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Abstract. The purpose of this this paper is to present a new simple proof
for the construction of unique solutions to the moving free-boundary incom-

pressible 3-D Euler equations in vacuum. Our method relies on the Lagrangian
representation of the fluid, and the anisotropic smoothing operation that we
call horizontal convolution-by-layers. The method is general and can be ap-
plied to a number of other moving free-boundary problems.

1. Introduction. Following the framework that we developed in [3], we present
a new simple proof for the construction of unique solutions to the moving free-
boundary incompressible 3-D Euler equations in vacuum. Our method relies on the
Lagrangian representation of the fluid, and the anisotropic smoothing operation
that we call horizontal convolution-by-layers. While we present the material for the
case of three space dimensions, the same presentation covers the case of plane flow
also. We will not consider the presence of surface tension in this paper, and we will
not make any assumptions of irrotationality.

1.1. The Eulerian description. For 0 ≤ t ≤ T , the evolution of a three-dimensio-
nal incompressible fluid with a moving free-surface is modeled by the incompressible
Euler equations:

ut + u · Du + Dp = 0 in Ω(t) , (1a)

divu = 0 in Ω(t) , (1b)

p = 0 on Γ(t) , (1c)

V(Γ(t)) = u · n (1d)

u = u0 on Ω(0) , (1e)

Ω(0) = Ω . (1f)

The open subset Ω(t) ⊂ R
3 denotes the changing volume occupied by the fluid,

Γ(t) := ∂Ω(t) denotes the moving free-surface, V(Γ(t)) denotes normal velocity of
Γ(t), and n(t) denotes the exterior unit normal vector to the free-surface Γ(t). The
vector-field u = (u1, u2, u3) denotes the Eulerian velocity field, and p denotes the
pressure function. We use the notation D = (∂1, ∂2, ∂3) to denote the gradient
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operator. We have normalized the equations to have all physical constants equal to
1.

This is a free-boundary partial differential equation to determine the velocity and
pressure in the fluid, as well as the location and smoothness of the a priori unknown
free-surface. A recent explosion of interest in the analysis of the free-boundary
incompressible Euler equations, particularly in irrotational form, has produced a
number of different methodologies for obtaining a priori estimates, and the accom-
panying existence theories have mostly relied on the Nash-Moser iteration to deal
with derivative loss in linearized equations when arbitrary domains are considered,
or complex analysis tools for the irrotational problem with infinite depth. We refer
the reader to [1], [3], [5], [6], [7], [8], [11], [12], [13], [14] for a partial list of papers
on this topic.

The purpose of these lectures is to make our presentation in [3] more accessi-
ble, and to explain the basic interaction of the geometry of the free-surface with
the motion of the fluid. As is often the case, with the passage of time, a more
concise treatment can be presented, and this is indeed the case for the free-surface
incompressible Euler problem.

To avoid the use of local coordinate charts necessary for arbitrary geometries,
for simplicity, we will assume that the initial domain Ω at time t = 0 is given by

Ω = {(x1, x2, x3) ∈ R
3 | (x1, x2) ∈ T

2, x3 ∈ (0, 1)} , (2)

where T
2 denotes the 2-torus, which can be thought of as the unit square (0, 1)2

with periodic boundary conditions. This permits the use of one global Cartesian
coordinate system. We only allow the top boundary

Γ = {x3 = 1}
to move, while the bottom boundary is fixed with boundary condition

u3 = 0 on {x3 = 0} × [0, T ] .

We refer the reader to our paper [3] for the case that the initial domain is an
arbitrary bounded, open subset of R

3 with H3-class boundary.

1.2. Einstein’s summation convention. Repeated Latin indices i, j, k,, etc., are

summed from 1 to 3; for example, F,ii :=
∑

i=1,3
∂2

∂xi∂xi
.

1.3. The Lagrangian description. We transform the system (1) into Lagrangian
variables. We let η(x, t) denote the “position” of the fluid particle x at time t. Thus,

∂tη = u ◦ η for t > 0 and η(x, 0) = x

where ◦ denotes composition so that [u ◦ η](x, t) := u(η(x, t), t) . We set

v = u ◦ η (Lagrangian velocity),

q = p ◦ η (Lagrangian pressure),

A = [Dη]−1 (inverse of the deformation tensor),

J = det[Dη] (Jacobian determinant of the deformation tensor),

a = J A (cofactor of the deformation tensor).

Since div u = 0, we have that det Dη = 1, and hence the cofactor matrix of Dη is
equal to [Dη]−1. Using Einstein’s summation convention, and using the notation
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F,k to denote ∂F
∂xk

, the kth-partial derivative of F for k = 1, 2, 3, the Lagrangian

version of equations (1) is given on the fixed reference domain Ω by

vi
t + Ak

i q,k = 0 in Ω × (0, T ] , (3a)

divη v = 0 in Ω × (0, T ] , (3b)

q = 0 on Γ × (0, T ] , (3c)

v3 = 0 on {x3 = 0} × (0, T ] , (3d)

(η, v) = (e, u0) in Ω × {t = 0} , (3e)

where e(x) = x denotes the identity map on Ω. Notice that the free suface Γ(t) is
given by

Γ(t) = η(t)(Γ) .

The Lagrangian divergence divη v = Aj
i v

i,j . Equation (3a) can be written in vector
form as

vt + AT Dq = 0 in Ω × (0, T ] , (3a’)

where AT denotes the transpose of A. Solutions to (3) which are sufficiently smooth
to ensure that η(t) are diffeomorphisms, give solutions to (1) via the change of
variables indicated above.

1.4. The Lagrangian vorticity equation. We make use of the permutation sym-
bol

εijk =







1, even permutation of {1, 2, 3},
−1, odd permutation of {1, 2, 3},

0, otherwise ,

and the basic identity regarding the ith component of the curl of a vector field u:

(curlu)i = εijkuk,j .

Defining curlη v = curlu ◦ η, the chain rule shows, by taking the curl of the Euler
equations (3a), that

(curlη vt)i = εijkAs
jv

k
t ,s = 0. (4)

2. Notation.

2.1. Differentiation and norms. For integers k ≥ 0 and a smooth, open domain
Ω of R

3, we define the Sobolev space Hk(Ω) (Hk(Ω; R3)) to be the completion of
C∞(Ω) (C∞(Ω; R3)) in the norm

‖u‖2
k :=

∑

|a|≤k

∫

Ω

|Dau|2dx,

where Da denotes all partial derivatives of order a. For real numbers s ≥ 0, the
Sobolev spaces Hs(Ω) and the norms ‖ · ‖s are defined by interpolation. We will
write Hs(Ω) instead of Hs(Ω; R3).

We define the horizontal derivative by ∂̄ = (∂1, ∂2), and define the Sobolev space
Hk(Γ) to be the completion of C∞(Γ) in the norm

|u|2k :=
∑

|a|≤k

∫

Γ

|∂̄au|2dS ,

where ∂̄a denotes all horizontal partial derivatives of order a, and dS = dx1dx2

denotes the ‘surface measure.’ For real s ≥ 0, the Hilbert space Hs(Γ) and the
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boundary norm | · |s is defined by interpolation. The negative-order Sobolev spaces
H−s(Γ) are defined via duality: for real s ≥ 0, H−s(Γ) := [Hs(Γ)]′ .

