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Abstract. We study a moving boundary value problem consisting of a viscous incompressible
fluid moving and interacting with a nonlinear elastic fluid shell. The fluid motion is governed by the
Navier–Stokes equations, while the fluid shell is modeled by a bending energy which extremizes the
Willmore functional and a membrane energy with density given by a convex function of the local
area ratio. The fluid flow and shell deformation are coupled together by continuity of displacements
and tractions (stresses) along the moving surface defining the shell. We prove the existence and
uniqueness of solutions in Sobolev spaces for a short time.

Key words. Navier–Stokes equations, free boundary problems, shell theory, biofluids, Willmore
energy

AMS subject classifications. 74F10, 35Q30, 74K25, 35Q72, 74B20, 74H20, 74H25, 76D05

DOI. 10.1137/060656085

1. Introduction.

1.1. The problem statement and background. We are concerned with es-
tablishing the existence and uniqueness of solutions to the time-dependent incompress-
ible Navier–Stokes equations interacting with a nonlinear elastic fluid shell (biomem-
brane) for a short time. Recently, there have been many experimental and analytic
studies on the configurations and deformations of elastic biomembranes (see, for ex-
ample, [3], [11], [13], [16], [17], [18], [19], and [21]), but the basic analysis of the coupled
fluid-structure interaction remains open. The fundamental difficulties arise from the
degenerate elliptic operators that arise as the shell tractions. As we detail below, the
bending energy of the shell is the well-known Willmore function, the integral over the
moving surface of the square of the mean curvature. The degenerate elliptic operator
arising from the first variation of this functional is a fourth order nonlinear operator
that smoothes only in the direction which is normal to the moving domain. Our
analysis will provide a well-posedness theorem and explain the interesting interaction
between the shape of the shell and the flow of the fluid.

Fluid-structure interaction problems involving moving material interfaces have
been the focus of active research since the 1990s. The first problem solved in this
area was for the case of a rigid body moving in a viscous fluid (see [9], [14], and
the early works of [22] and [20] for a rigid body moving in a Stokes flow in the
full space). The case of an elastic body moving in a viscous fluid was considerably
more challenging because of some apparent regularity incompatibilities between the
parabolic fluid phase and the hyperbolic solid phase. The first existence results in
this area were for regularized elasticity laws, such as in [10] for a finite number of
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elastic modes, or in [1], [4], and [2] for hyperviscous elasticity laws, or in [15] in which
a phase-field regularization “fattens” the sharp interface via a diffuse-interface model.

The treatment of classical elasticity laws for the solid phase, without any reg-
ularizing term, was considered only recently in [7] for the three-dimensional linear
St. Venant–Kirchhoff constitutive law and in [8] for quasi-linear elastodynamics cou-
pled to the Navier–Stokes equations. Some of the basic new ideas introduced in those
works concerned a functional framework that scales in a hyperbolic fashion (and is
therefore driven by the solid phase), the introduction of approximate problems either
penalized with respect to the divergence-free constraint in the moving fluid domain or
smoothed by an appropriate parabolic artificial viscosity in the solid phase (chosen in
an asymptotically convergent and consistent fashion), and the tracking of the motion
of the interface by difference quotient techniques.

In our companion paper [5], we study the interaction of the Navier–Stokes equa-
tions with an elastic solid shell. Herein, we treat the case of a fluid shell or bio-
membrane. This is a moving boundary problem that models the motion of a viscous
incompressible Newtonian fluid inside of a deformable elastic fluid structure.

Let Ω ⊂ R
3 denote an open bounded domain with boundary Γ := ∂Ω. For

each t ∈ (0, T ], we wish to find the domain Ω(t), a divergence-free velocity field
u(t, ·), a pressure function p(t, ·) on Ω(t), and a volume-preserving transformation
η(t, ·) : Ω → R

3 such that

Ω(t) = η(t,Ω),(1.1a)

ηt(t, x) = u(t, η(t, x)),(1.1b)

ut + ∇uu− νΔu = −∇p + f in Ω(t),(1.1c)

div u = 0 in Ω(t),(1.1d)

(ν Def u− p Id)n = tshell on Γ(t),(1.1e)

u(0, x) = u0(x) ∀ x ∈ Ω,(1.1f)

η(0, x) = x ∀ x ∈ Ω,(1.1g)

where ν is the kinematic viscosity, n(t, ·) is the outward pointing unit normal to Γ(t),
Γ(t) := ∂Ω(t) denotes the boundary of Ω(t), Def u is twice the rate of deformation
tensor of u, given in coordinates by ui

,j + uj
,i, and tshell is the traction imparted onto

the fluid by the elastic shell, which we describe next.

We shall consider a thin elastic shell modeled by the nonlinear Saint Venant–
Kirchhoff constitutive law. With ε denoting the thickness of the shell, the hyperelastic
stored energy function has the asymptotic expansion

Eshell = εEmem + ε3Eben + O(ε4).

The membrane energy satisfies

(1.2) Emem =

∫
Γ

P(J )dS,

where J is the local area ratio and P is a convex function attaining its minimum at
J = 1, while the bending energy Eben is given by

(1.3) Eben =

∫
Γ(t)

(σH2 − σ1K)dS,
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where H and K denote the mean and Gauss curvatures on Γ(t), respectively, and
where σ and σ1 are positive constants. The traction vector

tshell = εtmem + ε3
tben + O(ε4)

is computed from the first variation of the energy function Eshell; the traction vector
associated with the membrane energy is

(1.4) tmem =
[
JP ′′(J ) + 2P ′(J )

]
J,βg

αβη,α +
[
JP ′(J ) + P(J )

]
Hn,

while the traction associated with the bending energy has a simple intrinsic charac-
terization given by

(1.5) tben = σ(ΔgH − 2HK + 2H3)n,

where Δg denotes the Laplacian with respect to the induced metric g on Γ(t):

Δgf =
1√

det(g)

∂

∂xα

(√
det(g)gαβ

∂f

∂xβ

)
.

In this paper, we ignore the inertia of the shell and focus our analysis on the difficulties
associated with the degenerate elliptic operators in tshell.

1.2. Outline of the paper. In section 2, in addition to the use of Lagrangian
variables, we introduce a new coordinate system near the boundary (shell) and three
new maps, ην , ητ , and h, which facilitate the computation of the membrane and
bending tractions tmem and tben. A key observation is the symmetry relation (2.7)
which reduces the derivative count on the tangential reparameterization map ητ .

The space of solutions (to the problem tmem = 0) is introduced in section 3, and
the main theorem is stated in section 4. Section 5 defines our notation, and section 6
provides some useful lemmas.

In section 7, we introduce the linearized and regularized problems. The regular-
ization requires smoothing certain variables as well as the introduction of a certain
artificial viscosity term on the boundary of the fluid domain. Weak solutions of this
linear problem are established via a penalization scheme which approximates the in-
compressibility of the fluid.

In section 8, we establish a regularity theory for our weak solution using energy
estimates for the mollified problem with constants that depend on the mollification
parameters. In section 9, we improve these estimates so that the constants are in-
dependent of the artificial viscosity as well as other regularization parameters. This
requires an elliptic estimate, arising from the boundary condition (1.1e), which pro-
vides additional regularity for the shape of the boundary.

In section 10, the Tychonoff fixed-point theorem is used to prove the existence
of solutions to the original nonlinear problem (1.1). Uniqueness, following required
compatibility conditions, is established in sections 4 and 10.

In section 11, we consider the inclusion of the lower order membrane traction into
the problem formulation so that the full problem is solved.

The inclusion of the inertial term ε1ηtt into the membrane traction tmem will be
studied in a future publication.

2. Lagrangian formulation.

2.1. A new coordinate system near the shell. Consider the isometric im-
mersion η0 : (Γ, g0) → (R3, Id). Let B = Γ × (−ε1, ε1), where ε1 is chosen sufficiently
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small so that the map

B : B → R
3 : (y, z) �→ y + zN(y)

is itself an immersion, defining a tubular neighborhood of Γ in R
3. We can choose

a coordinate system ∂
∂yα , α = 1, 2, and ∂

∂z on B, where ∂
∂yα denotes the tangential

derivative and ∂
∂z denotes the normal derivative.

Let G = B∗(Id) denote the induced metric on B from R
3 so that

G(y, z) = Gz(y) + dz ⊗ dz,

where Gz is the metric on the surface Γ × {z}; note that G0 = g0.

Remark 1. By assumption, g0αβ = ∂
∂yα · ∂

∂yβ , where · denotes the usual Carte-
sian inner product on R

n. Let Cαβ denote the covariant components of the second
fundamental form of the base manifold Γ so that Cαβ = −N,α · ∂

∂yβ . Then Gz is given
by

(Gz)αβ = (g0)αβ − 2zCαβ + z2gγδ0 CαγCβδ.

Let h : Γ → (−ε1, ε1) be a smooth height function and consider the graph of h
in B, parameterized by φ : Γ → B : y �→ (y, h(y)). The tangent space to graph(h),
considered as a submanifold of B, is spanned at a point φ(x) by the vectors

φ∗

(
∂

∂yα

)
=

∂φ

∂yα
=

∂

∂yα
+

∂h

∂yα
∂

∂z
,

and the normal to graph(h) is given by

(2.1) n(y) = J−1
h (y)

(
−Gαβ

h(y)

∂h

∂yα
∂

∂yβ
+

∂

∂z

)
,

where Jh = (1 + h,αG
αβ
h(y)h,β)1/2. The mean curvature H of graph(h) is defined to be

the trace of ∇n, where

(∇n)ij = G

(
∇B

∂
∂wi

n,
∂

∂wj

)
for i, j = 1, 2, 3,

where ∂
∂wα = ∂

∂yα for α = 1, 2 and ∂
∂w3 = ∂

∂z , and ∇B denotes the covariant derivative.

Using (2.1),

(∇n)αβ = G

(
∇B

∂
∂yα

[
−J−1

h Gγδ
h h,γ

∂

∂yδ
+ J−1

h

∂

∂z

]
,

∂

∂yβ

)

= −(Gh)δβ

[
(J−1

h Gγδ
h h,γ),α + J−1

h (−Gγσ
h h,γΓδ

ασ + Γδ
α3)

]
;

(∇n)33 = G

(
∇B

∂
∂z

[
−J−1

h Gγδ
h h,γ

∂

∂yδ
+ J−1

h

∂

∂z

]
,
∂

∂z

)
= J−1

h (−Gγδ
h h,γΓ3

3δ + Γ3
33),

where Γk
ij denotes the Christoffel symbols with respect to the metric G. It follows

that the curvature of graph(h) (in the divergence form) is

(2.2) H = −(J−1
h Gγδ

h h,γ),δ + J−1
h (−Gγδ

h h,γΓj
jδ + Γj

j3),
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y ητ(y,t)

ην(y,t)

η(y,t)

h(y,t)

Γ(t)

Γ
0

Fig. 1. The maps ητ and ην .

or (in the quasi-linear form)

(2.3) H = −J−1
h Gαβ

h

[
δβγ − J−2

h Gγδ
h h,βh,δ

]
h,αγ + Gαβ

h Fαβ(y, h,∇h),

where Fαβ denotes a smooth generic function of y, h, and ∇h.
Remark 2. Note that Gh denotes the metric Gz=h(y) and not the metric on the

submanifold graph(h).
Remark 3. If the initial height function is zero, i.e., h(0) = 0, then H(0) =

Γj
j3(0) which is the mean curvature of the base manifold Γ as required.

2.2. Tangential reparameterization symmetry. Let N denote the normal
bundle to Γ so that for each y ∈ Γ we have the Whitney sum R

3 = TyΓ ⊕Ny.
Given a signed height function h : Γ × [0, T ) → R, for each t ∈ [0, T ), define the

normal map (see Figure 1)

ην : Γ × [0, T ) → Γ(t), (y, t) �→ y + h(y, t)N(y), N(y) ∈ Ny.

