each other, and we are left with

(5.9)

∫
Ω+(t)

Du+(·, t) : Dw dx+

∫
Ω−(t)

Du−(·, t) : Dw dx

=

∫
Ω+(t)

curlu+(·, t) · curlw dx ∀w ∈ H1(Ω) .

We let η(x, t) denote the Lagrangian flow of u, as defined in (1.11). We set
v± = u± ◦ η and we define A(x, t) = [Dη(x, t)]−1. Then, letting φ = w ◦ η, (5.9)
can be written as

(5.10)

∫
Ω+

Ajk ∂v
+

∂xj
· ∂φ

∂xk
dx+

∫
Ω−

Ajk ∂v
−

∂xj
· ∂φ

∂xk
dx

=

∫
Ω+

[
curlu+

]
◦ η ·

[
curl(φ ◦ η−1)

]
◦ η detDηdx

for all φ ∈ H1(Ω), where

Ajk = Aj
iA

k
i detDη .

For solutions to the Euler equations (1.1), div u = 0 so that detDη = 1, but the
general form (5.10) will be necessary for our fixed-point scheme.

5.2. The fixed-point procedure for existence of solutions to the vortex
patch problem. In Section 6, we will establish the fundamental elliptic regularity
results for a Lagrangian variational formulation as in (5.9). Using that regularity
theory, we now prove the existence and regularity of solutions to the 3-D vortex
patch problem; our solutions have smooth Sobolev regularity on both sides of the
vortex patch boundary Γ(t) and are globally in H1(Ω).
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5.2.1. The functional framework. We remind the reader that we use Ω to denote
a periodic box [−	, 	]3 in R3 with opposite sides of the box identified with one

another, and with 	 taken sufficiently large so that Ω+(0) ⊂ Ω. Functions defined
on Ω are 2	-periodic in each of the three coordinate directions, i.e.,

u(x+ 2	ei) = u(x) ∀x ∈ R
3, i = 1, 2, 3,

where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Functions in H1(Ω) satisfy
periodic boundary conditions, and H1(Ω) can be identified with H1(T3).

Given T > 0 and M > 0 assumed fixed, we work in the Lagrangian framework
and define the bounded closed convex and non-empty set

(5.11) Vk
M = {v ∈ L2(0, T ;H1(Ω)) ∩ L2(0, T ;Hk(Ω±));

‖v‖L2(0,T ;H1(Ω)) + ‖v±‖L2(0,T ;Hk(Ω±)) ≤ M}

for integers k ≥ 3. For any v ∈ Vk
M , we define the Lagrangian flow

(5.12) η(x, t) = x+

∫ t

0

v(x, s) ds,

which therefore, from (5.11), satisfies η ∈ C0(0, T ;H1(Ω))∩C0(0, T ;Hk(Ω±)). Note,
also, that since the vortex patch boundary is transported by the fluid velocity, we
have that

Γ(t) = η(Γ, t) .

Hence, the regularity of the velocity field in Ω+ provides us with the regularity of
η in Ω+; the trace theorem then provides the regularity of η on Γ, and this in turn
provides the regularity of the vortex patch boundary Γ(t).

Since Ω is a periodic box, and hence convex, any two distinct points x and y in
Ω can be connected by the straight-line segment (x, y); therefore, by splitting the
segment (x, y) into a finite union of subsegments (xi, xi+1), we can assume that
each subsegment (xi, xi+1) is contained in either Ω+ or Ω−. It follows from (5.12)
that

η(x, t)− η(y, t) =x− y +

∫ t

0

v(x, s)− v(y, s) ds

=x− y +

∫ t

0

v(x1, s)− v(xK , s) ds

=x− y +
K−1∑
i=1

∫ t

0

v(xi, s)− v(xi+1, s) ds,

which therefore shows by the fundamental theorem of calculus, that since each
(xi, xi+1) is either contained in Ω+ or Ω−, that

|η(x, t)− η(y, t)− x− y|

≤ C

n−1∑
i=1

|xi − xi+1|
∫ t

0

‖Dv(·, s)‖L∞(Ω+) + ‖Dv(·, s)‖L∞(Ω−) ds,
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and from the Sobolev embedding theorem,

|η(x, t)− η(y, t)− x− y|

≤ C

n−1∑
i=1

|xi − xi+1|
∫ t

0

‖Dv(·, s)‖H2(Ω+) + ‖Dv(·, s)‖H2(Ω−) ds .

From the definitions (5.11) and (5.12), it follows that

(5.13) |η(x, t)− η(y, t)− x− y| ≤
n−1∑
i=1

|xi − xi+1|2
√
tM ≤ 2

√
TMC|x− y| .

We now choose T such that

(5.14) 0 < T ≤ 1

16M2C2
,

so that for any x and y in Ω,

|η(x, t)− η(y, t)| ≥ 1

2
|x− y|,

which establishes the injectivity of η in Ω. Furthermore, since

|Dη(x, s)− Id| ≤
∣∣∣∣
∫ t

0

Dv(x, s) ds

∣∣∣∣
(5.15)

≤
∣∣∣∣
∫ t

0

‖Dv+(·, s)‖L∞(Ω+) + ‖Dv−(·, s)‖L∞(Ω−) ds

∣∣∣∣ ≤ 2C
√
TM,

due to the continuity of the determinant at Id in R
9, we can choose T > 0 small

enough, so that for all x ∈ Ω and 0 ≤ t ≤ T ,

(5.16)
3

2
≥ detDη(x, t) ≥ 1

2
,

which shows, with the previously established injectivity, that η(·, t) is an H4 diffeo-
morphism from Ω± onto the image η(Ω±, t), and a homeomorphism from Ω onto
η(Ω, t). Finally, by choosing T sufficiently small we can ensure the strict positivity
of the coeffiicient matrix A: for all t ∈ [0, T ],

(5.17) wT A±
i (x, t)w ≥ 1

4
|w|2 ∀w ∈ R

2, x ∈ Ω .