2.2. The space of divergence-free vectors on Ω. In order to specify our initial
velocity field, we introduce the following subspace of Hs vector-fields on Ω for s ≥ 0:

Definition 2.1 (Hs-class divergence free vectors).

Hs
div(Ω) = {u ∈ Hs(Ω; R3) : u3 = 0 on {x3 = 0}, xh 7→ u(xh, x3) periodic

div u = 0} .

3. Properties of the cofactor matrix a, and a polynomial-type inequality.

3.1. Differentiating the inverse matrix A. Using that Dη A = Id, we have the
following identities

∂̄Ak
i = −As

i ∂̄ηr,s Ak
r , (5)

DAk
i = −As

iDηr,s Ak
r , (6)

∂tA
k
i = −As

iv
r,s Ak

r . (7)

3.2. Relating the cofactor matrix and the unit normal n(t). With N =
(0, 0, 1) the outward unit normal to Γ, we have the identity

n(η) = aT N/|aT N | or ni(η) = a3
i /|a3

· | .

For α, β = 1, 2, we define the components of the induced metric on Γ(t) by

gαβ(x1, x2, t) = η,α (x1, x2, t) · η,β (x1, x2, t),

and let
√

g denote
√

det(gαβ). The metric g is a 2 × 2 matrix defined on Γ. It is
an elementary computation (see [3]) to verify that

√
g = |η,1 ×η,2 | = |a3

· | on Γ ,

and hence that a3
i =

√
gni(η).

A3
i = J−1√gni(η) on Γ . (8)

3.3. A polynomial-type inequality. For a constant M0 ≥ 0, suppose that f(t) ≥
0, t 7→ f(t) is continuous, and

f(t) ≤ M0 + C t P (f(t)) , (9)

where P denotes a polynomial function, and C is a generic constant. Then for t
taken sufficiently small, we have the bound

f(t) ≤ 2M0 .

We use this type of inequality (see [3]) in place of nonlinear Gronwall-type of in-
equalities.
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4. Trace estimates and the Hodge decomposition elliptic estimates. The
normal trace theorem states that the existence of the normal trace w · N |Γ of a
velocity field w ∈ L2(Ω) relies on the regularity of divw ∈ L2(Ω) (see, for example,
[10]). If divw ∈ L2(Ω), then w · N exists in H−0.5(Γ). We will use the following
variant:

‖∂̄w · N‖2
H−0.5(Γ) ≤ C

[

‖∂̄w‖2
L2(Ω) + ‖divw‖2

L2(Ω)

]

(10)

for some constant C independent of w.
The construction of our higher-order energy function is based on the following

Hodge-type elliptic estimate:

Proposition 1. For an Hr domain Ω with Γ = ∂Ω, r ≥ 3, if F ∈ L2(Ω; R3) with

curlF ∈ Hs−1(Ω; R3), divF ∈ Hs−1(Ω), and ∂̄F · N |Γ ∈ Hs− 3

2 (Γ) for 1 ≤ s ≤ r,
then there exists a constant C̄ > 0 depending only on Ω such that

‖F‖s ≤ C̄
(

‖F‖0 + ‖ curlF‖s−1 + ‖ div F‖s−1 + |∂̄F · N |s− 3

2

)

,

‖F‖s ≤ C̄
(

‖F‖0 + ‖ curlF‖s−1 + ‖ div F‖s−1 +
∑2

α=1 |∂̄F · Tα|s− 3

2

)

,
(11)

where N denotes the outward unit-normal to Γ, and Tα, α = 1, 2, denotes the two
tangent vectors to Γ.

The first estimate is well-known and follows from the identity −∆F = curl curlF−
DdivF ; a convenient reference is Taylor [9]. The second estimate immediately fol-
lows.

5. Horizontal convolution-by-layers and commutation estimates.

5.1. Horizontal convolution-by-layers. With xh = (x1, x2), we define ρ ∈
C∞

0 (R2) by ρ(xh) = C exp
(

1
|xh|2−1

)

if |xh| < 1 and ρ(xh) = 0 if |xh| ≥ 1; we

then select the constant C so that
∫

R2 ρdxh = 1. We define ρκ(xh) = 1
κ2 ρ(x

κ ). It

follows that for κ > 0, 0 ≤ ρκ ∈ C∞
0 (R2) with spt(ρκ) ⊂ B(0, κ). (Here, spt stands

for support.) We define the operation of horizontal convolution-by-layers as follows:

Λκf(xh, x3) =

∫

R2

ρκ(xh − yh)f(yh, x3)dyh for f ∈ L1(R2) .

We introduced this type of smoothing operation in Section 2 of [3], but in the setting
of a general initial domain Ω, which required a partition of unity and a collection
of local charts to define properly.

By standard properties of convolution, there exists a constant C which is inde-
pendent of κ, such that for s ≥ 0,

‖ΛκF‖s ≤ C‖F‖s ∀ F ∈ Hs(Ω) ,

and

|ΛκF |s ≤ C|F |s ∀ F ∈ Hs(Γ) .

Furthermore,

κ‖∂̄ΛκF‖0 ≤ C‖F‖0 ∀ F ∈ L2(Ω) . (12)
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5.2. Commutation estimates.

Lemma 5.1. For f ∈ W 1,∞(Γ) and g, ∂̄g ∈ L2(Γ), there is a generic constant C
independent of κ such that

|Λκ(f ∂̄g) − f Λκ∂̄g|0 ≤ C|f |W 1,∞(Γ) |g|0 ,

where W 1,∞(Γ) denotes the Sobolev space of functions u ∈ L∞(Γ) with weak deriv-
ative ∂̄u ∈ L∞(Γ).

Proof. We have that

[Λκ(f ∂̄g) − f Λκ∂̄g](x) =

∫

B(xh,κ)

1

κ2
ρ(

xh − yh

κ
)[f(yh) − f(xh)]∂̄g(yh)dyh

=

∫

B(xh,κ)

1

κ3
∂̄ρ(

xh − yh

κ
)[f(yh) − f(xh)]g(yh)dyh

︸ ︷︷ ︸

I1

−
∫

B(xh,κ)

ρκ(xh − yh)∂̄f(yh)g(yh)dyh

︸ ︷︷ ︸

I2

,

where we have used integration-by-parts in order to obtain the second equality.
From Morrey’s inequality, for all yh ∈ B(xh, κ),

|f(xh) − f(yh)| ≤ κ‖∂̄f‖L∞(T2) ≤ κ|f |W 1,∞(Γ) ,

so that with K(xh) = 1
κ2 |∂̄ρ(xh

κ )|,
|I1| ≤ |f |W 1,∞(Γ) K ∗ |g| ,

so by Young’s inequality for convolution integrals,

|I1|0 ≤ |f |W 1,∞(Γ)‖K‖L1(T2) |g|0 .