Then there exists a unique tangential map ητ : Γ × [0, T ) → Γ (a diffeomorphism as
long as h remains a graph) such that the diffeomorphism η(t) has the decomposition

η(·, t) = ην(·, t) ◦ ητ (·, t), η(y, t) = ητ (y, t) + h(ητ (y, t), t)N(ητ (y, t)).

The tangent vector η,α to Γ(t) can be decomposed with respect to the Whitney sum
as η,α(y, t) = ηκ,α(y, t) ∂

∂yκ + h,κ(ητ (y, t), t)ηκ,α
∂
∂z , and hence the induced metric gαβ =

η,α · η,β may be expressed as

(2.4) gαβ =
[(

(Gh)κσ + h,κh,σ

)
◦ ητ

]
ηκ,αη

σ
,β :=

[
Gκσ ◦ ητ

]
ηκ,αη

σ
,β .

Note that Gκσ is the induced metric with respect to the normal map ην . Furthermore,
we have the following useful relationship between the determinant of the two induced
metrics:

(2.5) det(g) = det(∇0η
τ )2

[
det(Gh)J2

h

]
◦ ητ = det(∇0η

τ )2
[
det(G)

]
◦ ητ ,

where ∇0 denotes the surface gradient.
Remark 4. The identity (2.4) can also be read as (ητ )∗g = G.
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Let y and ỹ = ϕ(y) denote two different coordinate systems on Γ with associated
metrics

gαβ =
∂ηi

∂yα
∂ηi

∂yβ
, g̃αβ =

∂ηi

∂ỹα
∂ηi

∂ỹβ
.

It follows that ϕ∗g̃ = g. Let H, H̃, K, K̃, n, and ñ denote the mean curvature, Gauss
curvature, and the unit normal vector computed with respect to y and ỹ, respectively.
Since H, K, and n depend only on the shape of Γ(t), these geometric quantities are
invariant to tangential reparameterization; thus, we have the identity

(2.6) H̃ = H ◦ ϕ, K̃ = K ◦ ϕ, ñ = n ◦ ϕ.

Similarly, computing the first variation of
∫
Γ(t)

H2dS in our two coordinate sys-

tems yields[(
ΔgH + H(H2 −K)

)
n
]
(y) =

[(
Δg̃H̃ + H̃(H̃2 − K̃)

)
ñ
]
(ỹ) ∀ ỹ = ϕ(y).

By (2.6), we have the following important identity:

(2.7)
[
Δϕ∗g̃H

]
(y) =

[
Δg̃(H ◦ ϕ)

]
(ỹ) ∀ ỹ = ϕ(y),

and hence

(2.8) [ΔG(H ◦ η−τ )] ◦ ητ = ΔgH,

where by (2.3),

(2.9) H ◦ η−τ = −J−1
h Gαβ

h

[
δβγ − J−2

h Gγδ
h h,βh,δ

]
h,αγ + Gαβ

h Fαβ(y, h,∇h).

2.3. Bounds on ητ . Let uτ denote the tangential velocity defined by ητt =
uτ ◦ ητ . Time differentiating the relation η = ην ◦ ητ and using the definition of ην ,
we find that

(2.10) uτ = (∇0η
ν)−1

[
u ◦ ην − ht

∂

∂z

]
.

From the trace theorem, it follows that

(2.11) ‖uτ‖H2.5(Γ) ≤ CP(‖h‖H3.5(Γ), ‖η‖H3(Ω))
[
‖v‖H3(Ω) + ‖ht‖H2.5(Γ)

]
for some polynomial P. Since ητ (y, t) = y +

∫ t

0
(uτ ◦ ητ )(y, s)ds, it follows that

‖∇0η
τ (y, t)‖H1.5(Γ) ≤ C

[
1 +

∫ t

0

‖uτ‖H2.5(Γ)

(
1 + ‖∇0η

τ‖H1.5(Γ)

)4

ds

]
,

and hence by Gronwall’s inequality,

(2.12) ‖∇0η
τ (y, t)‖H1.5(Γ) ≤ C

[
1 +

∫ t

0

‖uτ‖H2.5(Γ)ds

]

for t ∈ [0, T ] sufficiently small. Furthermore, we also have

(2.13) ‖ητt (y, t)‖H2.5(Γ) ≤ C‖uτ‖H2.5(Γ)

[
1 + ‖∇0η

τ‖H1.5(Γ)

]4

.
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2.4. An expression for tben in terms of h and ητ . Now we can compute
tben in terms of h and ητ : the highest order term of ΔgH is{

1√
det(G)

∂

∂yγ

[√
det(G)Gγδ ∂

∂yδ

(
J−1
h (Gαβ

h − J−2
h Gακ

h Gβσ
h h,κh,σ)h,αβ

)]}
◦ ητ .

Since Gαβ = (Gh)αβ + h,αh,β , the inverse of Gγδ is

1

det(G)

[
(Gh)22 + h2

,2 −(Gh)12 − h,1h,2

−(Gh)12 − h,1h,2 (Gh)11 + h2
,1

]
,

which can also be written as

Gαβ = J−2
h

[
Gαβ

h − (−1)κ+σ det(Gh)−1(1 − δακ)(1 − δβσ)h,κh,σ

]
.

Therefore, the highest order term of ΔgH can be written as

1√
det(g0)

[√
det(g0)A

αβγδh,αβ

]
,γδ

◦ ητ ,

where

Aαβγδ = J−3
h

[
Gαγ

h − (−1)κ+σ det(Gh)−1(1 − δακ)(1 − δγσ)h,κh,σ

]
(2.14)

× (Gβδ
h − J−2

h Gβκ
h Gδσ

h h,κh,σ)

is a fourth-rank tensor.

2.5. Lagrangian formulation of the problem. Let η(t, x) = x+
∫ t

0
u(s, x)ds

denote the Lagrangian particle placement field, a volume-preserving embedding of Ω
onto Ω(t) ⊂ R

3, and denote the cofactor matrix of ∇η(x, t) by

(2.15) a(x, t) = [∇η(x, t)]−1.

Let v = u ◦ η denote the Lagrangian or material velocity field, q = p ◦ η the
Lagrangian pressure function, and F = f ◦ η the forcing function in the material
frame. In the following discussion, we also set ε = 1. Then the system (1.1) can be
reformulated as

ηt = v in (0, T ) × Ω,(2.16a)

vit − ν(aj�Dη(v)
i
�),j = −(aki q),k + F i in (0, T ) × Ω,(2.16b)

aki v
i
,k = 0 in (0, T ) × Ω,(2.16c)

(νDη(v)
i
� − qδi�)a

j
�Nj = σΘ

[
L(h)B∗(−Gαβ

h h,α, 1)
]
◦ ητ on (0, T ) × Γ,(2.16d)

ht = B∗((−Gαβ
h h,α, 1)) · (v ◦ η−τ ) on (0, T ) × Γ,(2.16e)

v = u0 on {t = 0} × Ω,(2.16f)

h = 0 on {t = 0} × Γ,(2.16g)

η = Id on {t = 0} × Ω,(2.16h)

where Dη(v)
i
� := (ak� v

i
,k + aki v

�
,k), N denotes the outward-pointing unit normal to Γ,

Θ is defined in Remark 5, and B∗ is the pushforward of B defined as

B∗(γ
′(0)) = (B ◦ γ)′(0) ∀ γ(t) ⊂ Γ.
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L(h) is the representation of tshell · n using the height function h. It is defined as
follows:

L(h) =
1√

det(g0)

[√
det(g0)A

αβγδh,αβ

]
,γδ

+ Lαβγ
1 (y, h,Dh,D2h)h,αβγ

+ L2(y, h,Dh,D2h),

where L1 and L2 are polynomials of their variables with L1(y, 0) = 0, and g0 is the
metric tensor on Γ. Note that tmem is included in L2, since it is a second order
operator of h.

Remark 5. For a point η(y, t) ∈ Γ(t), there are two ways of defining the unit
normal n to Γ(t):

1. Let n =
√
g−1aTN , where N is the unit normal to Γ.

2. Let n = [J−1
h (−Gαβ

h h,α
∂

∂yβ + ∂
∂z )] ◦ ητ (denoted by [J−1

h (−∇0h, 1)] ◦ ητ ).
The function Θ is defined by

Θ(−∇0h ◦ ητ , 1) = aTN.

Equating the modulus of both sides, by (2.5) we must have

Θ =
√

det(g)[(J−1
h ) ◦ ητ ] = det(∇0η

τ )
√

det(Gh) ◦ ητ .

Remark 6. An equivalent form of (2.16e) is given by

ht = −h,α(v ◦ η−τ )α + (v ◦ η−τ )z.

This equation states that the shape of the boundary moves with the normal velocity of
the fluid.

Remark 7. For many of the nonlinear estimates that appear later, it is important
that L(h) is linear in the third derivative h,αβγ .

Remark 8. Without using the symmetry (2.8), we can still compute ΔgH in
terms of h and ητ by using (2.4) and (2.5); however, L1 would then depend on ∇2

0η
τ

and thus lose one derivative of regularity, preventing the closure of our energy esti-
mate.

3. Notation and conventions. For T > 0, we set

V1(T ) =
{
v ∈ L2(0, T ;H1(Ω))

∣∣∣ vt ∈ L2(0, T ;H1(Ω)′)
}

;

V2(T ) =
{
v ∈ L2(0, T ;H2(Ω))

∣∣∣ vt ∈ L2(0, T ;L2(Ω))
}

;

Vk(T ) =
{
v ∈ L2(0, T ;Hk(Ω))

∣∣∣ vt ∈ L2(0, T ;Hk−2(Ω))
}

for k ≥ 3;

H(T ) =
{
h ∈ L2(0, T ;H5.5(Γ))

∣∣∣ ht ∈ L2(0, T ;H2.5(Γ)), htt ∈ L2(0, T ;H0.5(Γ))
}

with norms

‖v‖2
V1(T ) = ‖v‖2

L2(0,T ;H1(Ω)) + ‖vt‖2
L2(0,T ;H1(Ω)′);

‖v‖2
V2(T ) = ‖v‖2

L2(0,T ;H2(Ω)) + ‖vt‖2
L2(0,T ;L2(Ω));

‖v‖2
Vk(T ) = ‖v‖2

L2(0,T ;Hk(Ω)) + ‖vt‖2
L2(0,T ;Hk−2(Ω)) for k ≥ 3;

‖h‖2
H(T ) = ‖h‖2

L2(0,T ;H5.5(Γ)) + ‖ht‖2
L2(0,T ;H2.5(Γ)) + ‖htt‖2

L2(0,T ;H0.5(Γ)).
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We then introduce the space (of “divergence-free” vector fields)

Vv =
{
w ∈ H1(Ω)

∣∣∣ aji (t)wi
,j = 0 ∀ t ∈ [0, T ]

}
and

Vv(T ) =
{
w ∈ L2(0, T ;H1(Ω))

∣∣∣ aji (t)wi
,j = 0 ∀ t ∈ [0, T ]

}
,

where the cofactor matrix a is defined by (2.15). We use XT to denote the space
V3(T ) ×H(T ) with norm

‖(v, h)‖2
XT

= ‖v‖2
V3(T ) + ‖h‖2

H(T )

and use YT , a subspace of XT , to denote the space

YT =
{

(v, h) ∈ V3(T ) ×H(T )
∣∣∣ ht ∈ L∞(0, T ;H2(Γ))

}
with norm

‖(v, h)‖2
YT

= ‖(v, h)‖2
XT

+ ‖v‖2
L∞(0,T ;H2(Ω)) + ‖h‖2

L∞(0,T ;H4(Γ))

+ ‖ht‖2
L∞(0,T ;H2(Γ)).

We will solve (2.16) by a fixed-point method in an appropriate subset of YT .