5.2.2. The fixed-point procedure. We define the Lagrangian curl operator curlη as
follows: if u(y, t) is an Eulerian vector, and v = u ◦ η, then we curlη v = [curlu] ◦ η
where for any differential vector field F , and for i = 1, 2, 3,

(5.18) [curlη F ]i = εijk
∂F k

∂xr
Ar

j ,

where εijk denotes the permutation symbol, so that εijk = 1 for even permutations,
εijk = −1 for odd permutations, and εijk = 0 otherwise. We will employ a fixed-
point procedure on the variational equation (5.10), which we write as
(5.19)∫
Ω+

Ajk ∂v
+

∂xj
· ∂φ

∂xk
dx+

∫
Ω−

Ajk ∂v
−

∂xj
· ∂φ

∂xk
dx =

∫
Ω+

[
curlu+

]
◦η · curlη φ detDηdx
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for all φ ∈ H1(Ω). From (1.12),

(5.20) curlu ◦ η = Dη · ω0, ω0 = curlu+
0 1Ω+ .

Since divω0 = 0, using the formula (5.20), we see that

(5.21)

∫
Ω+

curlu+ ◦ η dx =

∫
Γ

η (curlu+
0 · n(·, 0)) dS(0) = 0,

where the last equality follows from (1.13h).
Now, given v in our convex set Vk

M and letting η denote the homeomorphism
defined in (5.12), we define

(5.22) C(v)(x, t) = Dη(x, t) · ω0(x) in Ω .

Notice that for any x ∈ Γ, the trace on Γ of C(v)(x, t)·n(η(x, t), t) (the trace taken
from Ω+) is zero, and is thus equal to the trace of C(v)(x, t) · n(η(x, t), t) evaluated
from Ω−. To see this, we use an important geometric property of the inverse
deformation matrix A(x, t) = [Dη(x, t)]−1; namely, if N(x) := n(0, x) denotes the
outward unit normal to ∂Ω+ and if n(η(x, t), t) denotes the outward unit normal
to ∂Ω+(t), then

ni(η(x, t), t) =
Ak

iNk

|ATN | .

Hence, it follows that

C(v) · n ◦ η =C(v)i A
k
iNk

|ATN | =
1

|ATN |NkA
k
i

∂ ηi

∂xl
ωl
0 =

1

|ATN |Nkω
k
0 = 0,(5.23)

where we have again used (1.13h) for the last equality.
Furthermore, the same computation as in (5.21) shows that∫

Ω+

C(v) dx =

∫
Γ

η (curlu+
0 ·N) dS(0) = 0 .(5.24)

Now, for each time t ∈ [0, T ], we construct a solution v̄(·, t) to the following
variational problem:∫

Ω+

Ajk ∂v
+

∂xj
· ∂φ

∂xk
dx+

∫
Ω−

Ajk ∂v
−

∂xj
· ∂φ

∂xk
dx(5.25)

=

∫
Ω+

C(v) · curlη φ detDηdx ∀φ ∈ H1(Ω) .

From (5.17) and the Lax-Milgram theorem, there exists a unique periodic solution
v̄(·, t) ∈ H1(Ω) for each fixed t ∈ [0, T ], satisfying

(5.26)

∫
Ω

v̄ dx = 0.

Furthermore, since C(v) ∈ HkΩ+, k ≥ 2, we may integration-by-parts on the right-
hand side of (5.25). We use the fact that the cofactor matrix a(x, t), defined by
a = detDηA, satisfies the Piola identity ∂

∂ xk
aki = 0 for i = 1, 2, 3. Thus, we see

that (5.25) can be written as follows: for all φ ∈ H1(Ω),∫
Ω+

Ajk ∂v
+

∂xj
· ∂φ

∂xk
dx+

∫
Ω−

Ajk ∂v
−

∂xj
· ∂φ

∂xk
dx =

∫
Ω+

curlη C(v) · φ detDη dx

+

∫
∂Ω+

C(v)× (aTN)φ dS(0),
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which is the variational form of the general elliptic system (6.1) studies in Section
6, with forcing functions

f− = 0, f+ = curlη C(v) detDη, and g = C(v)× (aTN),

for which our regularity result Theorem 4 applies. We therefore have that (for
k ≥ 2)

‖v̄+‖Hk+1(Ω+) + ‖v̄−‖Hk+1(Ω−)

(5.27)

≤ C
[
‖f ±‖Hk−1(Ω±)+‖g‖Hk−0.5(Γ)+P

(
‖A±‖Hk(Ω±)

)(
‖f ±‖L2(Ω±)+‖g‖H−0.5(Γ)

)]
,

where P is a polynomial function and the constant C depends on Ω±.
From (5.15) and for

(5.28)
√
T M ≤ ε0,

with 0 < ε0 � 1 denoting a sufficiently small constant (which is independent of
M), that for any v ∈ Vk

M

(5.29) ‖η‖Hk+1(Ω+) ≤ C|Ω| .

Since from the definition (5.22),

(5.30) ‖C(v)‖Hk(Ω+) ≤ ‖u0‖Hk+1(Ω+)(1 + C
√
TM),

we then infer from (5.30), (5.29) and (5.27) that

‖v̄+‖Hk+1(Ω+) + ‖v̄−‖Hk+1(Ω−) ≤ C
[
C|Ω|‖u0‖Hk+1(Ω+)(1 + Cε0)(1 + P(|Ω|))

]
.