Similarly,

|I2|0 ≤ |f |W 1,∞(Γ)‖ρκ‖L1(T2)|g|0 .

The assertion is proved, given that

‖K‖L1(T2) =

∫

T2

1

κ2
|∂̄ρ(

yh

κ
)|dyh =

∫

T2

|∂̄ρ(z)|dz < ∞ .

Lemma 5.2. For κ > 0, there exists C > 0 independent of κ, such that for any

g ∈ H
1

2 (Ω) and f ∈ H3(Ω), we have that
∥
∥Λκ(fg) − fΛκg

∥
∥

1

2

≤ Cκ‖g‖ 1

2

‖f‖3 + Cκ
1

2 ‖g‖0‖f‖3.

Proof. Let ∆ = Λκ(fg) − f Λκg. Then, we have that

∆(x) =

∫

B(xh,κ)

ρκ(xh − yh)[f(yh, x3) − f(xh, x3)] g(yh, x3) dyh .

Using the fact that H2(Ω) is embedded in L∞(Ω), we have that

|∆(x)| ≤ Cκ‖f‖3

∫

B(xh,κ)

ρκ(xh − yh) |g(yh, x3)| dyh ,
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showing that

‖∆‖0 ≤ Cκ‖f‖3‖Λκ|g|‖0

≤ Cκ‖f‖3‖g‖0. (13)

Now, for j = 1, 2, 3,

∆,j = Λκ(fg,j ) − f Λκg,j +Λκ(f,j g) − f,j Λκg.

The difference between the two first terms of the right-hand side of this identity
can be treated in a similar fashion as (13), leading us to:

‖∆,j ‖0 ≤ Cκ‖f‖3‖g‖1 + ‖Λκ(f,j g)‖0 + ‖f,j Λκg‖0

≤ Cκ‖f‖3‖g‖1 + ‖f,j g‖0 + ‖f,j ‖L∞(Ω)‖Λκg‖0

≤ Cκ‖f‖3‖g‖1 + 2‖f,j ‖L∞(Ω)‖g‖0

≤ Cκ‖f‖3‖g‖1 + C‖f‖3‖g‖0. (14)

Consequently, we obtain by interpolation from (13) and (14):

‖∆‖ 1

2

≤ Cκ‖f‖3‖g‖ 1

2

+ Cκ
1

2 ‖f‖3‖g‖0.

Following the estimate (14), we can similarly obtain estimates for ‖∆,jk ‖0 and
‖∆,jkl ‖0, j, k, l = 1, 2, 3, and thus estimate the H2(Ω)-norm as well as the H3(Ω)-
norm of ∆. Interpolation then yields the following:

Lemma 5.3. For κ > 0 and s = 3
2 or 5

2 , there exists C > 0 independent of κ, such

that for any g ∈ Hs(Ω) and f ∈ H3(Ω), we have that
∥
∥Λκ(fg) − fΛκg

∥
∥

s
≤ Cκ‖g‖s‖f‖3 + Cκ

1

2 ‖g‖s− 1

2

‖f‖3.

6. An asymptotically consistent κ-approximation of the Euler equations.

6.1. The smoothed flow map ηκ.

Definition 6.1 (The horizontally-smoothed flow map ηκ). Suppose the Lagrangian
flow map η is in C([0, T ], H3(Ω)). For κ ∈ (0, κ0), we set on [0, T ]

ηκ = Λ2
κη and vκ = ∂tηκ .

By choosing T > 0 and κ0 sufficiently small, we can ensure that

Aκ(x, t) = [Dηκ(x, t)]−1

is well-defined on [0, T ]. We then define Jκ = det[Dηκ], and aκ = JκAκ.

6.2. Smoothing the initial data. In order to construct solutions to (3), we will
introduce an approximation scheme below, and it will be convenient to smooth the
initial velocity field.

Let 0 ≤ ̺κ ∈ C∞
0 (R3) denote the standard family of mollifiers with spt(̺κ) ⊂

B(0, κ), and let EΩ denote the Sobolev extension operator mapping Hs(Ω) to
Hs(R3) for s ≥ 0.

We set wκ
0 = ̺κEΩ(u0), and define

uκ
0 = wκ

0 − Drκ ,
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where the scalar function rκ is the solution to the elliptic problem

∆rκ = div wκ
0 in Ω , (15a)

xh 7→ rκ(xh, x3) periodic x3 ∈ [0, 1] , (15b)

rκ = 0 on Γ , (15c)

∂rκ

∂x3
= (wκ

0 )3 on {x3 = 0} . (15d)

Thus, given u0 ∈ H4
div(Ω), it follows that uκ

0 ∈ Hs
div(Ω) for all s ≥ 4, and that

uκ
0 → u0 in H4(Ω) as κ → 0.

6.3. The approximate κ-problem. For κ ∈ (0, κ0), we consider the following
sequence of approximate problems:

vt + AT
κ Dq = 0 in Ω × (0, Tκ] , (16a)

divηκ
v = 0 in Ω × (0, Tκ] , (16b)

q = 0 on Γ × (0, Tκ] , (16c)

v3 = 0 on {x3 = 0} × (0, Tκ] , (16d)

(v, η) = (uκ
0 , eκ) on Ω × {t = 0} , (16e)

where the solution η = η(κ) depends on the parameter κ, but for notational simpli-

fication, we do not explicitly write this dependence, and where divηκ
v = (Aκ)j

i v
i,j ,

and eκ = Λ2
κe, where e(x) = x denotes the identity map on Ω. We refer to the

approximation (16) as the κ-problem. (Note that our solution is periodic in the x1

and x2 directions.)

7. Construction of smooth solutions to κ-approximate Euler equations.

Definition 7.1 (The manifold of volume-preserving embeddings). For s ≥ 3, we
let

Ds
vol = {η ∈ Hs(Ω; R3) : η({x3 = 0}) ⊂ {x3 = 0}, xh 7→ η(xh, x3) periodic

detDη = 1 , η−1 ∈ Hs(η(Ω); Ω) } .

For s ≥ 3, Ds
vol is a infinite-dimensional C∞ Hilbert manifold (see, for example,

[4]). We let TDs
vol denote the tangent bundle over Ds

vol, and TTDs
vol the second

tangent bundle. Locally, elements of TDs
vol consist of pairs (η, v) ∈ Ds

vol×Hs
div(Ω)◦η,

where

Hs
div(Ω) ◦ η = {u ◦ η : u ∈ Hs

div(Ω)} .

Theorem 7.2. Suppose that for s ≥ 4, uκ
0 ∈ Hs(Ω) with div u0 = 0. Then for each

κ ∈ (0, κ0), there exists a unique solution (η(κ), v(κ)) ∈ C∞([0, Tκ]; TDs
vol) to (16)

with Tκ > 0 depending on ‖uκ
0‖s an on κ > 0.