4. The main theorem. Before stating the main theorem, we define the follow-
ing quantities. Let q0 be defined by

Δq0 = −∇u0 : (∇u0)
T + ν[ak�Dη(u0)

i
�],ki(0) + divF (0) in Ω,(4.1a)

q0 = ν(Def u0 ·N) ·N − σL(0) on Γ(4.1b)

and

(4.2) u1 = νΔu0 −∇q0 + F (0).

We also define the projection operator Pij(x) : R
3 → Tη(x,t)Γ(t) by

Pij(x) = [δij − (J−2
h ◦ ητ )aki a�jNk(x)N�(x)] =

[
δij −

akiNk(x)

|akiNk(x)|
a�jN�(x)

|a�jN�(x)|

]
.

Theorem 4.1. Let ν > 0, σ > 0 be given, and

F ∈ L2(0, T ;H2(Ω)), Ft ∈ L2(0, T ;L2(Ω)), F (0) ∈ H1(Ω).

Suppose that the shell traction satisfies the compatibility condition

(4.3) [Def u0 ·N ]tan = 0.

There exists T > 0 depending on u0 and F such that there exists a solution (v, h) ∈ YT

of problem (2.16). Moreover, if u0 ∈ H5.5(Ω)∩H7.5(Γ) and the associated u1, q0 also
satisfy the compatibility condition

CP :=
[
gki0 uj

0,kNjN� + gk�0 uj
0,kNjNi

][
ν(Def u0)

j
i − q0δ

j
i

]
Nj

+ ν(δi� −NiN�)
[
(Def u1)

j
i −

(
(∇u0∇u0) + (∇u0∇u0)

T
)j

i

]
Nj(4.4)

− (δi� −NiN�)
[
ν(Def u0)

j
i − q0δ

j
i

]
uk

0,jNk = 0,

then the solution (v, h) ∈ YT is unique.
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5. A bounded convex closed set of YT .
Definition 5.1. Given M > 0, let CT (M) denote the subset of YT consisting of

elements of (v, h) in YT such that

(5.1) ‖(v, h)‖2
YT

≤ M

and such that v(0) = u0, h(0) = 0, and ht(0) = (B0)∗((0, 1)) · u0.
Remark 9. For (v, h) ∈ CT (M), define uτ by (2.10) and let ητ be the associated

flow map. Also define vτ as uτ ◦ ητ . By (2.12) and (2.13), we have

(5.2) sup
t∈[0,T ]

‖∇0η
τ (t)‖H1.5(Γ) + ‖vτ‖2

L2(0,T ;H2.5(Γ)) ≤ C(M)

for some constant C(M).
We will make use of the following lemmas (proved in [7]).
Lemma 5.2. There exists T0 ∈ (0, T ) such that for all T ∈ (0, T0) and for all

v ∈ CT (M), the matrix a is well defined (by (2.15)) with the estimate (independent
of v ∈ CT (M))

‖a‖L∞(0,T ;H2(Ω)) + ‖at‖L∞(0,T ;H1(Ω)) + ‖at‖L2(0,T ;H2(Ω))

+ ‖att‖L∞(0,T ;L2(Ω)) + ‖att‖L2(0,T ;H1(Ω)) ≤ C(M).(5.3)

Lemma 5.3. There exist T1 ∈ (0, T ) and a constant C (independent of M) such
that for all T ∈ (0, T1) and v ∈ CT (M), for all φ ∈ H1(Ω) and t ∈ [0, T ]

(5.4) C‖φ‖2
H1(Ω) ≤

∫
Ω

[
|v|2 + |Dη(v)|2

]
dx,

where

|Dη(v)|2 := Dη(v)
i
jDη(v)

i
j = (akj v

i
,k + akj v

i
,k)(a

�
jv

i
,� + a�iv

j
,�).

In the remainder of the paper, we will assume that

0 < T < min{T0, T1, T̄}

for some fixed T̄ where the forcing F is defined on the time interval [0, T̄ ].

6. Preliminary results.

6.1. Pressure as a Lagrange multiplier. In the following discussion, we use
H1;2(Ω; Γ) to denote the space H1(Ω) ∩H2(Γ) with norm

‖u‖2
H1;2(Ω;Γ) = ‖u‖2

H1(Ω) + ‖u‖2
H2(Γ)

and V̄v̄ (V̄v̄(T )) to denote the space{
v ∈ Vv̄

∣∣∣ v ∈ H2(Γ)
}({

v ∈ Vv̄(T )
∣∣∣ v ∈ L2(0, T ;H2(Γ))

})
.

Lemma 6.1. For all p ∈ L2(Ω), t ∈ [0, T ], there exist a constant C > 0 and
φ ∈ H1;2(Ω; Γ) such that aji (t)φ

i
,j = p and

(6.1) ‖φ‖H1;2(Ω;Γ) ≤ C‖p‖L2(Ω).
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Proof. We solve the following problem on the time-dependent domain Ω(t):

div(φ ◦ η(t)−1) = p ◦ η(t)−1 in η(t,Ω) := Ω(t).

The solution to this problem can be written as the sum of the solutions to the following
two problems:

div(φ ◦ η(t)−1) = p ◦ η(t)−1 − p̄(t) in η(t,Ω),(6.2)

div(φ ◦ η(t)−1) = p̄(t) in η(t,Ω),(6.3)

where p̄(t) = 1
|Ω|

∫
Ω
p(t, x)dx. The existence of the solution to problem (6.2) with zero

boundary condition is standard (see, for example, [12, Chapter 3]), and the solution
to problem (6.3) can be chosen as a linear function (linear in x), for example, p̄(t)x1.
The estimate (6.1) follows from the estimates of the solutions to (6.2).

Define the linear functional on H1;2(Ω; Γ) by (p, aji (t)ϕ
i
,j)L2(Ω), where ϕ ∈

H1;2(Ω; Γ). By the Riesz representation theorem, there is a bounded linear opera-
tor Q(t) : L2(Ω) → H1;2(Ω; Γ) such that for all ϕ ∈ H1;2(Ω; Γ),

(p, aji (t)ϕ
i
,j)L2(Ω) = (Q(t)p, ϕ)H1;2(Ω;Γ) := (Q(t)p, ϕ)H1(Ω) + (Q(t)p, ϕ)H2(Γ).

Letting ϕ = Q(t)p shows that

‖Q(t)p‖H1;2(Ω;Γ) ≤ C‖p‖L2(Ω)

for some constant C > 0. By Lemma 6.1,

‖p‖2
L2(Ω) ≤ ‖Q(t)p‖H1;2(Ω;Γ)‖ϕ‖H1;2(Ω;Γ) ≤ C‖Q(t)p‖H1;2(Ω;Γ)‖p‖L2(Ω),

which shows that R(Q(t)) is closed in H1;2(Ω; Γ). Since V̄v(t) ⊂ R(Q(t))⊥ and
R(Q(t))⊥ ⊂ V̄v(t), it follows that

(6.4) H1;2(Ω; Γ)(t) = R(Q(t)) ⊕H1;2(Ω;Γ) V̄v(t).

We can now introduce our Lagrange multiplier.
Lemma 6.2. Let L(t) ∈ H1;2(Ω; Γ)

′
be such that L(t)ϕ = 0 for any ϕ ∈ V̄v(t).

Then there exists a unique q(t) ∈ L2(Ω), which is termed the pressure function, sat-
isfying

∀ ϕ ∈ H1;2(Ω; Γ), L(t)(ϕ) = (q(t), aji (t)ϕ
i
,j)L2(Ω).

Moreover, there is a C > 0 (which does not depend on t ∈ [0, T ] and ε1 and on the
choice of v ∈ CT (M)) such that

‖q(t)‖L2(Ω) ≤ C‖L(t)‖H1;2(Ω;Γ)′ .

Proof. By the decomposition (6.4), for given ã, let ϕ = v1 + v2, where v1 ∈ Vv(t)
and v2 ∈ R(Q(t). It follows that

L(t)(ϕ) = L(t)(v2) = (ψ(t), v2)H1;2(Ω;Γ) = (ψ(t), ϕ)H1;2(Ω;Γ)

for a unique ψ(t) ∈ R(Q(t)).
From the definition of Q(t) we then get the existence of a unique q(t) ∈ L2(Ω)

such that

∀ ϕ ∈ H1;2(Ω; Γ), L(t)(ϕ) = (q(t), aji (t)ϕ
i
,j)L2(Ω).

The estimate stated in the lemma is then a simple consequence of (6.1).
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6.2. Estimates for a and h. We make use of near-identity transformations.
The following lemmas can be found in [7].

Lemma 6.3. There exist K > 0 and T0 > 0 such that if 0 < t ≤ T0, then, for
any (ṽ, h̃) ∈ CT0(M),

‖ãT − Id‖L∞(0,T ;C0(Ω0))
≤ K

√
t,(6.5a)

‖ã− Id‖L∞(0,T ;H2(Ω)) ≤ K
√
t,(6.5b)

‖ãt − ãt(0)‖L∞(0,T ;H1(Ω)) ≤ C(M)t,(6.5c)

‖ãt‖L∞(0,T ;H1(Ω)) ≤ K.(6.5d)

We also need the following lemma.

Lemma 6.4. For any (ṽ, h̃) ∈ CT0
(M),

(6.6) ‖h̃‖H3.5(Γ) ≤ CMt1/4

for all 0 < t ≤ T0.
Proof. For (ṽ, h̃) ∈ CT (M), ‖h̃‖2

H4(Γ) + ‖h̃t‖2
H2(Γ) ≤ M . By h̃(0) = 0,

‖h̃(t)‖H2(Γ) ≤
∫ t

0

‖h̃t‖H2(Γ)ds ≤
√
Mt.

Finally, the interpolation inequality

(6.7) ‖∇2
0f(t)‖H1.5(Γ) ≤ C‖∇4

0f‖
3/4
L2(Γ)‖∇

2
0f‖

1/4
L2(Γ)

implies

‖h̃‖H3.5(Γ) ≤ C‖h̃‖3/4
H4(Γ)‖h̃‖

1/4
H2(Γ) ≤ CMt1/4.

Corollary 6.5. ‖L1(t)‖H1.5(Γ) and ‖L2(t)‖H1.5(Γ) converge to zero as t → 0,
uniformly in (v, h) ∈ CT0(M). Furthermore, for t ≤ 1,

‖L1(t)‖H1.5(Γ) + ‖L2(t)‖H1.5(Γ) ≤ C(M)t1/4.

By the fact that ‖h̃t‖2
H2(Γ) ≤ M and ‖h̃tt‖2

L2(0,T ;H0.5(Γ)) ≤ M if (ṽ, h̃) ∈ CT (M),
similar computations lead to the following lemma.

Lemma 6.6. For all (ṽ, h̃) ∈ CT (M),

(6.8) ‖h̃t(t)‖H1.5(Γ) ≤ CMt1/8

for all 0 < t ≤ T .

7. The linearized problem. Suppose that (ṽ, h̃) ∈ CT (M) is given. Let η̃(t) =

Id +
∫ t

0
ṽ(s)ds and ã = (∇η̃)−1. We are concerned with the following time-dependent

linear problem, whose fixed point v = ṽ provides a solution to (2.16):

vit − ν[ãk�Dη̃(v)
i
�],k = −(ãki q),k + F i in (0, T ) × Ω,(7.1a)

ãjiv
i
,j = 0 in (0, T ) × Ω,(7.1b)

[νDη̃(v)
j
i − qδji ]ã

�
jN� = σΘ̃

[
Lh̃(h)(−∇0h̃, 1)

]
◦ η̃τ on (0, T ) × Γ,(7.1c)

+ σΘ̃
[
[M(h̃)(−∇0h̃, 1)] ◦ η̃τ

]
ht ◦ η̃τ = [h̃,α ◦ η̃τ ]vα − vz on (0, T ) × Γ,(7.1d)

v = u0 on {t = 0} × Ω,(7.1e)

h = 0 on {t = 0} × Γ,(7.1f)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

754 C. H. A. CHENG, D. COUTAND, AND S. SHKOLLER

where Dη̃(v)
j
i = ãki v

j
,k + ãkj v

i
,k, Θ̃ = det(∇0η̃

τ ), and

Lh̃(h) =
1√

det(g0)

[√
det(g0)Ã

αβγδh,αβ

]
,γδ

with

Ãαβγδ = J−3

h̃

√
det(Gh̃)

[
Gαγ

h̃
− (−1)κ+σ det(Gh̃)−1(1 − δακ)(1 − δγσ)h̃,κh̃,σ

]
× (Gβδ

h̃
− J−2

h̃
Gβμ

h̃
Gδν

h̃
h̃,μh̃,ν)

and

M(h̃) =
√

det(Gh̃) ◦ η̃τ
[
Lαβγ

1 (y, h̃,Dh̃,D2h̃)h̃,αβγ + L2(y, h̃,Dh̃,D2h̃)
]
.