Therefore,

‖v̄+‖L2(0,T ;Hk+1(Ω+)) + ‖v̄−‖L2(0,T ;Hk+1(Ω−))

≤ 2C
[
C|Ω|‖u0‖Hk+1(Ω+)(1 + Cε0)(1 + P(|Ω|))

]√
T ,

which thanks to (5.28) shows that

‖v̄+‖L2(0,T ;Hk+1(Ω+)) + ‖v̄−‖L2(0,T ;Hk+1(Ω−))

≤ 2C
[
C|Ω|‖u0‖Hk+1(Ω+)(1 + Cε0)(1 + P(|Ω|))

] ε0
M

.

This inequality then proves that v̄ ∈ Vk
M for

M2 = 2C
[
C|Ω|‖u0‖Hk+1(Ω+)(1 + Cε0)(1 + P(|Ω|))

]
ε0 .

Moreover, it is easy to check that the map Θ : v �→ v̄ is sequentially weakly
lower semi-continuous; that is, if vj ⇀ v in the weak topology of the norm defining
the closed convex set Vk

M , then Θvj ⇀ Θv. Therefore, by Schauder’s second fixed-
point theorem (see [21, p. 452]), which is itself a corollary of Tyhonov’s fixed-point
theorem, we then have that Θ has a fixed point in Vk

M .
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5.2.3. The fixed point is a solution to the Euler equations. We now explain why
this fixed point, v = v̄, is indeed a solution of the Euler equations with initial data
u0, and hence a solution to the 3-D vortex patch boundary. At a fixed point v = v̄,
(5.25) becomes the following variational problem:∫

Ω+

Ajk ∂v
+

∂xj
· ∂φ

∂xk
dx+

∫
Ω−

Ajk ∂v
−

∂xj
· ∂φ

∂xk
dx(5.31)

=

∫
Ω+

C(v) · curlη φ detDη dx ∀φ ∈ H1(Ω),

where the operator curlη is defined (5.18). We define the following Eulerian quan-
tities associated to our Lagrangian velocity v and test function φ:

u = v ◦ η−1, C = C(v) ◦ η−1, and w = φ ◦ η−1 .

The change-of-variables theorem shows that (5.31) can be written as1

(5.32)

∫
η(Ω+,t)

Du+ ·Dw dy +

∫
η(Ω−,t)

Du− ·Dw dy =

∫
η(Ω+,t)

C · curlw dy .

Our goal is to show that div u = 0 and that curlu = C. To do so, we use
integration-by-parts on the left-hand side of (5.32); we see that∫

η(Ω,t)

Du ·Dw dy

= −
∫
η(Ω,t)

Δu · w dy +

∫
η(Γ,t)

[[Dnu]] · w dS(t)

=

∫
η(Ω,t)

curl curlu · w dy −
∫
η(Ω,t)

D div u · w dy +

∫
η(Γ,t)

[[Dnu]] · w dS(t)

=

∫
η(Ω,t)

curlu · curlw dy +

∫
η(Ω,t)

div u · divw dy

+

∫
η(Γ,t)

([[Dnu]] + [[n× curlu]]− [[div u]]n·) · w dS(t) .

The identities (5.4) and (5.8) show that for u ∈ H1(η(Ω, t)), so that [[u]] = 0 on
η(Γ, t), we have that

[[Dnu]] + [[n× curlu]]− [[div u]]n = 0 on η(Γ, t),

so that

(5.33)

∫
η(Ω,t)

Du ·Dw dy =

∫
η(Ω,t)

[curlu · curlw + div u divw] dy .

Comparing (5.32) and (5.33), we have that for all test function w ∈ H1(η(Ω, t)),

(5.34)

∫
η(Ω,t)

[curlu · curlw + div u divw] dy =

∫
η(Ω,t)

1η(Ω+,t)C · curlw dy .

We now choose the test function w to have the potential form

w = Dψ,

1Note that η(Ω, t) is the image of the 2�-periodic box, and hence functions defined on η(Ω, t)
are periodic.
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for some function periodic function ψ ∈ H2(η(Ω, t)). Then,

curlw = 0,

and (5.34) reduces to

(5.35)

∫
η(Ω,t)

div u Δψ dx = 0 .

Since u ∈ H1(η(Ω, t)) and is periodic, there exists a periodic function ψ0 ∈
H2(η(Ω, t)), such that

(5.36) div u = Δψ0 in η(Ω, t) .

Letting ψ = ψ0 in (5.35) then shows that

0 =

∫
η(Ω,t)

(div u)2 dx,

and thus

(5.37) div u = 0 .

This being true for all time t ∈ [0, T ], since η(x, 0) = x, we then infer that

(5.38) detDη = 1 .

Using (5.38) and (5.37) in (5.34), we see that for all w ∈ H1(η(Ω, t)),

(5.39) 0 =

∫
η(Ω,t)

(C− curlu) · curlw dy,

and from (5.22) we see that C(v)(x, t) = 0 for all x ∈ Ω−, since ω−
0 = 0. Next, we

note that

∂tC(v) =
∂ v

∂xk
ωk
0 =

∂ v

∂xr
Ar

j

∂ ηj

∂xk
ωk
0 =

∂ v

∂xr
Ar

jC(v)j = Du(η) · C(v),

where Du(η) denotes Du ◦ η. Hence, since C(v) = C ◦ η, it follows that C satisfies

(5.40) Ct +DuC−Du · C = 0 in η(Ω+, t),

and C(y, t) = 0 for all y ∈ η(Ω−, t). Since C ∈ Hk(η(Ω+, t)), k ≥ 2, we take the
divergence of equation (5.40) and find that

(5.41) divCt +Du divC−DC div u+ (ui,j C
j ,i −uj ,i Ci,j ) = 0 .