Proof. With ηκ and vκ defined in Definition 6.1, we define

u = v ◦ η−1
κ , uκ = vκ ◦ η−1

κ , and p = q ◦ η−1
κ .
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It follows from the chain-rule that (16) can be written on the time dependent domain
ηκ(t, Ω) as

ut + uκ · Du + Dp = 0 in ηκ(t, Ω) , (17a)

div u = 0 in ηκ(t, Ω) , (17b)

p = 0 on ηκ(t, Γ) , (17c)

(u, η) = (uκ
0 , e) on Ω × {t = 0} , (17d)

Taking the divergence of (17a), we see that p(t) satisfies

−∆p = ui,j uj
κ,i in ηκ(t, Ω) , (18a)

p = 0 on ηκ(t, Γ) , (18b)

∂p

∂N
= 0 on {x3 = 0} . (18c)

The estimates for p(t) can be easily obtained by transforming (18), set on the
smoothed moving domain ηκ(t, Ω), to an elliptic equation on the fixed domain Ω.
It is important to note that this transformation should not be made with the map
ηκ(t), but rather with a family of diffeomorphisms which inherits the smoothness
of ηκ|Γ. To this end, consider the solution to ∆Φ(t) = 0 in Ω with Φ(t) = ηκ(t) on
Γ. It follows that

‖Φ(t)‖s+1 ≤ C|ηκ|s+1/2 ≤ C(1 +
1

κ
)|η|s−1/2 ≤ C(1 +

1

κ
)‖η‖s , (19)

where the first inequality is the standard elliptic estimate for the Dirichlet problem,
the second follows from (12), and the third from the trace theorem. For κ and Tκ

taken sufficiently small ‖Φ(t) − e‖s can be made arbitrarily small on [0, Tκ], from
which it follows that each such Φ(t) : Ω → ηκ(t, Ω) is a diffeomorphism.

Next, define the matrix B = [DΦ]−1 and the pressure function Q = p ◦Φ. Using
the chain-rule, (18) is transformed to

−Bj
i [B

k
i Q,k ],j =

(
ui,j uj

κ,i
)
◦ Φ in Ω , (20a)

Q = 0 on Γ , (20b)

Q,k Bk
i B3

i = 0 on {x3} = 0 , (20c)

for 0 ≤ t ≤ Tκ. Elliptic estimates (in conjunction with the Sobolev embedding
theorem) show that

‖Q(t)‖s+1 ≤ CP (‖Φ(t)‖s+1)‖ui,j uj
κ,i ◦Φ‖s−1

where P is a polynomial function of its argument; hence, together with (19), we
have the estimate

‖Q(t)‖s+1 ≤ CκP (‖η(t)‖s) · ‖v‖2
s ,

where the constant Cκ depends on κ > 0 and, in fact, blows-up as κ → 0. Since
p = Q ◦ Φ−1, we see that

‖Dp(t) ◦ η(t)‖s ≤ CκP (‖η(t)‖s, ‖v‖s) . (21)

We define the function F on TDs
vol by

F(η, v) = −Dp ◦ ηκ ,
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and write (16a) as the coupled system of first-order ordinary differential equations
written on TDs

vol:

∂t(η, v) = (v,F) ,

(η, v)|t=0 = (e, u0) .

According to the estimate (21), (v,F) : TDs
vol → TTDs

vol continuously; moreover,
since composition on the right is a smooth operation,

(v,F) : TDs
vol → TTDs

vol is a C∞ map.

Thus, the fundamental theorem of ordinary differential equations (or Picard itera-
tion) shows that there exists a time Tκ > 0 depending on the initial data (and, of
course, κ > 0) such that

(η, v) = (η(κ), v(κ)) ∈ C∞([0, Tκ]; TDs
vol)

is a unique solution of (16). Since, by definition Q = 0 on Γ, and

q = Q ◦ Φ−1 ◦ ηκ , (22)

it follows that q = 0 on Γ as well.

8. Asymptotic estimates which are independent of the smooth parameter
κ. According to Theorem 7.2, we have unique solutions to (16),

(η(κ), v(κ)) ∈ C∞([0, Tκ]; TDs
vol) ,

and q(κ) given by (22). We will take s ≥ 6, and for notational convenience we will

denote (η(κ), v(κ)) by (η̃, ṽ), and write Ã for [Dη̃]−1. We use the notation η̃κ to

denote Λ2
κη̃ and set Ãκ = [Dη̃κ]−1.

8.1. A continuous-in-time energy function appropriate for the asymptotic
process κ → 0.

Definition 8.1. We set on [0, Tκ]

Eκ(t) = 1 + ‖Λκη̃(t)‖2
4.5 + ‖ṽ(t)‖2

4 + ‖κṽ(t)‖2
4.5 + ‖ṽt(t)‖2

3.5 + ‖
√

κṽt(t)‖2
4 . (23)

The function Eκ(t) is the higher-order energy function which we will prove re-
mains bounded on a time-interval which is independent of κ. Given (η̃, ṽ) ∈ TD6

vol,
the Eκ(t) is continuous on [0, Tκ].

Definition 8.2. We set E(t) = Eκ=0(t) .

Definition 8.3. We set the constant M0 to be a polynomial function of E(0) so
that

M0 = P (E(0), ‖ curluκ
0‖2

3.5) . (24)

8.2. Statement of the main result. Given an initial velocity field u0 ∈ H4
div, we

obtain the initial pressure function p0 as the solution to the elliptic equation

−∆p0 = ui
0,j uj

0,i in Ω ,

p0 = 0 on Γ ,

p0,3 = 0 on {x3 = 0} .
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Theorem 8.4 (Main Result). Given initial data u0 ∈ H4
div(Ω) with curlu0 ∈

H3.5(Ω) such that

− ∂p0

∂x3
(x) ≥ λ > 0 for x ∈ Γ ,

there exists a solution to (3) verifying

sup
t∈[0,T ]

E(t) ≤ P (E(0)) .

If u0 ∈ H5
div(Ω) and curlu0 ∈ H4.5(Ω), then the solution is unique.

Remark 1. The same theorem and proof hold in the case that Ω ⊂ R
2. We refer

the reader to our paper [3] for the case of a general initial domain Ω.

Remark 2. The regularity for the existence theory is not optimal. In fact, for our
domain Ω, all that is necessary to establish existence and uniqueness of solutions
to (3) is an initial velocity field u0 ∈ H3

div(Ω); nevertheless, the assumptions of
Theorem 8.4 allow for the most transparent proof.

8.3. Conventions about constants. As noted above, Theorem 7.2 provides us
with solutions (η̃, ṽ) ∈ TD6

vol, and hence supt∈[0,Tκ] Eκ(t) is continuous.
We take Tκ > 0 sufficiently small so that, using the fundamental theorem of

calculus, for constants c1, c2 and t ∈ [0, Tκ],

−q̃,3 (t) ≥ λ/2 ,

c1 det g̃κ(0) ≤ det g̃κ(t) ≤ c2 det g̃κ(0) on Γ ,

c1 det J̃κ(0) ≤ det J̃κ(t) ≤ c2 det J̃κ(0) in Ω ,

‖Λ̃κη(t)‖4 ≤ |Λκe|4 + 1 , ‖q̃(t)‖4 ≤ ‖q̃(0)‖4 + 1 ,

‖ṽ(t)‖3.5 ≤ ‖u0‖3.5 + 1 , ‖ṽt(t)‖3 ≤ ‖ṽt(0)‖3 + 1 .