Here the thickness ε1 is assumed to be 1.

We will also use Lh̃(h) to denote Lh̃(h) + M(h̃).

Remark 10. Lh̃ is a coercive fourth order operator for small h̃ ≤ δ. Actually,
it is easy to see that Lh̃ is coercive at time t = 0, and the coercivity of Lh̃ for t > 0

(but sufficiently small) follows from the continuity of h̃ in time into the space H2(Γ).
Moreover, by Lemma 6.4, we have the following corollary.

Corollary 7.1. There exist ν1 > 0 and 0 < T ≤ T0 such that for all 0 < t ≤ T ,

ν1‖∇2
0f(t)‖2

L2(Γ) ≤
∫

Γ

Ãαβγδf,αβ(t)f,γδ(t)dS

for all 0 < t ≤ T . Later we will denote the right-hand side quantity of this inequality
by Eh̄(f), where the subscript h̄ indicates that Ā is a function of h̄.

Remark 11. Given (ṽ, h̃) ∈ V3(T ) ×H(T ), for the corresponding η̃τ , we have

‖η̃τ‖2
L∞(0,T ;H2.5(Ω)) + ‖η̃τt ‖2

L2(0,T ;H2.5(Γ)) ≤ C(M),

where (2.13) and (2.12) are used to obtain this estimate.

The solution of (7.1) is found as a weak limit of a sequence of regularized problems.

Definition 7.2 (mollifiers on Γ). For ε1 > 0, let

Kp
ε1 := (1 − ε1Δ0)

− p
2 : Hs(Γ) → Hs+p(Γ)

denote the usual self-adjoint Friedrich mollifier on the compact manifold Γ, where Δ0

is the surface Laplacian defined on Γ.

By the Sobolev extension theorem, there exist bounded extension operators

Es : Hs(Ω) → Hs(Rn), s ≥ 1.

For fixed (but small) ε1 and ε11 > 0, let ρε1 be a (positive) smooth mollifier on R
n. Set

v̄ = ρε1 ∗E1(ṽ), F̃ = ρε1 ∗E2(F ), ũ0 = ρε1 ∗E3(u0), where ∗ denotes the convolution

in space, and h̄ = Km
ε1 (h̃) for large enough m. Define η̄ and ā in the same fashion as

η̃ and ã. Note that v̄ → ṽ ∈ V (T ), F̃ → F in V2(T ), ũ0 → u0 in H2.5(Ω), and h̄ → h̃
in H(T ) as ε1 → 0.

The regularized problem takes the form
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vit − ν[āk�Dη̄(v)
i
�],k = −(āki q),k + F̃ i in (0, T ) × Ω,(7.2a)

ājiv
i
,j = 0 in (0, T ) × Ω,(7.2b)

[νDη̄(v)
j
i − qδji ]ā

�
jN� = σLε2

h̄
(hε2)(−∇0h̄ ◦ η̄τ , 1)

+ σMε2
h̄

(−∇0h̄ ◦ η̄τ , 1) + κΔ2
0v on (0, T ) × Γ,(7.2c)

ht ◦ η̄τ = [(h̄,α) ◦ η̄τ ]vα − vz on (0, T ) × Γ,(7.2d)

v = ũ0 on {t = 0} × Ω,(7.2e)

h = 0 on {t = 0} × Γ,(7.2f)

where

L̄ε2
h̄

(f) =
Θ̄√

det(g0)

[(√
det(g0)Ā

αβγδf,αβ

)
,γδ

]ε2
◦ η̄τ ,

M̄ε2
h̄

= Θ̄
[(

Lαβγ
1 (·, h̄, Dh̄,D2h̄)h̄,αβγ + L2(·, h̄, Dh̄)

)ε2]ε2
◦ η̄τ (y, t).

Note that L̄ε2
h̄

(f) + M̄ε2
h̄

= Θ̄
[
Lh̄(f)

]ε2 ◦ η̄τ .
7.1. Weak solutions.

Definition 7.3. A vector v ∈ V̄v̄(T ) with vt ∈ V̄v̄(T )′ for almost all (a.a.)
t ∈ (0, T ) is a weak solution of (7.2), provided that

(i) 〈vt, ϕ〉 +
ν

2

∫
Ω

Dη̄v : Dη̄ϕdx + σ

∫
Γ

Āαβγδhε2
,αβ

[
−h̄,σ(ϕσ ◦ η̄−τ )(7.3a)

+ (ϕz ◦ η̄−τ )
]ε2
,γδ

dS + κ

∫
Γ

Δ0v · Δ0ϕdS = 〈F̃ , ϕ〉 − σ〈Mε2
h̄
, ϕ〉Γ,

(ii) v(0, ·) = ũ0(7.3b)

for a.a. t ∈ [0, T ], where 〈·, ·〉 denotes the duality product between V̄v(t) and its dual
V̄v(t)

′, and h is given by the evolution equation (7.2d) and the initial condition (7.2f):

(7.4) h(y, t) =

∫ t

0

[
−h̄,α(y, s)vα(η̄−τ (y, s), 0, s) + vz(η̄−τ (y, s), 0, s)

]
ds.

7.2. Penalized problems. Letting θ > 0 denote the penalized parameter, we
define wθ (also with ε1 and ε11 dependence in mind) to be the “unique” solution of
the problem (whose existence can be obtained via a modified Galerkin method which
will be presented in the following sections):

(i) 〈wθt, ϕ〉 +
ν

2

∫
Ω

Dη̄wθ : Dη̄ϕdx + σ

∫
Γ

Āαβγδhε2
,αβ

[
−h̄,σ(ϕσ ◦ η̄−τ )

+ (ϕz ◦ η̄−τ )
]ε2
,γδ

dS + κ

∫
Γ

Δ0v · Δ0ϕdS +

(
1

θ
ājiv

i
,j , ā

�
kϕ

k
,�

)
L2(Ω)

(7.5a)

= 〈F̃ , ϕ〉 − σ〈M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1), ϕ〉Γ,
(ii) v(0, ·) = ũ0,(7.5b)

where 〈·, ·〉 denotes the pairing between H1(Ω) and its dual, and h in (7.5a) satisfies
(7.4) with v replaced by wθ.
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7.3. Weak solutions for the penalized problem. The goal of this section is
to establish the existence of v to the problem (7.2) (or the weak formulation (7.3)), as
well as the energy inequality satisfied by v and vt. Before proceeding, we introduce
variables q̃0 and w̃1 as follows: let q̃0 be the solution of the Laplace equation

Δq̃0 = ∇ũ0 : (∇ũ0)
t − div F̃ (0) in Ω,(7.6a)

q̃0 = ν(Def ũ0)
j
iNiNj − σMε2

0 (0) + κΔ2
0ũ0 ·N on Γ(7.6b)

and w̃1 be defined by

(7.7) w̃1 = νΔũ0 −∇q̃0 + F̃ (0).

By elliptic regularity,

‖q̃0‖2
H1(Ω) ≤ C

[
‖ũ0‖2

H2(Ω) + ‖F̃ (0)‖2
L2(Ω) + ‖Mε2

0 (0)‖2
H0.5(Γ) + ‖Δ2

0ũ0‖2
H0.5(Γ)

]
≤ C(M)

[
‖ũ0‖2

H2(Ω) + ‖ũ0‖2
H4.5(Γ) + ‖F̃ (0)‖2

L2(Ω) + 1
]
,

and hence

‖w̃1‖2
L2(Ω) ≤ C(M)

[
‖ũ0‖2

H2(Ω) + ‖ũ0‖2
H4.5(Γ) + ‖F̃ (0)‖2

L2(Ω) + 1
]
.

Remark 12. By (6.6), the constant C(M) in the estimates above can also be
refined as a constant independent of M if T is chosen small enough.

By introducing a (smooth) basis (e�)
∞
�=1 of H1;2(Ω; Γ), taking the approximation

at rank m ≥ 2 under the form w�(t, x) =
∑�

k=1 dk(t)ek(x) with

(7.8) h�(y, t) =

∫ t

0

[
−h̄,α(y, s)wα

� (η̄−τ (y, s), 0, s) + wz
� (η̄

−τ (y, s), 0, s)
]
ds,

and satisfying on [0, T ],

(i) (w�tt, ϕ)L2(Ω) + ν(ājiw�t,j , ā
k
i ϕ,k)L2(Ω) + ν((āji ā

k
i )tw�, ϕ,k)L2(Ω)

(7.9a)

+ ν

∫
Ω

[
ājrā

k
iw

i
�t,j + (ājrā

k
i )tw

i
�,j

]
ϕr
,kdx + κ

∫
Γ

Δ0w�t · Δ0ϕdS − ((āji q�)t, ϕ
i
,j)L2(Ω)

+ σ

∫
Γ

Āαβγδ[−h̄,σ(wσ
� ◦ η̄−τ ) + wz

� ◦ η̄−τ ]ε2,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS

+ σ

∫
Γ

(Āαβγδ)th
ε2
�,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS

+ σ

∫
Γ

Āαβγδhε2
�,αβ [−h̄t,σ(ϕσ ◦ η̄−τ ) + h̄,σ v̄

κ(ϕσ
,κ ◦ η̄−τ ) + v̄κ(ϕz

,κ ◦ η̄−τ )]ε2,γδdS

= 〈F̃t, ϕ〉 − σ

∫
Γ

[
Lαβγ

1 h̄,αβγ + L2

]ε2
t

[
h̄,σ(ϕσ ◦ η̄−τ ) − ϕz ◦ η̄−τ

]ε2
dS

− σ

∫
Γ

[
Lαβγ

1 h̄,αβγ + L2

]ε2[
h̄t,σ(ϕσ ◦ η̄−τ ) − h̄,σ v̄

κ(ϕσ
,κ ◦ η̄−τ ) − v̄κ(ϕz

,κ ◦ η̄−τ )
]ε2

dS

∀ ϕ ∈ span(e1, . . . , e�),

(ii) w�t(0) = (w1)�, w�(0) = (u0)� in Ω,
(7.9b)
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where q� = q̃0 − 1
θ ā

j
iw

i
�,j , and (ũ0)� denotes the respective H1;2(Ω; Γ) projections of

u0 on span(e1, e2, . . . , e�).

Remark 13. The existence of wk follows from the solution of

d′′k(t) + d′�(t)Ak�(t) + d�(t)Bk�(t) +

∫ t

0

d�(s)Ck�(s, t)ds = F (t)

for functions A, B, C, and F ; however, the existence of the solution dk does not
immediately follow from the fundamental theorem of ODE due to the presence of
the time integral. A straightforward fixed-point argument can be implemented, whose
details we leave to the interested reader.