From (5.37) and the symmetry of the last two terms, we conclude that

divCt +Du divC = 0,

and thus

(5.42) divC(η(x, t), t) = divC(x, 0) .

Since C(0) = curlu0 we then have from (5.42) that

(5.43) divC(η(x, t), t) = 0 .

From (5.24) and (5.38) ∫
η(Ω+,t)

C(y, t) dy = 0 .
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We note that C(·, t) ∈ L2(η(Ω, t)). Next, we define the periodic vector field ψ ∈
H2(η(Ω, t)) as the solution, modulo constants, of

−Δψ+ =C in η(Ω+, t),

−Δψ− =0 in η(Ω−, t),

with the continuity conditions, which follow from the fact that Dψ ∈ H1(η(Ω, t)),

(5.44) [[ψ]] = 0 and [[DnΨ]] = 0 on η(Γ, t) .

Theorem 4 shows that ψ ∈ Hk+2(η(Ω±, t)), k ≥ 2. Moreover, from (5.42), divψ
is harmonic in both η(Ω+, t) and η(Ω−, t) and is a periodic function; furthermore,
[[D divψ · n]] = 0 on Γ(t), for

D divψ± · n =curl(curlψ±) · n+Δψ± · n
=curl(curlψ±) · n+ C · n
=curl(curlψ±) · n
=Dτ1(curlψ

±) · τ2 −Dτ2(curlψ
±) · τ1,

where we have used C · n = 0 on Γ(t) in the third equality, so that

(5.45) [[D divψ · n]] = [[Dτ1 curlψ · τ2 −Dτ2 curlψ · τ1]] .
Using (5.44),

[[curlψ]] = 0 on η(Γ, t),

so that
[[Dτα curlψ]] = 0 on η(Γ, t),

and from (5.45),

(5.46) [[D divψ·n]] = 0 on η(Γ, t) .

We now set Ω±(t) = η(Ω±, t) Using (5.46) and the fact that divψ ∈ H1(Ω(t)) ∩
Hk+1(Ω±(t)), k ≥ 2, is harmonic in Ω±(t) and is a periodic function, we find that

0 =

∫
Ω+(t)

Δdivψ divψ dy +

∫
Ω−(t)

Δdivψ divψ dy

=−
∫
Ω+(t)

|D divψ|2dy −
∫
Ω−(t)

|D divψ|2dy +
∫
Γ(t)

[[D divψ·n]] divψ dS(t)

=−
∫
Ω+(t)

|D divψ|2dy −
∫
Ω−(t)

|D divψ|2dy

which shows that divψ(·, t) is a constant.
Therefore,

(5.47) Δψ = − curl(curlψ),

so that − curl(curlψ) = C. Substituting this into (5.39), we see that for all test
functions w ∈ H1(η(Ω, t)),

(5.48) 0 =

∫
η(Ω,t)

(− curl(curlψ)− curlu) · curlw dy .

Next, we set w = − curlψ+u in (5.48), which satisfies the condition of being a test
function, and obtain that

0 =

∫
η(Ω,t)

| curl(curlψ + u)|2 dx,
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and thus

curlu+ = − curl(curlψ+) = C in Ω+(t),

and

curlu− = − curl(curlψ−) = 0 in Ω−(t) .

Thanks to (5.40), we have that in Ω+(t),

curlut +Du curlu−Du · curlu = 0,

which is the same as

curl (ut +Duu) = 0,

from which we infer the existence of a pressure function p such that

ut +Duu+Dp = 0 .

Therefore, u is the solution of the incompressible Euler equations (1.1), as we have
already proven that div u = 0.

It remains only to show that u(x, 0) = u0(x). To this end, we notice that from
(5.22),

C(v)(x, 0) = curlu0(x),

and thus

curlu(·, 0) = curlu0,

which coupled with the fact that div u(·, 0) = 0 = div u0 and the periodicity of u,
provides us with

u(·, 0) = u0 + c,

where c is a constant vector. From (5.26),∫
Ω

u(x, 0) dx = 0,

which coupled with ∫
Ω

u0(x) dx = 0,

then shows that c = 0, so that u(·, 0) = u0, which completes our proof that u is the
solution of the vortex patch problem on [0, T ], with the desired regularity properties.
In particular, by (5.12) and (5.29), we see that η ∈ C0([0, T ];Hk+1(Ω+)) and hence
by the trace theorem, η ∈ C0([0, T ];Hk+1/2(Γ)). Since the vortex patch boundary
Γ(t) = η(Γ, t) for each t ∈ [0, T ], we see that Γ(t) is of Sobolev-class Hk+1/2. To
explain why Γ(t) is indeed η(Γ, t), we use the identity curlu ◦ η = Dη · ω0, where
we recall that ω0 = curlu0 and satisfies (1.13). Next, we choose a local coordinate
system at a point x ∈ Γ, such that n(x, 0) = e3 and the two tangent vectors are

τ1 = e1 and τ2 = e2. By conditions (1.13g,h), we can write ω+
0 =

∑2
α=1 ω

+
0 · eα eα.

This means that curlu+(η(x, t), t) = η,α ω+
0 · eα, and as we have shown already,

curlu+(η(x, t), t) · n(η(x, t), t) = ω+
0 · eαη,α · (η,1×η,2)

|η,1×η,2| = 0. Since for α = 1, 2, η,α is

a tangent vector to η(Γ, t) at the point η(x, t) and hence continuous, then

[[curlu]] ◦ η = η,α [[ω+
0 · eα]] .