The right-hand sides appearing in the last three inequalities shall be denoted by a
generic constant C in the estimates that we will perform.

8.4. Curl and divergence estimates for η̃, ṽ, and ṽt.

Proposition 2. For all t ∈ (0, T ), with T ≤ Tκ,

‖curlΛκη̃(t)‖2
3.5 + ‖curl ṽ(t)‖2

3 + ‖κcurl ṽ(t)‖2
3.5 + ‖

√
κcurl ṽt(t)‖2

2.5

≤ M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) . (25)

Proof. By taking the curl of (16a), we have that

curlηκ
ṽt = 0 .

From (4), it follows that (curlη̃κ
ṽ)k

t = B(Ãκ, Dṽ), where

B(Ãκ, Dṽ) = εkji(Ãκ)t
s

j ṽ
i,s = εkij ṽ

i,s (Ãκ)s
p ṽp

κ,l (Ãκ)l
j ;

hence,

curlη̃κ
ṽ(t) = curluκ

0 +

∫ t

0

B(Ãκ(t′), Dṽ(t′))dt′ . (26)

Step 1. Estimate for curlΛκη̃. Computing the gradient of (26) yields

curlη̃κ
Dṽ(t) = D curluκ

0 − ε·jiD(Ãκ)s
j ṽ

i,s +

∫ t

0

DB(Ãκ(t′), Dṽ(t′))dt′ .
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Applying the fundamental theorem of calculus once again, shows that

curlη̃κ
Dη̃(t) = tD curluκ

0 + ε·ji

∫ t

0

[(Ãκ)t
s

jDη̃i,s −D(Ãκ)s
j ṽ

i,s ]dt′

+

∫ t

0

∫ t′

0

DB(Ãκ(t′′), Dṽ(t′′))dt′′dt′ ,

and finally that

D curl η̃(t) = tD curluκ
0 − ε·ji

∫ t

0

(Ãκ)t
s

j(t
′)dt′ Dη̃i,s (27)

+ ε·ji

∫ t

0

[(Ãκ)t
s

jDη̃i,s −D(Ãκ)s
j ṽ

i,s ]dt′ +

∫ t

0

∫ t′

0

DB(Ãκ(t′′), Dṽ(t′′))dt′′dt′ .

Using the fact that ∂t(Ãκ)s
j = −(Ãκ)s

l ṽ
l
κ,p (Ãκ)p

j and D(Ãκ)s
j = −(Ãκ)s

l Dη̃l
κ,p (Ãκ)p

j ,
we see that

DB(Ã, Dṽ) = −εkji[Dṽi,s (Ãκ)s
l ṽ

l
κ,p (Ãκ)p

j + ṽi,s (Ãκ)s
l Dṽl

κ,p (Ãκ)p
j

+ ṽi,s ṽl
κ,p D((Ãκ)s

l (Ãκ)p
j )] .

The precise structure of the right-hand side is not very important; rather, the
derivative count is the focus, and as such we write

DB(Ã, D̃v) ∼ D2ṽ Dṽκ Ãκ Ãκ + D2ṽκ Dṽ Ãκ Ãκ + D2η̃κ Dṽ Dṽκ Ãκ Ãκ .

Integrating by parts in time in the last term of the right-hand side of (27), we
see that

∫ t

0

∫ t′

0

DB(Ãκ, Dṽ) dt′′dt′

∼ −
∫ t

0

∫ t′

0

[

D2η̃ (Dṽκ Ãκ Ãκ)t + D2η̃κ (Dṽ Ãκ Ãκ)t

]

dt′′dt′

+

∫ t

0

∫ t′

0

D2η̃κ Dṽ Dṽκ Ãκ Ãκdt′′dt′

+

∫ t

0

[

D2η̃ Dṽκ Ãκ Ãκ + D2η̃κ Dṽ Ãκ Ãκ

]

dt′ .

Thus, we can write

D curl η̃(t) ∼ tD curluκ
0 + D2η̃

∫ t

0

Dṽκ Ãκ Ãκdt′

︸ ︷︷ ︸

I1

+

∫ t

0

D2η̃DṽκÃκÃκdt′

︸ ︷︷ ︸

I2

+

∫ t

0

D2η̃κDṽ ÃκÃκdt′

︸ ︷︷ ︸

I3

+

∫ t

0

∫ t′

0

D2η̃κ Dṽ Dṽκ Ãκ Ãκdt′′dt′

︸ ︷︷ ︸

I4

+

∫ t

0

∫ t′

0

D2η̃κ (Dṽ Ãκ Ãκ)tdt′′dt′

︸ ︷︷ ︸

I5

+

∫ t

0

∫ t′

0

D2η̃ (Dṽκ Ãκ Ãκ)tdt′′dt′

︸ ︷︷ ︸

I6

.
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Our goal is to estimate ‖D curlΛκη‖2
2.5, which in turn requires us to estimate

‖ΛκIi‖2
2.5 for i = 1, ..., 6. We begin with i = 1:

‖ΛκI1‖2
2.5 ≤ ‖D2Λκη̃

∫ t

0

Dṽκ Ãκ Ãκdt′‖2
2.5

+ ‖Λκ

(

D2η̃

∫ t

0

Dṽκ Ãκ Ãκdt′
)

−
∫ t

0

Dṽκ Ãκ Ãκdt′ΛκD2η̃‖2
2.5

It is easy to see that

‖D2Λκη̃

∫ t

0

Dṽκ Ãκ Ãκdt′‖2
2.5 ≤ CTP ( sup

t∈[0,T ]

Eκ(t)) ,

and by Lemma 5.3

‖Λκ

(

D2η̃

∫ t

0

Dṽκ Ãκ Ãκdt′
)

−
∫ t

0

Dṽκ Ãκ Ãκdt′ΛκD2η̃‖2
2.5

≤ Cκ2‖D2η̃‖2
2.5 ‖

∫ t

0

Dṽκ Ãκ Ãκdt′‖2
3 + Cκ‖D2η̃‖2

2 ‖
∫ t

0

Dṽκ Ãκ Ãκdt′‖2
3

≤ CTP ( sup
t∈[0,T ]

Eκ(t))

The same type of commutation estimate shows that

‖ΛκI2‖2
2.5 ≤ CTP ( sup

t∈[0,T ]

Eκ(t)) .

For i = 3, 4, 5, we use that ‖ΛκIi‖2.5 ≤ ‖Ii‖2.5 and as H2.5(Ω) is a multiplicative
algebra, we see that for i = 3, 4, 5,

‖ΛκIi‖2
2.5 ≤ CTP ( sup

t∈[0,T ]

Eκ(t)) .