The use of the test function ϕ = w�t in this system of ODE gives us, in turn, the
energy law

1

2

d

dt
‖w�t‖2

L2(Ω) +
ν

2
‖Dη̄(w�t)‖2

L2(Ω) +
σ

2

d

dt
Eh̄(hε2

�t,αβ) + θ‖q�t‖2
L2(Ω)

+ ν((āji ā
k
i )tw�,j , w�t,k)L2(Ω) + ν

∫
Ω

(ājrā
k
i )tw

i
�,jw

r
�t,kdx + κ‖Δ0w�t‖2

L2(Γ)

+ (q�t, ā
j
itw

i
�,j)L2(Ω) − (q�, ā

j
itw

i
�t,j)L2(Ω) −

σ

2

∫
Γ

(Āαβγδ)th
ε2
�t,αβh

ε2
�t,γδdS

− σ

∫
Γ

(Āαβγδ)th
ε2
�,αβ

[
h�tt + h̄t,σ(wσ

�t ◦ η̄−τ )
]ε2
,γδ

dS + σ

∫
Γ

Āαβγδhε2
�,αβ(7.10)

×
[
−h̄t,σ(wσ

�t ◦ η̄−τ ) + h̄,σ v̄
κ(wσ

�t,κ ◦ η̄−τ ) + v̄κ(wz
�t,κ ◦ η̄−τ )

]ε2
,γδ

dS

= 〈F̃t, w�t〉 − σ

∫
Γ

[
(Lαβγ

1 h̄,αβγ + L2)(−∇0h̄, 1)
]
t
· (w�t ◦ η̄−τ )dS

− σ

∫
Γ

(Lαβγ
1 h̄,αβγ + L2)v̄

κ
[
−h̄,σ(wσ

�t,κ ◦ η̄−τ ) + (wz
�t,κ ◦ η̄−τ )

]
dS.

For the tenth term (the integral with σ
2 as its coefficient), we have

∣∣∣∣
∫

Γ

(Āαβγδ)th
ε2
�t,αβh

ε2
�t,γδdS

∣∣∣∣ ≤ C(M)‖h̄t‖H2.5(Γ)‖∇2
0h�t‖2

L2(Γ).

By ε2-regularization and the identity∫
Γ

(Āαβγδ)th
ε2
�,αβh

ε2
�tt,γδdS =

∫
Γ

1√
det(g0)

[√
det(g0)(Ā

αβγδ)t

]
,γδ

hε2
�,αβh

ε2
�ttdS

+

∫
Γ

2√
det(g0)

[√
det(g0)(Ā

αβγδ)t

]
,γ
hε2
�,αβδh

ε2
�ttdS

+

∫
Γ

(Āαβγδ)th
ε2
�,αβγδh

ε2
�ttdS,

we find that ∣∣∣∣
∫

Γ

(Āαβγδ)th
ε2
�,αβh

ε2
�tt,γδdS

∣∣∣∣
≤ C(ε2)

[
1 + ‖h̄t‖H2.5(Γ)

]
‖∇2

0h�‖L2(Γ)

[
‖w�‖H1(Ω) + ‖w�t‖H1(Ω)

]
.
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Similarly, the second part of the eleventh term and the last term of the left-hand side
can be bounded by

C(ε2)‖h̄t‖H2.5(Γ)‖∇2
0h�‖L2(Γ)‖w�t‖H1(Ω),

where we also use the ε2-regularization to control ∇3
0w�t. It also follows that the last

two terms on the right-hand side can be bounded by

C(M)
[
1 + ‖h̄t‖H2.5(Γ)

]
‖w�t‖H1(Ω).

With positive θ, the fourth term of the left-hand side involving the square of q�t
acts as a viscous energy term. Integrating (7.10) in time from 0 to t, we then get

‖w�t‖2
L2(Ω) + ‖∇2

0h�t‖2
L2(Γ) +

∫ t

0

[
‖∇w�t‖2

L2(Ω) + κ‖w�t‖2
H2(Γ) + θ‖q�t‖2

L2(Ω)

]
ds

(7.11)

≤ C(M)
[
‖w�t(0)‖2

L2(Ω) + ‖w�(0)‖2
H1(Ω) + ‖q�(0)‖2

H0.5(Ω)

]
+ C(ε2)

∫ t

0

[
1 + ‖h̄t(s)‖2

H2.5(Γ)

]
‖∇2

0h�t(s)‖2
L2(Γ)ds

+ C(θ)

∫ t

0

‖v̄(t′)‖2
H3(Ω)

∫ t′

0

[
‖∇w�t(s)‖2

L2(Ω) + ‖q�t(s)‖2
L2(Ω)

]
dsdt′,

where C(ε2), C(θ) → ∞ as ε2, θ → 0, and we use

‖f(t)‖X ≤ ‖f(0)‖X +

∫ t

0

‖ft(s)‖Xds ≤ ‖f(0)‖X +
√
t

∫ t

0

‖ft(s)‖2
Xds

for f = w�, f = h�, and f = g� to obtain (7.11).
Remark 14. The θ-dependence follows from estimating the terms (q�t, ā

j
itw

i
�,j)L2(Ω):∣∣∣(q�t, ājitwi

�,j)L2(Ω)

∣∣∣ ≤ θ

2
‖q�t‖2

L2(Ω) +
1

2θ
‖ājit‖2

L∞(Ω)‖wi
�,j‖2

L2(Ω)

≤ θ

2
‖q�t‖2

L2(Ω) +
C(M)

θ

[
‖∇w�(0)‖2

L2(Ω) + t

∫ t

0

‖∇w�t‖2
L2(Ω)(s)ds

]
.

By the Gronwall inequality, for 0 ≤ t ≤ T ,

‖w�t(t)‖2
L2(Ω) + ‖∇2

0h�t(t)‖2
L2(Γ)

+

∫ t

0

[
‖∇w�t‖2

L2(Ω) + κ‖w�t‖2
H2(Γ) + θ‖q�t‖2

L2(Ω)

]
ds ≤ C(ε2, θ)N0(u0, F ),(7.12)

where

N0(u0, F ) := ‖u0‖2
H2.5(Ω) + ‖u0‖2

H4.5(Γ) + ‖Ft‖2
L2(0,T ;H1(Ω)′) + ‖F (0)‖2

H0.5(Ω) + 1.

We can then infer that w� is defined on [0, T ], and that there is a subsequence, still
denoted with the subscript �, satisfying

w� ⇀ wθ in L2(0, T ;H1;2(Ω; Γ)),(7.13a)

w�t ⇀ wθt in L2(0, T ;H1;2(Ω; Γ)),(7.13b)

∇2
0h� ⇀ ∇2

0hθ in L2(0, T ;L2(Γ)),(7.13c)

∇2
0h�t ⇀ ∇2

0hθt in L2(0, T ;L2(Γ)),(7.13d)

q�t ⇀ qθt in L2(0, T ;L2(Ω)),(7.13e)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NAVIER–STOKES INTERACTING WITH A FLUID SHELL 759

where

qθ = q̃0 −
1

θ
ājiw

i
θ,j .

From the standard procedure for weak solutions, we can now infer from these weak
convergences and the definition of w� that w�tt ∈ L2(0, T ;H1(Ω)′). In turn, w�t ∈
C0([0, T ];H1(Ω)′), w� ∈ C0([0, T ];L2(Ω)) with wθ(0) = u0, wθt(0) = w1.

Moreover, (7.13) implies that wθ satisfies

(i)

∫ T

0

[
(wθtt, ϕ)L2(Ω) + ν(ājiwθt,j , ā

k
i ϕ,k)L2(Ω) + ν((āji ā

k
i )twθ, ϕ,k)L2(Ω)

]
dt

(7.14a)

+ ν

∫ T

0

[∫
Ω

ājrā
k
iw

i
θt,jϕ

r
,kdx + ν

∫
Ω

(ājrā
k
i )tw

i
θ,jϕ

r
,kdx

]
dt + σ

∫ T

0

∫
Γ

Āαβγδ

× [−h̄,σ(wσ
θ ◦ η̄−τ ) + wz

θ ◦ η̄−τ ]ε2,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdSdt

+ σ

∫ T

0

∫
Γ

(Āαβγδ)th
ε2
θ,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdSdt

+ σ

∫ T

0

∫
Γ

Āαβγδhε2
θ,αβ [−h̄t,σ(ϕσ ◦ η̄−τ ) + h̄,σ v̄

κ(ϕσ
,κ ◦ η̄−τ ) + v̄κ(ϕz

,κ ◦ η̄−τ )]ε2,γδdSdt

+ κ

∫ T

0

∫
Γ

Δ0wθt · Δ0ϕdSdt−
∫ T

0

((āji qθ)t, ϕ
i
,j)L2(Ω)dt

=

∫ T

0

{
〈F̃t, ϕ〉 − σ

∫
Γ

[
Lαβγ

1 h̄,αβγ + L2

]ε2
t

[
h̄,σ(ϕσ ◦ η̄−τ ) − ϕz ◦ η̄−τ

]ε2
dS

− σ

∫
Γ

[
Lαβγ

1 h̄,αβγ + L2

]ε2[
h̄t,σ(ϕσ ◦ η̄−τ ) − h̄,σ v̄

κ(ϕσ
,κ ◦ η̄−τ )

− v̄κ(ϕz
,κ ◦ η̄−τ )

]ε2
dS

}
dt,

(ii) wθt(0) = w̃1, wθ(0) = ũ0 in Ω
(7.14b)

for all ϕ ∈ L2(0, T ;H1;2(Ω; Γ)). Choosing ϕ to be independent of time, we find that
for all t ∈ [0, T ],

(wθt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄(wθ) : Dη̄(ϕ)dx + κ

∫
Γ

Δ0wθ · Δ0ϕdS

+ σ

∫
Γ

Āαβγδhε2
θ,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS − (āji qθ, ϕ

i
,j)L2(Ω)

= 〈F̃ , ϕ〉 + σ

∫
Γ

[
Lαβγδ

1 h̄,αβγ + L2

]ε2[
−h̄,σϕ

σ ◦ η̄−τ + ϕz ◦ η̄−τ
]ε2

dS + c(ϕ)

for all ϕ ∈ H1;2(Ω; Γ), where c(ϕ) ∈ R is given by

c(ϕ) = (w̃1, ϕ)L2(Ω) +
ν

2

∫
Ω

Def(ũ0) : Def ϕdx−
(
q̃0 −

1

θ
div ũ0,divϕ

)
L2(Ω)

− (F̃ (0), ϕ)L2(Ω) − σ(M̄ε2
0 (0)(0, 1), ϕ)L2(Γ) + κ(Δ0ũ0,Δ0ϕ)L2(Γ).
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By compatibility conditions (7.6) and (7.7), c(ϕ) = 0. Therefore, the weak limit
(wθ, hθ) satisfies, for all t ∈ [0, T ],

(wθt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄(wθ) : Dη̄(ϕ)dx + κ

∫
Γ

Δ0wθ · Δ0ϕdS

− (āji qθ, ϕ
i
,j)L2(Ω) + σ

∫
Γ

Āαβγδhε2
θ,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS(7.15)

= 〈F̃ , ϕ〉 − σ

∫
Γ

[
Lαβγδ

1 h̄,αβγ + L2

]ε2[
−h̄,σϕ

σ ◦ η̄−τ + ϕz ◦ η̄−τ
]ε2

dS

for all ϕ ∈ H1;2(Ω; Γ).
Since wθ ∈ L2(0, T ;H1;2(Ω; Γ)), we can use it as a test function in (7.15) and

obtain (after time integration)

1

2
‖wθ‖2

L2(Ω) +
σ

2
Eh̄(hε2

θ ) +

∫ t

0

[ν
2
‖Dη̄wθ‖2

L2(Ω) + κ‖Δ0wθ‖2
L2(Γ)

+ θ‖qθ‖2
L2(Ω)

]
ds− θ

∫ t

0

(qθ, q̃0)dt−
σ

2

∫ t

0

∫
Γ

(Āαβγδ)th
ε2
θ,αβh

ε2
θ,γδdSds(7.16)

=
1

2
‖ũ0‖2

L2(Ω) +

∫ t

0

〈F̃ , ϕ〉 + σ〈M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1), ϕ〉Γdt.