This shows that the set Γ(t), on which curlu(·, t) has a jump discontinuity, is
propagated by the Lagrangian flow map η(·, t).

Uniqueness of solutions has been shown by Gamblin & Saint Raymond [13].
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6. Elliptic regularity

6.1. A two-phase elliptic problem. For k ≥ 2, let Ω+ ⊆ Rn denote an open,
bounded Hk+1-domain which is diffeomorphic to a C∞, connected, open, and
bounded domain B. We set Γ := ∂Ω+, which is then an Hk+1/2-class closed
surface. Let Ω denote a periodic box [−L,L]n in Rn with opposite sides identified,

and with L sufficiently large so that Ω+ is properly contained in Ω. Functions
defined on Ω are 2L-periodic in each of the n coordinate directions, i.e.,

u(x+ 2	ei) = u(x) ∀x ∈ R
n, i = 1, . . . , n,

where ei denotes the usual Cartesian basis. We set Ω− = Ω/Ω+
c
.

We establish elliptic regularity for the following two-phase vector valued elliptic
problem:

− ∂

∂xj

(
ajk±

∂u±
∂xk

)
= f ± in Ω±,(6.1a)

[[u ]] = 0 on Γ,(6.1b) [[
ajk

∂u

∂xk
Nj

]]
= g on Γ(6.1c)

u− is periodic on ∂Ω ,(6.1d)

where u± = (u1
±, · · · ,un

±) and f ± = (f 1, · · · , f n), g = (g1, · · · , gn) are vector

valued functions, and ajk± are two-tensors which satisfy the positivity condition

(6.2) ajk± ξjξk ≥ λ|ξ|2 ∀ ξ ∈ R
n

for some λ > 0. We use the notation [[w ]] = w+ −w− for vector fields w on Γ, and
we let N denote the outward unit normal to ∂Ω+. The system (6.1) has a unique
solution in H1(Ω) when we additionally assume that

∫
Ω
u(x)dx = 0.

Let V = H1(Ω), the space of H1 functions on [−L,L]n which are 2L-periodic.
Let u = u+1Ω+ + u−1Ω− , f = f +1Ω+ + f −1Ω− . The variational (or weak) form
of (6.1) is given by

(6.3)

∫
Ω±

ajk
∂u i

∂xk

∂ϕi

∂xj
dx =

∫
Ω±

f ϕ dx+

∫
Γ

g ϕ dS ∀ϕ ∈ V ,

where we use the following integral notation:∫
Ω±

ajk
∂u i

∂xk

∂ϕi

∂xj
dx =

∫
Ω+

ajk+
∂u i

+

∂xk

∂ϕi

∂xj
dx+

∫
Ω−

ajk−
∂u i

−
∂xk

∂ϕi

∂xj
dx

and ∫
Ω±

f ϕ dx =

∫
Ω+

f + ϕ dx+

∫
Ω−

f − ϕ dx .

The regularity theory for solutions u of (6.3) is classical when the coefficient
matrix ajk is in Ck, and can be summarized by the following

Theorem 3. Suppose that for some k ∈ N, ajk± ∈ Ck(Ω±) satisfies (6.2). Then for

all f ± ∈ Hk−1(Ω±) and g ∈ Hk−0.5(Γ), the solution u to (6.1) is in Hk+1(Ω±),
and satisfies

(6.4) ‖u±‖Hk+1(Ω±) ≤ C
[
‖f ±‖Hk−1(Ω±) + ‖g‖Hk−0.5(Γ)

]
for some constant C depending on ‖a±‖Ck(Ω±).
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We use the following notation for norms:

‖(·)±‖Hk+1(Ω±) = ‖(·)+‖Hk+1(Ω+) + ‖(·)−‖Hk+1(Ω−) .

We shall need the corresponding result for the case that the coefficient matrix

ajk± has only Sobolev-class regularity:

Theorem 4. Suppose that for some integer k >
n

2
and 1 ≤ 	 ≤ k, ajk± ∈ Hk(Ω±)

satisfies (6.2). Then if f ∈ H�−1(Ω+) and g ∈ H�−0.5(Γ), the weak solution u± to
(6.1) is in H�+1(Ω±), and satisfies

(6.5) ‖u±‖H�+1(Ω±) ≤ C
[
‖f ±‖H�−1(Ω±) + ‖g‖H�−0.5(Γ)

+ P
(
‖a±‖Hk(Ω±)

)(
‖f ±‖L2(Ω±) + ‖g‖H−0.5(Γ)

)]
,

where P is a polynomial function and the constant C depends on Ω±.

We are using the notation

P
(
‖a±‖Hk(Ω±)

)(
‖f ±‖L2(Ω±) + ‖g‖H−0.5(Γ)

)
= P

(
‖a+‖Hk(Ω+)

)(
‖f +‖L2(Ω+) + ‖g‖H−0.5(Γ)

)
+ P

(
‖a−‖Hk(Ω−)

)(
‖f −‖L2(Ω−) + ‖g‖H−0.5(Γ)

)
.

Proof. Let E± : Hk+1(Ω±) → Hk+1(Rn) denote a Sobolev extension operator, and
let a±ε = ηε � (E

±a±) and fε = ηε � (E
±f). Let {Um}Km=1 denote an open cover of

Ω which intersects the interface Γ, and let {θm}Km=1 denote a collection of charts
such that

(1) θm : B(0, rm) → Um is an Hk+1-diffeomorphism,
(2) det(Dθm) > 0,
(3) θm : B0

m ≡ B(0, rm) ∩ {xn = 0} → Um ∩ Γ,
(4) θm : B+

m ≡ B(0, rm) ∩ {yn > 0} → Um ∩ Ω+,
(5) θm : B−

m ≡ B(0, rm) ∩ {yn < 0} → Um ∩ Ω−,
(6) ‖Dθm − Id‖L∞(B(0,rm)) � 1.