Finally, we consider the case that i = 6:

‖ΛκI6‖2
2.5 ≤ ‖

∫ t

0

∫ t′

0

D2Λκη̃ (Dṽκ Ãκ Ãκ)tdt′′dt′‖2
2.5

+ ‖
∫ t

0

∫ t′

0

(

Λκ

[

D2η̃ (Dṽκ Ãκ Ãκ)t

]

−
(

Dṽκ Ãκ Ãκ

)

t
D2Λκη̃

)

dt′′dt′‖2
2.5

≤ CTP ( sup
t∈[0,T ]

Eκ(t)) ,

where we have used Lemma 5.3 for the last inequality together with the fact that
‖κ 1

2 ṽt‖2
4is contained in the energy function Eκ(t). Therefore, we have proven that

‖D curlΛκη‖2
2.5 ≤ M0 + CTP ( sup

t∈[0,T ]

Eκ(t)) ,

and hence with curlη̃κ
ṽt = 0, that

‖ curlΛκη‖2
3.5 ≤ M0 + CTP ( sup

t∈[0,T ]

Eκ(t)) .

Step 2. Estimate for curl ṽ. From (26),

curl v(t) = curl uκ
0 +

∫ t

0

B(Ãκ(t′), Dṽ(t′))dt′ − ε·jkṽk,r

∫ t

0

∂̃t(Aκ)r
jdt′ .

As H3(Ω) is a multiplicative algebra, it follows that on [0, T ],

‖ curl ṽ(t)‖2
3 ≤ M0 + CTP ( sup

t∈[0,T ]

Eκ(t)) .
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Similarly,

‖κ curl ṽ(t)‖2
3.5 ≤ M0 + CTP ( sup

t∈[0,T ]

Eκ(t)) .

Step 3. Estimate for curl ṽt. From (26),

curl ṽt(t) = εikj

∫ t

0

∂t(Ãκ)r
j(t

′)dt′ ṽi
t,r ,

from which it follows that on [0, T ],

‖
√

κ curl ṽt(t)‖2
3 ≤ CTP ( sup

t∈[0,T ]

Eκ(t)) .

Proposition 3. For all t ∈ (0, T ), with T ≤ Tκ,

‖div Λκη̃(t)‖2
3.5 + ‖div ṽ(t)‖2

3 + ‖κdiv ṽ(t)‖2
3.5 + ‖

√
κdiv ṽt(t)‖2

3

≤ M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) . (28)

Proof. Since (Ãκ)j
i ṽ

i,j = 0, we see that

(Ãκ)j
iDṽi,j = −D(Ãκ)j

i ṽi,j . (29)

Step 1. Estimate for div Λκη̃. It follows that

[(Ãκ)j
i Dη̃i,j ]t = ∂t(Ãκ)j

i Dη̃i,j −D(Ãκ)j
i ṽi,j

so that

[(Ãκ)j
iDη̃i,j ](t) =

∫ t

0

(

∂t(Ãκ)j
i Dη̃i,j −D(Ãκ)j

i ṽi,j

)

dt′ ,

and hence

D div η̃(t) =

∫ t

0

∂t(Ãκ)j
iDη̃i,j dt′

︸ ︷︷ ︸

I1

−
∫ t

0

D(Ãκ)j
i ṽi,j dt′

︸ ︷︷ ︸

I2

−
∫ t

0

∂t(Ãκ)j
idt′ Dη̃i,j

︸ ︷︷ ︸

I3

.

Thus,

‖D div Λκη̃(t)‖2
2.5 ≤

3∑

i=1

‖ΛκIi(t)‖2
2.5 .

Using Lemma 5.3 in the same fashion as was used for Propostion 2, we see that

3∑

i=1

‖ΛκIi(t)‖2
2.5 ≤ CTP ( sup

t∈[0,T ]

Eκ(t)) ,

from which it follows that

‖ div Λκη̃(t)‖2
3.5 ≤ CTP ( sup

t∈[0,T ]

Eκ(t)) .

Step 2. Estimate for div ṽ. From (Ãκ)j
i ṽ

i,j = 0, we see that

div ṽ(t) = −
∫ t

0

∂t(Ãκ)j
idt′ ṽi,j . (30)

Hence, it is clear that

‖ div ṽ(t)‖2
3 + ‖κ div ṽ(t)‖2

3.5 ≤ CTP ( sup
t∈[0,T ]

Eκ(t)) .
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Step 3. Estimate for div ṽt. From (30),

div ṽt(t) = −∂t(Ãκ)j
i ṽ

i,j −
∫ t

0

∂t(Ãκ)j
idt′ ṽi

t,j .

It follows that

‖ div ṽt(t)‖2
2.5 + ‖

√
κ div ṽt(t)‖2

3 ≤ CTP ( sup
t∈[0,T ]

Eκ(t)) .

8.5. Pressure estimates. Letting (Ãκ)j
i

∂
∂xj

act on (16a), for t ∈ [0, Tκ], the pres-

sure function q(x, t) satisfies the elliptic equation

−(Ãκ)j
i

[

(Ãκ)k
i q̃,k

]

,j = ṽi,j (Ãκ)j
r ṽr

κ,s (Ãκ)s
i in Ω ,

q̃ = 0 on Γ ,

q̃,k (Ãκ)k
i (Ãκ)3i = ṽ · ∂t(Ãκ)3· = 0 on {x3 = 0} .

Using our conventions of Section 8.3 concerning the generic constant C, we have
the standard elliptic estimate (see [3]) on [0, Tκ]

‖q̃(t)‖4.5 ≤ C‖Λκη̃(t)‖4.5 . (31)

Similarly by time-differentiating the above elliptic equation for q, elliptic estimates
show that

‖q̃t(t)‖2
4 ≤ C

(
‖Λκη̃(t)‖2

4.5 + ‖ṽ(t)‖2
4

)
.

8.6. Technical lemma. Our energy estimates require the use of the following

Lemma 8.5. Let H
1

2 (Ω)′ denote the dual space of H
1

2 (Ω). There exists a positive
constant C such that

‖∂̄F‖
H

1

2 (Ω)′
≤ C ‖F‖ 1

2

∀F ∈ H
1

2 (Ω) .

Proof. Integrating by parts with respect to the horizontal derivative yields for all
G ∈ H1(Ω),

∫

Ω

∂̄F Gdx = −
∫

Ω

F ∂̄Gdx ≤ C‖F‖0 ‖G‖1 ,

which shows that there exists C > 0 such that

∀F ∈ L2(Ω), ‖∂̄F‖H1(Ω)′ ≤ C‖F‖0 . (32)

Interpolating with the obvious inequality

∀F ∈ H1(Ω), ‖∂̄F‖L2(Ω) ≤ C‖F‖1

proves the lemma.