Consequently,[
‖wθ(t)‖2

L2(Ω) + ‖∇2
0h

ε2
θ (t)‖2

L2(Γ)

]
+

∫ t

0

‖∇wθ‖2
L2(Ω)ds + κ

∫ t

0

‖wθ‖2
H2(Γ)ds

+ θ

∫ t

0

‖qθ‖2
L2(Ω)ds

≤ C(M)
[
‖ũ0‖2

L2(Ω) + θ‖q̃0‖2
L2(Ω) + ‖F̃‖2

H1(Ω)′ + ‖M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1)‖2
L2(Γ)

]
+ C(M)

∫ t

0

‖h̄t‖H2.5(Γ)‖∇2
0h

ε2
θ ‖2

L2(Γ)ds

≤ C(M)

[
N1(u0, F ) +

∫ t

0

‖h̄t‖H2.5(Γ)‖∇2
0h

ε2
θ ‖2

L2(Γ)ds

]
,

where

N1(u0, F ) = ‖u0‖2
H2(Ω) + ‖u0‖2

H4.5(Γ) + ‖F‖2
L2(0,T ;H1(Ω)′) + ‖Ft‖2

L2(0,T ;H1(Ω)′)

+ ‖F (0)‖2
H1(Ω) + 1.

By the Gronwall inequality,

sup
0≤t≤T

[
‖wθ(t)‖2

L2(Ω) + ‖∇2
0h

ε2
θ (t)‖2

L2(Γ)

]
+

∫ T

0

[
‖∇wθ‖2

L2(Ω) + θ‖qθ‖2
L2(Ω)

]
ds(7.17)

≤ C(M)N1(u0, F ).

7.4. Improved pressure estimates. By ε2-regularization, we can rewrite (7.15)
as, for a.a. t ∈ [0, T ],

(wθt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄(wθ) : Dη̄(ϕ)dx + κ(Δ0wθ,Δ0ϕ)L2(Γ) − (āji qθ, ϕ
i
,j)L2(Ω)

+ σ

∫
Γ

L̄ε2
h̄

(hε2
θ )

[
−h̄,σ ◦ η̄τϕσ + ϕz

]
dS = 〈F̃ , ϕ〉 + σ〈M̄ε2

h̄
(−∇0h̄ ◦ η̄τ , 1), ϕ〉Γ.
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Therefore, by the Lagrange multiplier lemma, we conclude that

‖qθ‖2
L2(Ω) ≤ C(M)

[
‖wθt‖2

H1(Ω)′ + ‖∇wθ‖2
L2(Ω) + ‖F̃‖2

H1(Ω)′ + κ‖Δ2
0wθ‖2

H−2(Γ)

+ ‖[L̄ε2
h̄

(hε2
θ ) + M̄ε2

h̄
](−∇0h̄ ◦ η̄τ , 1)‖2

H−2(Γ)

]
,

and hence

‖qθ‖2
L2(Ω) ≤ C(M)

[
‖wθt‖2

L2(Ω) + ‖∇wθ‖2
L2(Ω) + κ‖wθ‖2

H2(Γ) + ‖∇2
0hθ‖2

L2(Γ)

+ ‖F‖2
H1(Ω)′ + 1

]
.(7.18)

7.5. Weak limits as θ → 0. Since wθt ∈ L2(0, T ;H1;2(Ω; Γ)), we can use it as
a test function in (7.14). Similar to the way we obtain (7.11), we find that

1

2
‖wθt‖2

L2(Ω) +
ν

2

∫ t

0

‖Dη̄wθt‖2
L2(Ω)ds +

σ

2
Eh̄(hε2

θt) + κ

∫ t

0

‖Δ2
0wθt‖2

L2(Γ)ds

+ θ

∫ t

0

‖qθt‖2
L2(Ω)ds +

∫ t

0

(qθt, ā
j
itw

i
θ,j)L2(Ω)ds−

∫ t

0

(qθ, ā
j
iw

i
θt,j)ds

≤ C(M)N0(u0, F ) + C(M)

∫ t

0

‖v̄(t′)‖2
H3(Ω)

∫ t′

0

‖∇wθt(s)‖2
L2(Ω)dsdt

′

+ C(ε2)

∫ t

0

[
1 + ‖h̄t‖H2.5(Γ)

]
‖∇2

0h
ε2
θt‖2

L2(Γ)ds.

By (7.18),

∣∣∣∣
∫ t

0

(qθ, ā
j
iw

i
θt,j)ds

∣∣∣∣ ≤ C(M, δ)

∫ t

0

‖qθ‖2
L2(Ω)ds + δ

∫ t

0

‖∇wθt‖2
L2(Ω)ds

≤ C(M)

[
N1(u0, F ) +

∫ t

0

(
‖wθt‖2

L2(Ω) + κ‖wθ‖2
H2(Γ) + ‖∇2

0hθ‖2
L2(Γ)

)
ds

]

+ δ

∫ t

0

‖∇wθt‖2
L2(Ω)ds,(7.19)

where (7.17) is used to bound ‖∇wθ‖2
L2(0,T ;L2(Ω)).

Integrating by parts,

∫ t

0

(qθt, ā
j
itw

i
θ,j)L2(Ω)ds = (qθ, ā

j
itw

i
θ,j)L2(Ω)(t) + (q̃0, ũ

j
0,iũ

i
0,j)L2(Ω)

−
∫ t

0

(qθ, ā
j
ittw

i
θ,j)L2(Ω)ds−

∫ t

0

(qθ, ā
j
itw

i
θt,j)L2(Ω)ds.

By ε1-regularization, the last two terms can be bounded by

C(M)

∫ t

0

‖qθ‖L2(Ω)

[
C(ε1)‖∇wθ‖L2(Ω) + ‖∇wθt‖L2(Ω)

]
ds,

and hence
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∣∣∣∣
∫ t

0

(qθ, ā
j
ittw

i
θ,j)L2(Ω)ds

∣∣∣∣ +

∣∣∣∣
∫ t

0

(qθ, ā
j
itw

i
θt,j)L2(Ω)ds

∣∣∣∣
≤ C(M, δ)

∫ t

0

‖qθ‖2
L2(Ω)ds + C(ε1)

∫ t

0

‖∇wθ‖2
L2(Ω)ds + δ

∫ t

0

‖∇wθt‖2
L2(Ω)ds

≤ C(ε1, δ)N1(u0, F ) + C(M, δ)

∫ t

0

‖wθt‖2
L2(Ω)ds + C(ε2)

∫ t

0

‖∇2
0hθ‖2

L2(Γ)ds

+ δ

∫ t

0

‖∇wθt‖2
L2(Ω)ds.(7.20)

For (qθ, ā
j
itw

i
θ,j)L2(Ω)(t), it is easy to see that∣∣∣(qθ, ājitwi
θ,j)L2(Ω)(t)

∣∣∣ ≤ δ1‖wθt‖2
L2(Ω) + C(ε1, δ1)‖∇wθ‖2

L2(Ω)

≤ C(ε1, δ1)‖∇wθ‖2
L2(Ω) + δ1C(ε2)‖∇2

0hθ‖2
L2(Γ) + δ1

[
‖wθt‖2

L2(Ω) + ‖F‖L2(Ω) + 1
]
,

while for (q̃0, ũ
j
0,iũ

i
0,j)L2(Ω), it is bounded by C(M)N1(u0, F ). Combining (7.19),

(7.20), and the estimates above, by choosing δ > 0 and δ1 > 0 small enough,

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ) + θ‖qθt‖2

L2(Ω)

]
ds

≤ C(ε2, ε1)

[
N2(u0, F ) +

∫ t

0

(
‖wθt‖2

L2(Ω) + (1 + ‖h̄t‖H2.5(Γ))‖∇2
0hθt‖2

L2(Γ)

+ ‖v̄‖2
H3(Ω)

∫ s

0

‖∇wθt‖2
L2(Ω)dt

′
)
ds

]
+ C1(ε2, ε1)‖∇wθ‖2

L2(Ω),

where N2(u0, F ) = N1(u0, F ) + ‖F‖2
L∞(0,T ;L2(Ω)). By the Gronwall inequality,

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ) + C1(ε2, ε1)‖∇wθ‖2
L2(Ω).(7.21)

By using wθ(t) = ũ0 +
∫ t

0
wθtds, we see that

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ) + C1(ε2, ε1)t

∫ t

0

‖∇wθt‖2
L2(Ω)ds.

Therefore, for any 0 ≤ t ≤ t1 = min
{
T, 1

2C1

}
, we have

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

1

2

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ).

By wθ(t1) = ũ0 +
∫ t1
0

wθtds, we also have

(7.22) ‖∇wθ(t1)‖2
L2(Ω) ≤ C(ε2, ε1)N2(u0, F ).
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For t ≥ t1, since wθ(t) = wθ(t1) +
∫ t

t1
wθtds, we have from (7.21) and (7.22) that

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ) + C1(ε2, ε1)

[
‖wθ(t1)‖2

L2(Ω) + (t− t1)

∫ t

t1

‖∇0wθt‖2
L2(Ω)ds

]

≤ C(ε2, ε1)N2(u0, F ) + C1(ε2, ε1)(t− t1)

∫ t

t1

‖∇0wθt‖2
L2(Ω)ds.

Therefore, for any t1 ≤ t ≤ 2t1, we also have

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

1

2

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ),

which with wθ(2t1) = ũ0 +
∫ 2t1
0

wθtds gives

‖∇wθ(2t1)‖2
L2(Ω) ≤ C(ε2, ε1)N2(u0, F ).

By induction, for any t ∈ [0, T ],

‖wθt‖2
L2(Ω) + ‖∇2

0hθt‖2
L2(Γ) +

1

2

∫ t

0

[
‖∇wθt‖2

L2(Ω) + κ‖wθt‖2
H2(Γ)

]
ds

≤ C(ε2, ε1)N2(u0, F ).(7.23)

We also get a θ-independent bound for ‖qθ‖2
L2(0,T ;L2(Ω)) by (7.18):

(7.24) ‖qθ‖2
L2(0,T ;L2(Ω)) ≤ C(ε2, ε1)N2(u0, F ).

Let θ = 1
m . Energy inequalities (7.17), (7.23), and (7.24) show that there exists

a subsequence w 1
m�

such that

w 1
m�

⇀ v in L2(0, T ;H1;2(Ω; Γ)),(7.25a)

w 1
m�

t ⇀ vt in L2(0, T ;H1;2(Ω; Γ)),(7.25b)

∇2
0h 1

m�

⇀ ∇2
0h in L2(0, T ;L2(Ω)),(7.25c)

∇2
0h 1

m�
t ⇀ ∇2

0ht in L2(0, T ;L2(Ω)),(7.25d)

q 1
m�

⇀ q in L2(0, T ;L2(Ω)).(7.25e)

Moreover, (7.17) also shows that ‖ājiwi
1
m ,j

‖L2(0,T ;L2(Ω)) → 0 as m → ∞. Therefore,

the weak limit v satisfies the “divergence-free” condition (7.2b), i.e.,

(7.26) v ∈ Vv̄(T ).

Since (7.17) is independent of θ and ε2, by the property of lower semicontinuity of
norms,

sup
0≤t≤T

[
‖v(t)‖2

L2(Ω) + ‖∇2
0h(t)‖2

L2(Γ)

]
+ ‖∇v‖2

L2(0,T ;L2(Ω)) + κ‖v‖2
H2(Γ)

≤ C(M)N1(u0, F ).(7.27)
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By (7.25) and ε2-regularization, the weak limit (v, h, q) satisfies, for all ϕ ∈
L2(0, T ;H1;2(Ω; Γ)),∫ T

0

(vt, ϕ)L2(Ω)dt +
ν

2

∫ T

0

∫
Ω

Dη̄(v) : Dη̄(ϕ)dxdt + κ

∫ T

0

∫
Γ

Δ0v · Δ0ϕdSdt

−
∫ T

0

(ājiq, ϕ
i
,j)L2(Ω)dt + σ

∫ T

0

∫
Γ

Āαβγδ
h
ε2
,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdSdt

=

∫ T

0

{
〈F̃ , ϕ〉 − σ

∫
Γ

[
Lαβγδ

1 h̄,αβγ + L2

]ε2[
−h̄,σϕ

σ ◦ η̄−τ + ϕz ◦ η̄−τ
]ε2

dS

}
dt.