Let 0 ≤ ζm ≤ 1 in C∞
c (Um) denote a partition of unity subordinate to the open

covering Um; that is,

K∑
m=0

ζm = 1 and supp(ζm) ⊆ Um ∀m.

Finally, let g ε denote a smooth regularization of g defined by

g ε =
K∑

m=1

√
ζm

[
Λε

(
(
√
ζm g) ◦ θm

)]
◦ θ−1

m .

It follows that for ε � 1 sufficiently small,

(6.6) ajk± ε
(x)ξjξk ≥ λ

2
|ξ|2 ∀ ξ ∈ R

n, x ∈ Ω .

Hence, by Theorem 3, the solution uε to the variational problem∫
Ω±

ajkε
∂uεi

∂xk

∂ϕi

∂xj
dx =

∫
Ω+

f ε ϕ dx+

∫
Γ

g ε ϕ dS ∀ϕ ∈ V ,
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satisfies uε
± ∈ Hk(Ω±) for all k ≥ 1; in particular, the vector fields uε

± are smooth.
We next establish an ε-independent upper bound for ‖uε

±‖H�+1(Ω±).

Step 1 (Regularity in horizontal directions near Γ). We fix m ∈ {1, . . . ,K} and set

U± = uε
± ◦ θm, F = f ε ◦ θm, G = g ε ◦ θm, ξ = ζm ◦ θm, and Φ = ϕ ◦ θm .

With A = [Dθm]−1, we define brs = (ajk ◦ θm)As
kA

r
j . Then, since ‖Dθm −

Id‖L∞(B+
m) � 1, the matrix b is positive-definite:

(6.7) brsξrξs = (ajk ◦ θm)As
kA

r
jξrξs ≥ λ|ATξ|2 ≥ λ

4
|ξ|2 ∀ξ ∈ R

n .

By the change-of-variables formula, the variational formulation is written as

∫
B±

m

brs
∂U i

∂xr

∂Φi

∂xs
dx =

∫
B±

m

F Φ dx+

∫
B0

m

GΦ dS ∀Φ ∈ H1
0 (Bm),

where
∫
B±

m
brs ∂ Ui

∂ xr

∂Φi

∂ xs
dx =

∫
B+

m
brs+

∂Ui
+

∂ xr

∂Φi

∂ xs
dx+

∫
B−

m
brs−

∂Ui
−

∂ xr

∂Φi

∂ xs
dx.

With Δ0 =
∑n−1

α=1
∂ 2

∂ x2
α
denoting the horizontal Laplace operator, we define the

test function

Φ = (−1)�
[
ξΔ�

0(ξU)
]
,

so that

∫
B±

m

brs
∂U i

∂xr

∂Φi

∂xs
dx

(6.8)

≤ C
[
‖f +‖H�−1(Ω+) + ‖f −‖H�−1(Ω−) + ‖g‖H�−0.5(Γ)

]∥∥∂ �
(ξU±)

∥∥
H1(B±

m)
.

We focus now on the left-hand side of (6.8). We let ∂ = (∂ 1, · · ·, ∂ n−1) denote
the horizontal gradient, and write

∂
�
V ∂

�
W =

n−1∑
α1=1

· · ·
n−1∑
α�=1

∂ �V

∂xα1
· · · ∂xα�

∂ �W

∂xα1
· · · ∂xα�

,

∂
�−1

V ∂
�+1

W =

n−1∑
α1=1

· · ·
n−1∑

α�−1=1

∂ �V

∂xα1
· · · ∂xα�−1

∂ �Δ0W

∂xα1
· · · ∂xα�−1

,

and so forth. Then,

∫
B±

m

brs
∂U i

∂xr

∂Φi

∂xs
dx(6.9)

=

∫
B±

m

∂
�[
brs(ξU),r

]
∂
�
(ξU),s dx−

∫
B±

m

∂
�[
brsUξ,r

]
∂
�
(ξU),s dx

+

∫
B±

m

∂
�−1[

brsU,r ξ,s
]
∂
�+1

(ξU)dx .
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For the first term on the right-hand side of (6.9), we make use of (6.7) and Young’s
inequality to conclude that∫

B±
m

∂
�[
brs(ξU),r

]
∂
�
(ξU),s dx =

∫
B±

m

brs∂
�
(ξU),r ∂

�
(ξU),s dx

+

∫
B±

m

[
{∂ �

, brs}(ξU),r
]
∂
�
(ξU),s dx

≥
(λ
8
− δ

)∥∥∂ �
D(ξU±)

∥∥2
L2(B±

m)
− Cδ

∥∥{∂ �
, b}D(ξU±)

∥∥2
L2(B±

m)
.

Then, Corollary 6 with ε = 1/8 shows that∫
B±

m

∂
�[
brs(ξU),r

]
∂
�
(ξU),s dy ≥

(λ
8
− δ

)∥∥∂ �
D(ξU±)

∥∥2
L2(B±

m)
(6.10)

− Cδ‖a±‖2Hk(Ω±)‖uε
±‖2

H�+7
8 (Ω±)

.

By Lemma 5, for 0 ≤ 	 ≤ k + 1, f± ∈ Hmax{k,�}(Ω±) and g± ∈ H�(Ω±), and for a
generic C,

(6.11)
‖f± g±‖H�(Ω) ≤ C‖f±‖Hmax{k,�}(Ω±)‖g±‖H�(Ω±)

∀ f± ∈ Hmax{k,�}(Ω±), g± ∈ H�(Ω±) .