8.7. Energy estimates. In this section, we take T ∈ (0, Tκ).

Proposition 4. For t ∈ [0, Tκ],

|Λκη̃3(t)|24 + |ṽ3(t)|23.5 ≤ M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) . (33)
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Proof. Taking the L2(Ω) inner-produce ∂̄4 of (16a) with ∂̄4ṽi yields

0 =
1

2

d

dt
‖∂̄4ṽ(t)‖2

0
︸ ︷︷ ︸

I1

+

∫

Ω

∂̄4(Ãκ)k
i q̃,k ∂̄4ṽidx

︸ ︷︷ ︸

I2

+

∫

Ω

(Ãκ)k
i ∂̄4q̃,k ∂̄4ṽidx

︸ ︷︷ ︸

I3

+R , (34)

where R denotes integrals consisting of lower-order terms which can easily be shown,
via the Cauchy-Schwarz inequality, to satisfy

∫ T

0

|R(t)|dt ≤ M0 + C T P ( sup
t∈[0,T ]

E(t)) .

Using the identity (5), we see that

I2 = −
∫

Ω

(Ãκ)k
r ∂̄4η̃r

κ,s (Ãκ)s
i q̃,k ∂̄4ṽidx + R

= −
∫

Γ

(Ãκ)k
r ∂̄4ηr

κ(Ãκ)3i q̃,k ∂̄4ṽidxh

︸ ︷︷ ︸

I2a

+

∫

Ω

(Ãκ)k
r ∂̄4ηr

κ(Ãκ)s
i q,k ∂̄4ṽi,s dx

︸ ︷︷ ︸

I2b

+R .

Since q̃ = 0 on Γ, so that q̃,k = q̃,3, we see that

−I2a =

∫

Γ

(−q̃,3 )∂̄4η̃r
κ(Ãκ)3r ∂̄

4 ṽi(Ãκ)3i dxh ,

Recalling that η̃κ = ΛκΛκη̃,

−I2a =

∫

Γ

(−q̃,3 )∂̄4Λκη̃r(Ãκ)3r ∂̄4Λκṽi(Ãκ)3i dxh

︸ ︷︷ ︸

K1

+

∫

Γ

∂̄4Λκη̃r
[

Λκ

(

(−q̃,3 ) (Ãκ)3i (Ãκ)3r ∂̄4ṽi
)

− (−q̃,3 ) (Ãκ)3i (Ãκ)3r Λκ∂̄4ṽi
]

dxh

︸ ︷︷ ︸

K2

,

According to Lemma 5.1,

K2(t) ≤ |∂̄4Λκη̃r|0
∣
∣
∣Λκ

(

(−q̃,3 ) (Ãκ)3i (Ãκ)3r ∂̄4ṽi
)

− (−q̃,3 ) (Ãκ)3i (Ãκ)3r Λκ∂̄4ṽi
∣
∣
∣
0

≤ C|∂̄4Λκη̃r|0 |q̃,3 (Ãκ)3i (Ãκ)3r |W 1,∞(Γ) |∂̄3ṽi|0 .

By the Sobolev embedding theorem,

|q̃,3 (Ãκ)3i (Ãκ)3r |W 1,∞(Γ) ≤ C|q̃,3 |1.5 |(Ãκ)3i |1.5 |(Ãκ)3r |1.5 ,

so that
∫ T

0

K2(t)dt ≤ C T P ( sup
t∈[0,T ]

Eκ(t)) .

To study the integral K1, we define ñκ to be the outward unit normal to the
moving surface η̃κ(t, Γ), given by ñκ = (ãκ)3i /|(ãκ)3· |. From (8),

(Ãκ)3· = J̃−1
κ

√

g̃κnκ on Γ ,

where
√

g̃κ = |η̃κ,1 ×η̃κ,2 | = |(ãκ)3· | on Γ .
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It follows that

K1(t) =

∫

Γ

(−q̃,3 )∂̄4Λκη̃ · ñκ ∂̄4Λκṽ · ñκ | det g̃κ|J̃−2
κ dxh

=
1

2

d

dt

∫

Γ

(−q̃,3 )|∂̄4Λκη̃ · ñκ|2 | det g̃κ|J̃−2
κ dxh

︸ ︷︷ ︸

K1a

−
∫

Γ

1

2
∂̄4Λκη̃i∂̄4Λκη̃j∂t[(ñκ)i(ñκ)j | det g̃κ| J̃−2

κ ]dxh

︸ ︷︷ ︸

K1b

.

By the assumption of Section 8.3,

∣
∣
∣∂t[(ñκ)i(ñκ)j | det g̃κ| J̃−2

κ ]
∣
∣
∣
L∞(Γ)

≤ C ,

from which it follows that

∫ T

0

K1b(t)dt ≤ C T P ( sup
t∈[0,T ]

Eκ(t)) .

Using our assumed bounds for −q̃,3 (t), det g̃κ(t), J̃κ on [0, Tκ], we see that

c̄|∂̄4Λκη̃(t) · ñκ(t)|20 ≤
∫ T

0

K1(t)dt + M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) ,

for a constant c̄ which depends on λ, g̃κ(0), J̃κ(0).

Notice that N = (0, 0, 1) = ñκ(t) −
∫ t

0
∂tñκ(t′)dt′, and by our assumptions in

Section 8.3, |∂tñκ(t)|L∞(Γ) ≤ C, so that with η̃3 = η̃ · N ,

c̄|Λκη̃3(t)|24 ≤
∫ T

0

K1(t)dt + M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) ,

and hence

c̄|Λκη̃3(t)|24 ≤ −
∫ T

0

I2a(t)dt + M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) ,

It remains to show that the integrals
∫ T

0 I2b(t)dt and
∫ T

0 I3(t)dt are both bounded
by C T P (supt∈[0,T ] Eκ(t)). Using (16b),

I2b(t) = −
∫

Ω

(Ãκ)k
r ∂̄4η̃r

κ q̃,k ṽi,s ∂̄4(Ãκ)s
i dx + R

≤ C‖∂̄4η̃κ(t)‖ 1

2

‖∂̄4Ãκ(t)‖
H

1

2 (Ω)′
+ R

≤ C‖∂̄4η̃κ(t)‖ 1

2

‖∂̄3Ãκ(t)‖
H

1

2 (Ω)
+ R

≤ C sup
t∈[0,T ]

E(t) + R ,

where we have used Lemma 8.5 for the second inequality.
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Finally,

I3(t) = −
∫

Ω

∂̄4q̃ ∂̄4ṽi,k (Ãκ)k
i dx =

∫

Ω

∂̄4q̃ ṽi,k ∂̄4(Ãκ)k
i dx + R

≤ C‖∂̄3q̃(t)‖ 1

2

‖∂̄4Ãκ(t)‖
H

1

2 (Ω)′
+ R

≤ C sup
t∈[0,T ]

E(t) + R ,

where we have used the pressure estimate (31) and Lemma 8.5 for the last inequality.
Summing the estimates for I1, I2, I3 and integrating (34) from 0 to T , we obtain

the inequality,

sup
t∈[0,T ]

(
|η̃3|24 + ‖∂̄4ṽ(t)‖2

4

)
≤ M0 + C T P ( sup

t∈[0,T ]

Eκ(t)) .