By the density argument, we find that for a.a. t ∈ [0, T ], ϕ ∈ H1;2(Ω; Γ),

(vt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄(v) : Dη̄(ϕ)dx + κ

∫
Γ

Δ0v · Δ0ϕdS − (ājiq, ϕ
i
,j)L2(Ω)

+ σ

∫
Γ

Āαβγδ
h
ε2
,αβ [−h̄,σ(ϕσ ◦ η̄−τ ) + ϕz ◦ η̄−τ ]ε2,γδdS(7.28)

= 〈F̃ , ϕ〉 − σ

∫
Γ

[
Lαβγδ

1 h̄,αβγ + L2

]ε2[
−h̄,σϕ

σ ◦ η̄−τ + ϕz ◦ η̄−τ
]ε2

dS,

or after a change of variable y′ = η̄τ (y, t),

(vt, ϕ)L2(Ω) +
ν

2
(Dη̄v, Dη̄ϕ)L2(Ω) + κ

∫
Γ

Δ0v · Δ0ϕdS − (ājiq, ϕ
i
,j)L2(Ω)(7.29)

+ σ

∫
Γ

Lε2
h̄

(h)(−∇0h̄ ◦ η̄τ , 1) · ϕdS = 〈F̃ , ϕ〉 − σ

∫
Γ

M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1) · ϕdS.

Furthermore, if ϕ ∈ Vv̄, then

(vt, ϕ)L2(Ω) +
ν

2
(Dη̄v, Dη̄ϕ)L2(Ω) + κ

∫
Γ

Δ0v · Δ0ϕdS

+ σ

∫
Γ

Lε2
h̄

(h)(−∇0h̄ ◦ η̄τ , 1) · ϕdS = 〈F̃ , ϕ〉 − σ

∫
Γ

M̄ε2
h̄

(−∇0h̄ ◦ η̄τ , 1) · ϕε2dS

for a.a. t ∈ [0, T ]. In other words, (v, h, q) is a weak solution of (7.2).

8. Estimates independent of ε2.

8.1. Partition of unity. Since Ω is compact, by partition of unity, we can
choose two nonnegative smooth functions ζ0 and ζ1 so that

ζ0 + ζ1 = 1 in Ω,

supp(ζ0) ⊂⊂ Ω,

supp(ζ1) ⊂⊂ Γ × (−ε1, ε1) := Ω1.

We will assume that ζ1 = 1 inside the region Ω′
1 ⊂ Ω1 and ζ0 = 1 inside the region

Ω′ ⊂ Ω. Note that then ζ1 = 1, while ζ0 = 0 on Γ.

8.2. Higher regularity.

8.2.1. ε2-independent bounds for q. Similar to (7.18), we have

‖q‖2
L2(Ω) ≤ C(M)

[
‖vt‖2

L2(Ω) + ‖∇v‖2
L2(Ω) + κ‖v‖2

H2(Γ) + ‖∇2
0h

ε2‖2
L2(Γ)

+ ‖F‖2
L2(Ω) + 1

]
.(8.1)
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8.2.2. Interior regularity. Converting the fluid equation (7.2) into Eulerian
variables by composing with η̄−1, we obtain a Stokes problem in the domain η̄(Ω):

−νΔu + ∇p = F̃ ◦ η̄−1 − vt ◦ η̄−1 + νāj�,j ◦ η̄−1
u,� − pāji,j ◦ η̄−1,(8.2a)

div u = 0,(8.2b)

where u = v ◦ η̄−1 and p = q ◦ η̄−1. By the regularity results for the Stokes problem,

‖u‖2
H2(η̄(Ω)) + ‖p‖2

H1(η̄(Ω))

≤ C
[
‖F̃ ◦ η̄−1‖2

L2(η̄(Ω)) + ‖vt ◦ η̄−1‖2
L2(η̄(Ω)) + ‖∇u‖2

L2(η̄(Ω)) + ‖p‖2
L2(η̄(Ω))

+ ‖u‖2
H1.5(Γ)

]
or

‖v‖2
H2(Ω) + ‖q‖2

H1(Ω) ≤ C
[
‖F‖2

L2(Ω) + ‖vt‖2
L2(Ω) + ‖v‖2

H1.5(Γ)

]
+ C(M)

[
‖∇v‖2

L2(Ω) + ‖q‖2
L2(Ω)

]

for some constant C independent of M and ε1. By (8.1),

‖v‖2
H2(Ω) + ‖q‖2

H1(Ω) ≤ C(M)
[
‖vt‖2

L2(Ω) + ‖∇v‖2
L2(Ω) + ‖v‖2

H2(Γ)

+ ‖∇2
0h

ε2‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]
.(8.3)

Similarly,

‖v‖2
H3(Ω) + ‖q‖2

H2(Ω) ≤ C
[
‖F‖2

H1(Ω) + ‖vt‖2
H1(Ω) + ‖v‖2

H2.5(Γ)

]
+ C(M)

[
‖∇v‖2

H1(Ω) + ‖q‖2
H1(Ω)

]
,

and therefore by (8.1) and (8.3),

‖v‖2
H3(Ω) + ‖q‖2

H2(Ω) ≤ C(M)
[
‖vt‖2

H1(Ω) + ‖∇v‖2
L2(Ω) + ‖∇2

0v‖2
H1(Ω1)

+ ‖∇2
0h

ε2‖2
L2(Γ) + ‖F‖2

H1(Ω) + 1
]
.(8.4)

For the regularized problem, because the ε1-regularization ensures that the forcing
and the initial data are smooth, while the ε2-regularization ensures that the right-hand
side of (7.2c) is smooth, by the standard difference quotient technique, it is also easy
to see that

(8.5) ∇k
0v ∈ L2(0, T ;H1(Ω1) ∩H2(Γ)) for k = 1, 2, 3, 4.

Since (7.25b) implies that vt ∈ L2(0, T ;H1(Ω)), by ε2-regularization and (8.4) we
conclude that

(8.6) v ∈ L2(0, T ;H3(Ω)), q ∈ L2(0, T ;H2(Ω)).
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8.3. Estimates for vt(0) and q(0). By (8.6) and ε2-regularization, (v, h, q)
satisfies the strong form (7.2). Taking the “divergence” of (7.2a) and then making
use of condition (7.2b), we find that

(8.7) −ākitv
i
,k − νāki [ā

j
�Dη̄(v)i�],jk = −āki (ā

j
iq),jk + āki F̃

i
,k.

Let t = 0; by the identity ā�kt = −āikv̄
j
,iā

�
j ,

Δq(0) = ∇ũ0 : (∇ũ0)
T − div(F̃ (0)) in Ω

with

q(0) = ν(Def ũ0)
j
iNiNj − σMε2

0 (0) + κΔ2
0ũ0 on Γ,

while (7.2a) gives us

vt(0) = νΔũ0 −∇q(0) + F̃ (0) in Ω.

By standard elliptic regularity result,

(8.8) ‖vt(0)‖2
L2(Ω) + ‖q(0)‖2

H1(Ω) ≤ CN0(u0, F )

for some constant independent of M , ε1, and ε2.

8.4. L2
tL

2
x-estimates for vt. Since vt ∈ L2(0, T ;H1(Ω)), we can use it as a

test function in (7.29). By (7.26), we find that

‖vt‖2
L2(Ω) +

ν

4

d

dt

∫
Ω

|Dη̄v|2dx− ν

2

∫
Ω

(Dη̄v)ji ā
k
jtv

i
,kdx + κ

∫
Γ

Δ0v · Δ0ϕdS

+

∫
Ω

qā�ktv
k
,�dx + σ

∫
Γ

Lε2
h̄

(h)(−∇0h̄ ◦ η̄τ , 1) · vtdS

= 〈F̃ , vt〉 − σ

∫
Γ

Mε2
h̄

(−∇0h̄ ◦ η̄τ , 1) · vtdS.

By (5.3), ∫
Ω

(Dη̄v)ji ā
k
jtv

i
,kdx ≤ C(M)C(δ)‖∇v‖2

L2(Ω) + δ‖v‖2
H2(Ω),

and by (8.1) and the interpolation inequality,∣∣∣∣
∫

Ω

qā�ktv
k
,�dx

∣∣∣∣ ≤ C(M)C(δ)
[
‖∇v‖2

L2(Ω) + ‖∇4
0h

ε2‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]

+ δ‖v‖2
H2(Ω) +

1

2
‖vt‖2

L2(Ω)

for some C(δ). Also, the last term on the left-hand side is bounded by

C(M)
[
‖∇4

0h
ε2‖L2(Γ) + 1

]
‖vt‖H1(Ω)

≤ C(M)C(δ1)
[
‖∇4

0h
ε2‖2

L2(Γ) + 1
]

+ δ1‖vt‖2
H1(Ω).
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Combining all the estimates above,

1

2
‖vt‖2

L2(Ω) +
ν

4

d

dt

∫
Ω

|Dη̄v|2dx +
κ

2

d

dt

∫
Γ

|Δ0v|2dS

≤ C
[
‖∇v‖2

L2(Ω) + ‖∇4
0h

ε2‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]

+ δ‖v‖2
H2(Ω) + δ1‖vt‖2

H1(Ω)

for some constant C depending on M , δ, and δ1. Therefore, by (7.27),

∫ t

0

‖vt‖2
L2(Ω)ds + ‖∇v(t)‖2

L2(Ω) + κ‖v‖2
H2(Γ)(8.9)

≤ C

[
N2(u0, F ) +

∫ t

0

‖∇4
0h

ε2‖2
L2(Γ)ds

]
+ δ

∫ t

0

‖v‖2
H2(Ω)ds + δ1

∫ t

0

‖vt‖2
H1(Ω)ds.

8.5. Energy estimates for ∇2
0v near the boundary. Because of (8.5),

∇2
0(ζ

2
1∇2

0v) in (7.28) can be used as a test function in (7.29). It follows that∣∣∣∣
∫

Γ

[
L̄ε2
h̄

(hε2) + M̄ε2
h̄

]
(−∇0h̄ ◦ η̄τ , 1) · ∇4

0vdS

∣∣∣∣
≤ C(M)

[
‖∇2

0h
ε2‖H2(Γ) + 1

]
‖v‖H4(Γ)

≤ C(M, δ3)
[
1 + ‖h‖2

H4(Γ)

]
+ δ3‖v‖2

H4(Γ).