For the second and third terms on the right-hand side of (6.9), we use the inequality
(6.11), and find that∣∣∣∣

∫
B±

m

∂
�[
brsUξ,r

]
∂
�
(ξU),s dx

∣∣∣∣+
∣∣∣∣
∫
B±

m

∂
�−1[

brsU,r ξ,s
]
∂
�+1

(ξU)dx

∣∣∣∣
≤ Cδ‖a±‖2Hk(Ω)‖uε

±‖2H�(Ω±) + δ
∥∥∂ �

D(ξU±)
∥∥2
L2(B±

m)
.(6.12)

Choosing δ > 0 sufficiently small in (6.10) and (6.12), we conclude that
(6.13)∥∥ξ∂ �

DU±
∥∥
L2(B±

m)
≤ C

[
‖f ±‖H�−1(Ω±) + ‖g‖H�−0.5(Γ) + ‖a‖Hk(Ω)‖uε

±‖H�+7
8 (Ω±)

]
.

Step 2 (Regularity in the vertical direction near Γ). We write (6.1a) as

(6.14) −ξ
(
brsU±,s

)
,r = ξF± in B±

m .

We analyze (6.14) in the +-phase and drop the +-subscript for notational clarity.
With U,n denoting ∂U/∂xn, we have that

− ξbnnU,nn(6.15)

= ξ
[
F − bnn,n U,n −

∑
(r,s) �=(n,n)

brs,r U,s −
∑

(r,s) �=(n,n)

brsU,sr

]
in B+

m .

We analyze the terms on the right-hand side of (6.15). For any integer j such that
0 ≤ j ≤ 	− 1,

∥∥∂ �−1−j
DjF

∥∥
L2(B+

m)
≤ C

[
‖f ‖H�−1(Ω+)

]
.
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Moreover, since 	 ≤ k, by Lemma 5 with ε = 1/8,∥∥∂ �−1−j
Dj(ξbnn,n U,n )

∥∥
L2(B+

m)
+

∑
(r,s) �=(n,n)

∥∥∂ �−1−j
Djbrs,r U,s

∥∥
L2(B+

m)

≤ C

�−1∑
r=0

‖D�−raDr+1uε‖L2(Ω+)

≤ C
�∑

r=1

‖D�+1−raDruε‖L2(Ω+) ≤ Cε‖a‖Hk(Ω+)‖uε‖
H�+7

8 (Ω+)
.

Finally, by Corollary 6 with ε = 1/8,∥∥{∂ �−1−j
Dj , ξbnn}U,nn

∥∥
L2(B+

m)
+

∑
(r,s) �=(n,n)

∥∥{∂ �−1−j
Dj , ξbrs}U,rs

∥∥
L2(B+

m)

≤ Cε‖a‖Hk(Ω)‖uε‖
H�+7

8 (Ω+)
.

Therefore, for 0 ≤ j ≤ 	− 1, letting ∂
�−1−j

Dj act on (6.15),

(6.16) ξbnn∂
�−1−j

DjU,nn = G(�,j) −
∑

(r,s) �=(n,n)

ξbrs∂
�−1−j

DjU,rs

for a function G(�,j) satisfying

‖G(�,j)‖L2(B+
m) ≤ C

[
‖f ‖H�−1(Ω+) + ‖a‖Hk(Ω+)‖uε‖

H�+7
8 (Ω+)

]
.

Now we argue by induction on 0 ≤ j ≤ 	−1. By (6.7), bnn ≥ λ
2
so that when j = 0,

the inequalities (6.13) and (6.16) show that∥∥ξ∂ �−1
U,nn

∥∥
L2(B+

m)
≤ ‖G(�,j)‖L2(B+

m) +
∑

(r,s) �=(n,n)

‖brs‖L∞(B+
m)

∥∥ξ∂ �−1U,rs
∥∥
L2(B+

m)

≤ C
[
‖f ‖H�−1(Ω+) + ‖g‖H�−0.5(Γ) + ‖a‖Hk(Ω+)‖uε‖

H
�+7

8 (Ω+)

]

which, combined with (6.13), provides the estimate∥∥ξ∂ �−1
D2U

∥∥
L2(B+

m)
≤ C

[
‖f ‖H�−1(Ω+) + ‖g‖H�−0.5(Γ) + ‖a‖Hk(Ω+)‖uε‖

H�+7
8 (Ω+)

]
.

Repeating this process for j = 1, · · · , 	 and including the analysis in the −-phase,
we conclude that∥∥ξD�+1U±

∥∥
L2(B±

m)
(6.17)

≤ C
[
‖f ±‖H�−1(Ω±) + ‖g‖H�−0.5(Γ) + ‖a±‖Hk(Ω±)‖uε

±‖H�+7
8 (Ω±)

]
.

Step 3 (Completing the regularity theory). Let χ± ≥ 0 be in C∞
c (Ω±) so that

supp(χ±)⊂⊂Ω±. Repeating the computations above, we find that

(6.18) ‖χ±D
�+1uε

±‖L2(Ω±) ≤ C
[
‖f ±‖H�−1(Ω±) + ‖a±‖Hk(Ω±)‖uε

±‖H�+7
8 (Ω±)

]
.