According to Proposition 3,

sup
t∈[0,T ]

‖ div ṽ(t)‖2
3 ≤ M0 + C T P ( sup

t∈[0,T ]

Eκ(t)) ,

from which it follows that

sup
t∈[0,T ]

‖∂̄4 div ṽ(t)‖2
H1(Ω)′ ≤ M0 + C T P ( sup

t∈[0,T ]

Eκ(t)) .

Hence, the normal trace estimate (10) shows that

sup
t∈[0,T ]

(
|η̃3(t)|24 + |ṽ3(t)|23.5

)
≤ M0 + C T P ( sup

t∈[0,T ]

Eκ(t)) . (35)

Combining Proposition 4 with the curl estimates in Proposition 2 and the di-
vergence estimates in Proposition 3 for η(t) and v(t) and using (11) provides the
following

Proposition 5. For t ∈ [0, Tκ],

‖Λκη̃(t)‖2
4.5 + ‖ṽ(t)‖2

4 ≤ M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) . (36)

Since ṽt = −ÃT
κ Dq̃, we also obtain

Proposition 6. For t ∈ [0, Tκ],

‖ṽt(t)‖2
3.5 ≤ M0 + C T P ( sup

t∈[0,T ]

Eκ(t)) . (37)

Proposition 7. For t ∈ [0, Tκ] and α = 1, 2,

|
√

κṽα
t (t)|23.5 + |κṽα(t)|24 ≤ M0 + C T P ( sup

t∈[0,T ]

Eκ(t)) . (38)

Proof. Multiplying (16a) by η̃j
κ, we find the identity

ṽt · η̃κ,k = −q̃,k for k = 1, 2, 3 .

It follows that

ṽt · ∂̄ηκ = −∂̄q̃ = 0 on Γ ,

so that the tangential component (with respect to the moving boundary η̃κ(t, Γ))
of ṽt vanishes on Γ. Hence,

∂̄3ṽt · ∂̄η̃κ = −ṽt · ∂̄4η̃κ − 3∂̄2ṽt · ∂̄2η̃κ − 3∂̄ṽt · ∂̄3η̃κ .
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Thus,

|∂̄3ṽt · ∂̄η̃κ|0 ≤ C|ṽt|2.5|η̃κ|4 ≤ C|η̃κ|4 ,

so that using the fundamental theorem of calculus, together with the fact that
ηκ,α (0) is proportional to Tα for α = 1, 2, we find that

|ṽα
t |3 ≤ C|η̃κ|4 + C T |ṽt|3 , (39)

Similarly,

|∂̄4ṽt · ∂̄η̃κ|0 ≤ C|ṽt|3|η̃κ|5 ≤ C|η̃κ|5 ,

from which it follows that

|ṽα
t |4 ≤ C|η̃|5 + C T |ṽt|4 . (40)

Interpolation between (39) and (40) yields

|ṽα
t |3.5 ≤ C|η̃κ|4.5 + C T |ṽt|3.5 .

Interpolation between the inequalities |η̃κ|4 ≤ C|Λκη̃|4 and |η̃κ|5 ≤ C
κ |Λκη̃|4 shows

that
√

κ|η̃κ|4.5 ≤ C|Λκη̃|4. It thus follows from (36) and (37) that
√

κ|ṽα
t (t)|3.5 ≤ M0 + C T P ( sup

t∈[0,T ]

Eκ(t)) .

A similar argument shows that

κ|ṽα(t)|4 ≤ M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) .

Combining the estimate (38) together with the curl estimates in Proposition 2
and divergence estimates in Proposition 3 for κṽ(t) and

√
κṽt(t) proves the following

Proposition 8. For t ∈ [0, Tκ] and α = 1, 2,

‖
√

κṽt(t)‖2
4 + ‖κṽ(t)‖2

4.5 ≤ M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) . (41)

9. Proof of the Main Theorem.

9.1. Time of existence and bounds independent of κ and existence of
solutions to (3). Summing the inequalities provided by the above Propositions,
we find that

sup
t∈[0,T ]

Eκ(t) ≤ M0 + C T P ( sup
t∈[0,T ]

Eκ(t)) .

Just as in Section 9 of [2], this provides us with a time of existence T1 independent
of κ and an estimate on (0, T1) independent of κ of the type:

sup
t∈[0,T1]

Eκ(t) ≤ 2M0 . (42)

In particular, our sequence of solutions (η̃, ṽ) satisfy the κ-independent bound (42)
on the κ-independent time-interval (0, T1).

9.2. The limit as κ → 0. By the κ-independent estimate (42), there exists a

subsequence of {ṽt, Ãκ, Dq̃} which converges uniformly to (vt, A, Dq) where A =

[Dη]−1, and η = e +
∫ t

0 vdt′. Standard arguments show that (η, v) solve (3), and
that

sup
t∈[0,T1]

E(t) ≤ P (E(0)) .
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9.3. Uniqueness. Suppose that on [0, T1], (η1, v1, q1) and (η2, v2, q2) are both so-
lutions of (3) with initial data u0 ∈ H5

div(Ω) and curlu0 ∈ H4.5(Ω), and with both
q1 and q2 satisfying the stability condition −∂qi/∂N > 0 on Γ for i = 1, 2.

Setting

Eη(t) = 1 + ‖η(t)‖2
5.5 + ‖v(t)‖2

5 ,

by the method of the previous section (with κ = 0), we infer that both Eη1(t) and
Eη2(t) are bounded by a constant M0 depending on the data u0 and Γ on a time
interval 0 ≤ t ≤ T1 for T1 small enough.

Let

w := v1 − v2, r := q1 − q2, and ξ := η1 − η2 .

Then (ξ, w, r) satisfies

ξ =

∫ t

0

w in Ω × (0, T ] , (43a)

∂tw
i + (a1)k

i r,k = (a2 − a1)k
i q2,k in Ω × (0, T ] , (43b)

(a1)j
iw

i,j = (a2 − a1)j
i v

2i
,j in Ω × (0, T ] , (43c)

r = 0 on Γ × (0, T ] , (43d)

(ξ, w) = (0, 0) on Ω × {t = 0} . (43e)

We set

E(t) = 1 + ‖ξ(t)‖2
4.5 + ‖w(t)‖2

4 .

We will show that E(t) = 0, which shows that w = 0. We follow the identical anal-
ysis as in the previous section, and estimate the new error terms, arising from the
difference of two solutions, using the additional space regularity in our assumptions.
With (43e), we find that supt∈[0,T ] E(t) ≤ C T P (supt∈[0,T ] E(t)).

9.4. Optimal regularity for initial data. We smoothed our initial data u0 in
order to construct solutions to the κ-approximation (16). Having obtained solutions
which depend only on E(0), a standard density argument shows that the initial
data needs only to satisfy E(0) < ∞. All assumptions on from Section 8.3 can
now be verified by the fundamental theorem of calculus, and taking T1 even small
if necessary.
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