The inequalities (6.17) and (6.18) establish the inequality
(6.19)

‖uε
±‖H�+1(Ω±) ≤ C

[
‖f ±‖H�−1(Ω±) + ‖g‖H�−0.5(Γ) + ‖a±‖Hk(Ω±)‖uε

±‖H�+7
8 (Ω±)

]
.
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Since

‖uε
±‖H�+7

8 (Ω±)
≤ C‖uε

±‖
1− 1

8�

H�+1(Ω±)
‖uε

±‖
1
8�

H1(Ω±),

Young’s inequality shows that

‖uε
±‖H�+1(Ω±)

≤ Cδ

[
‖f ±‖H�−1(Ω±) + ‖g‖H�−0.5(Γ) + P

(
‖a±‖Hk(Ω±)

)
‖uε

±‖H1(Ω±)

]
+ δ‖uε

±‖H�+1(Ω±)

for some polynomial function P. Finally, the inequality (6.4) is established
by choosing δ > 0 sufficiently small, letting ε → 0, and using the a priori H1-
estimate. �

Appendix A. Some basic inequalities

Lemma 5. For k >
n

2
and 0 ≤ 	 ≤ k, let O ⊆ Rn be a bounded smooth domain.

Then for all ε ∈
(
0,

1

4

)
, there exists a constant Cε depending on ε such that for all

f ∈ Hk(O) and g ∈ H�−ε(O),

(A.1)
�∑

j=1

‖DjfD�−jg‖L2(O) ≤ Cε‖f‖Hk(O)‖g‖H�−ε(O) .

Proof. We estimate DjfD�−jg for j = 1, · · · , 	 as follows:

Step 1. If 1 ≤ j ≤ n

2
, by the Sobolev inequalities

‖w‖
L

n
j−ε (O)

≤ Cε‖w‖H n
2
−j+ε(O)

( if 0 < ε < 1),

‖w‖
L

2n
n−2(j−ε) (O)

≤ C‖w‖Hj−ε(O),

we find that

‖DjfD�−jg‖L2(O) ≤ ‖Djf‖
L

n
j−ε (O)

‖D�−jg‖
L

2n
n−2(j−ε) (O)

≤ Cε‖f‖H n
2
+ε(O)

‖g‖H�−ε(O) .

Step 2. If j = 	, by the Sobolev inequality

‖w‖L∞(O)≤ Cε‖w‖H n
2
+ε(O)

,

we find that

‖DjfD�−jg‖L2(O) ≤ Cε‖f‖H�(O)‖g‖H n
2
+ε(O)

.

Step 3. If
n

2
< j < 	 (this happens only when

n

2
< 	 ≤ k), we consider the following

two sub-cases:

Case A (	 ≤ n). Similar to the previous case, by the Sobolev inequalities

‖w‖
L

2n
n−2(�−j) (O)

≤ C‖w‖H�−j(O) and ‖w‖
L

n
�−j (O)

≤ C‖w‖
H

n
2
−�+j(O)

,

and hence, we obtain that

‖DjfD�−jg‖L2(O) ≤ ‖Djf‖
L

2n
n−2(�−j) (O)

‖D�−jg‖
L

n
�−j (O)

≤ C‖f‖H�(O)‖g‖H n
2 (O)

.
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Case B (n < 	 ≤ k). If j > k− n

2
, by the Sobolev inequalities

‖w‖
L

2n
n−2(k−j) (O)

≤ C‖w‖Hk−j(O) and ‖w‖
L

n
k−j (O)

≤ C‖w‖
H

n
2
−k+j(O)

,

we obtain that

‖DjfD�−jg‖L2(O) ≤ ‖Djf‖
L

2n
n−2(k−j) (O)

‖D�−jg‖
L

n
k−j (O)

≤ C‖f‖Hk(O)‖g‖H n
2
−k+�(O)

.

Now suppose that
n

2
< j ≤ k− n

2
. Note that if 0 < ε <

1

2
,

‖w‖
H

n
2
+ε(O)

≤ Cε‖w‖W j,∞(O) ≤ Cε‖w‖Hk(O),

‖w‖
H

n
2
−k+�(O)

≤ C‖w‖H�−j(O) ≤ C‖w‖H�−ε(O) .

Therefore, by the Gagliardo-Nirenberg-Sobolev interpolation inequality, we obtain
that

‖DjfD�−jg‖L2(O) ≤ ‖f‖W j,∞(O)‖g‖H�−j(O)

≤ Cε‖f‖1−αj

H
n
2
+ε(O)

‖f‖αj

Hk(O)
‖g‖αj

H
n
2
−k+�(O)

‖g‖1−αj

H�−ε(O)

for some αj ∈ (0, 1); hence, by Young’s inequality,

‖DjfD�−jg‖L2(O) ≤ Cε

[
‖f‖

H
n
2
+ε(O)

‖g‖H�−ε(O) + ‖f‖Hk(O)‖g‖H n
2
−k+�(O)

]
.

Summing over 	, we conclude that for 0 < ε <
1

2
,

�∑
j=1

‖DjfD�−jg‖L2(O)

≤

⎧⎨
⎩

Cε‖f‖H n
2
+ε(O)

‖g‖H�−ε(O) if 	 ≤ n

2
,

Cε

[
‖f‖

H
n
2
+ε(O)

‖g‖H�−ε(O) + ‖f‖Hk(O)‖g‖H n
2
+ε(O)

]
otherwise .

Estimate (A.1) is then obtained from the fact that for all ε ∈
(
0,

1

4

)
,

n

2
+ ε ≤ k and

n

2
+ ε ≤ 	− ε if (in addition) 	 >

n

2
.

�

Corollary 6. For any m ∈ {1, . . . ,K}, and for F ∈ Hk(B±
m) and G = H�−ε(B±

m)
with 0 < ε < 1/4 and 1 ≤ 	 ≤ k,

(A.2)
∥∥{∂ �

, F}G
∥∥
L2(B±

m)
≤ Cε‖F‖Hk(B±

m)‖G‖H�−ε(B±
m),

where {∂ �
, F}G = ∂

�
(FG)− F∂

�
G.
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