By (7.4), we find that

‖h‖2
H4(Γ) ≤ C(ε1)

[∫ t

0

‖h̄‖H5(Γ)‖v‖H4(Γ)ds

]2

≤ C(ε1)

∫ t

0

‖v‖2
H4(Γ)ds,

and hence ∣∣∣∣
∫

Γ

[
L̄ε2
h̄

(hε2) + M̄ε2
h̄

]
(−∇0h̄ ◦ η̄τ , 1) · ∇4

0vdS

∣∣∣∣
≤ C̄

[
1 +

∫ t

0

‖v‖2
H4(Γ)

]
+ δ3‖v‖2

H4(Γ)

for some constant C̄ depending on M , ε1, and δ3. Since

Δ0f =
1√

det(g0)

∂

∂yα

[√
det(g0)g

αβ
0

∂

∂yβ
f

]
,

by the regularity on Γ (and hence on g0),∫
Γ

|Δ0∇2
0v|2dS ≤

∫
Γ

Δ2
0v · (∇4

0v)dS + C‖v‖H3(Γ)‖v‖H4(Γ)

≤
∫

Γ

Δ2
0v · (∇4

0v)dS + C(δ)‖v‖2
H1(Ω) + δ‖v‖2

H4(Γ),

which implies, by choosing δ > 0 small enough, that

ν2‖v‖2
H4(Γ) ≤

∫
Γ

Δ2
0v · (∇4

0v)dS + C‖v‖2
H1(Ω).
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By the identity

(q, ā�k∇2
0(ζ

2
1∇2

0v
k),�)

= (q,∇2
0ā

�
k(ζ

2
1∇2

0v
k),�) + 4(ζ1∇0q,∇0ā

�
kζ1,�∇2

0v
k) + 2(∇0q, ζ

2
1∇0ā

�
k∇2

0v
k
,�)

− 2(ζ1∇0q,∇0(ā
�
kζ1,�∇2

0v
k)) + 2(q,∇0(ā

�
kζ1,�∇0ζ1∇2

0v
k))(8.10)

+ (∇0q,∇0(ζ
2
1∇0ā

�
k∇0v

k
,�)),

(5.3) and (8.3) imply that

(q, ā�k∇′2
0 (ζ2

1∇2
0v

k),�) ≤ C(M)‖q‖H1(Ω)‖v‖H3(Ω)

≤ C(M)C(δ)
[
‖vt‖2

L2(Ω) + ‖∇v‖2
L2(Ω) + ‖∇∇0v‖2

L2(Ω1)
+ κ‖v‖2

H2(Γ)

+ ‖∇2
0h

ε2‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]

+ δ‖v‖2
H3(Ω).

For the viscosity term,∫
Ω

Dη̄v : Dη̄(∇2
0(ζ

2
1∇2

0v))dx

= ‖ζ1Dη̄∇2
0v‖2

L2(Ω) +
1

2

∫
Ω

[
∇2

0(ā
k
i ā

�
i)v

j
,� + ∇2

0(ā
k
i ā

�
j)v

i
,�

]
(ζ2

1∇2
0v

j),kdx

+

∫
Ω

[
∇0(ā

k
i ā

�
i)∇0v

j
,� + ∇0(ā

k
i ā

�
j)∇0v

i
,�

]
(ζ2

1∇2
0v

j),kdx

+

∫
Ω

Dη̄(∇2
0v)ji ā

k
i ζ1ζ1,k∇2

0v
jdx,

and hence by interpolation

1

2
‖ζ1Dη̄∇′2

0 v‖2
L2(Ω) ≤

∫
Ω

Dη̄v : Dη̄(∇2
0(ζ

2
1∇2

0v))dx

+ C(M)C(δ)
[
‖∇v‖2

L2(Ω) + ‖∇∇0v‖2
L2(Ω′

1)

]
+ δ‖v‖2

H3(Ω).

Summing all the estimates, by letting δ3 = ν2κ
2 , we conclude that

1

2

d

dt
‖ζ1∇2

0v‖2
L2(Ω) +

ν

4
‖ζ1Dη̄∇2

0v‖2
L2(Ω) +

ν2κ

2
‖v‖2

H4(Γ)

≤ C̄
[
‖vt‖2

L2(Ω) + ‖v‖2
H1(Ω) + ‖∇∇0v‖2

L2(Ω′
1)

+ ‖v‖2
H2(Γ) + ‖∇2

0h
ε2‖2

L2(Γ)

+ ‖F‖2
H1(Ω) + 1

]
+ C̄

∫ t

0

‖v‖2
H4(Γ)ds + δ‖v‖2

H3(Ω)

for some constant C̄ depending on M , κ, ε1, and δ. Integrating the inequality above
in time from 0 to t, by (7.27) we find that

‖∇2
0v(t)‖2

L2(Ω1)
+

∫ t

0

[
‖∇∇2

0v‖2
L2(Ω1)

+ κ‖v‖2
H4(Γ)

]
ds

≤ C̄N2(u0, F ) + C̄

∫ t

0

[
‖vt‖2

L2(Ω) + ‖∇∇0v‖2
L2(Ω′

1)
+ ‖v‖2

H2(Γ)

]
ds(8.11)

+ C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)dr + δ

∫ t

0

‖v‖2
H3(Ω)ds.
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By using ∇0(ζ
2
1∇0v) as a testing function in (7.29), similar computations lead to

‖∇0v(t)‖2
L2(Ω1)

+

∫ t

0

[
‖∇∇0v‖2

L2(Ω1)
+ κ‖v‖2

H3(Γ)

]
ds

≤ C(M)N2(u0, F ) + C(M, δ)

∫ t

0

[
‖vt‖2

L2(Ω) + κ‖v‖2
H2(Γ)

]
ds(8.12)

+ C(M)

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds + δ

∫ t

0

‖v‖2
H3(Ω)ds.

8.6. Energy estimates for vt: L2
tH

1
x-estimates. In this section, we time

differentiate (7.29) and then use vt as a test function to obtain

〈vtt, vt〉 + ν

∫
Ω

[
āk� (Dη̄v)i�,k

]
t
v
i
tdx + σ

∫
Γ

[
L̄ε2
h̄

(hε2)(−∇0h̄ ◦ η̄τ , 1)
]
t
· vtdS

+ κ

∫
Γ

|Δ0vt|2dS −
∫

Ω

(ā�kq)tv
k
t,�dx = 〈Ft, vt〉 − σ

∫
Γ

[
M̄ε2

h̄
(−∇0h̄ ◦ η̄τ , 1)

]
t
· vtdS.

By the chain rule, ∫
Γ

[
(L̄ε2

h̄
(hε2) + M̄ε2

h̄
)(−∇0h̄ ◦ η̄τ , 1)

]
t
· vtdS

=

∫
Γ

Θ̄t

[
Lh̄(hε2)

]ε2
◦ η̄τ (−∇0h̄ ◦ η̄τ , 1) · vtdS

+

∫
Γ

Θ̄η̄τt ·
[
∇0[Lh̄(hε2)]ε2(−∇0h̄, 1)

]
◦ η̄τ · vtdS

+

∫
Γ

Θ̄
[
[Lh̄(hε2)]ε2(∇0h̄,−1)]

]
t
◦ η̄τ · vtdS.

By using the H2(Γ)-H−2(Γ) duality pairing with ε1-regularization on Θ̄ and v̄, it
follows that ∣∣∣∣

∫
Γ

[
(L̄ε2

h̄
(hε2) + M̄ε2

h̄
)(−∇0h̄ ◦ η̄τ , 1)

]
t
· vtdS

∣∣∣∣
≤ C(ε1)

[
‖∇3

0h‖L2(Γ) + ‖∇2
0ht‖L2(Γ) + 1

]
‖vt‖H2(Γ)

≤ C(ε1, δ3)

[∫ t

0

‖v‖2
H4(Γ)ds + ‖v‖2

H2(Γ) + 1

]
+ δ3‖vt‖2

H2(Γ)

≤ C̄

[∫ t

0

‖v‖2
H4(Γ)ds + ‖v‖2

H1(Ω) + 1

]
+ δ‖v‖2

H3(Ω) + δ3‖vt‖2
H2(Γ)

for some constant C̄ depending on M , ε1, δ, and δ3, where we estimate ‖v‖2
H2(Γ) by

interpolation.
Also by interpolation,∫

Ω

|Dη̄vt|2dx = 2

∫
Ω

[
ākiDη̄(v)ji

]
t
v
j
t,kdx− 2

∫
Ω

[
(āki ā

�
i)tv

j
,� + (āki ā

�
j)tv

i
,�

]
v
j
t,kdx

≤ 2

∫
Ω

[
ākiDη̄(v)ji

]
t
v
j
t,kdx + C(M)C(δ, δ1)‖∇v‖2

L2(Ω)

−
∫

Ω

(ā�kq)tv
k
t,�dx + δ‖v‖2

H2(Ω) + δ1‖vt‖2
H1(Ω).
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Note that

〈Ft, vt〉 ≤ C‖Ft‖H1(Ω)′‖vt‖H1(Ω) ≤ C(δ1)‖Ft‖2
H1(Ω)′ + δ1‖vt‖2

H1(Ω).

Summing all the estimates above,

1

2

d

dt
‖vt‖2

L2(Ω) +
ν

4
‖∇vt‖2

L2(Ω) + κ‖Δ0vt‖2
L2(Γ)

≤ C̄

[∫ t

0

‖v‖2
H4(Γ)ds + ‖v‖2

H1(Ω) + 1

]
+ C(δ1)‖Ft‖2

H1(Ω)′(8.13)

+ δ‖v‖2
H3(Ω) + δ1‖vt‖2

H1(Ω) + δ3‖vt‖2
H2(Γ) +

∫
Ω

(ā�kq)tv
k
t,�dx

for some constant C̄ depending on M , κ, δ, and δ1. As in [7] and [8], the integral
involving the pressure q has the following estimate:∫ t

0

∫
Ω

(ā�kq)tv
k
t,�dxds ≤ C(M)C(δ, δ1)N3(u0, F ) + δ

∫ t

0

‖v‖2
H3(Ω)ds

+ δ1

∫ t

0

‖vt‖2
H1(Ω)ds,

where

N3(u0, F ) := ‖u0‖2
H2.5(Ω) + ‖u0‖2

H4.5(Γ) + ‖F‖2
L2(0,T ;H1(Ω))

+ ‖Ft‖2
L2(0,T ;H1(Ω)′) + ‖F (0)‖2

H1(Ω) + 1.

Integrating (8.13) in time from 0 to t and choosing δ1, δ3 > 0 small enough, (7.27)
and (8.9) imply that, for all t ∈ [0, T ],

‖vt(t)‖2
L2(Ω) +

∫ t

0

[
‖∇vt‖2

L2(Ω) + κ‖vt‖2
H2(Γ)

]
ds

≤ C̄N3(u0, F ) + C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds + δ

∫ t

0

‖v‖2
H3(Ω)ds(8.14)

for some constant C̄ depending on M , κ, δ, and δ2. In (8.14), (8.8) is used to bound
‖vt(0)‖2

L2(Ω).

8.7. ε2-independent estimates. Integrating (8.3) in time from 0 to t, (7.27),
(8.9), and (8.12) imply that∫ t

0

[
‖v‖2

H2(Ω) + ‖q‖2
H1(Ω)

]
ds

≤ C(M)N1(u0, F ) +

∫ t

0

[
‖vt‖2

L2(Ω) + ‖v‖2
H2(Γ)

]
ds

≤ C̄N3(u0, F ) + C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds + δ

∫ t

0

‖v‖2
H3(Ω)ds(8.15)

for some constant C̄ depending on M , κ, and δ. Integrating (8.4) in time from 0 to t,
making use of (8.11), (8.12), (8.14), and (8.15), and then choosing δ > 0 small enough
and T even smaller, we find that

(8.16)

∫ t

0

[
‖v‖2

H3(Ω) + ‖q‖2
H2(Ω)

]
ds ≤ C̄N3(u0, F ) + C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds
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for some constant C̄ depending on M , κ, and ε1.
Having (8.16), by choosing δ2 > 0 small enough, the estimates (8.11) can be

rewritten as

‖∇2
0v(t)‖2

L2(Ω1)
+

∫ t

0

[
‖∇∇2

0v‖2
L2(Ω1)

+ κ‖v‖2
H4(Γ)

]
ds

≤ C̄N3(u0, F ) + C̄

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds(8.17)

for some constant C̄ depending on M , κ, and ε1. Therefore,

X(t) ≤ C̄

[∫ t

0

X(s)ds + N3(u0, F )

]
,

where

X(t) =

∫ t

0

‖v‖2
H4(Γ)ds.

By the Gronwall inequality,

(8.18)

∫ t

0

∫ s

0

‖v(r)‖2
H4(Γ)drds ≤ C̄N3(u0, F )

for all t ∈ [0, T ] for some constant C̄ depending on M , κ, and ε1. Having (8.18),
estimates (8.9), (8.14), (8.16), and (8.17) along with the standard embedding theorem
lead to

sup
0≤t≤T

[
‖v(t)‖2

H2(Ω) + ‖vt(t)‖2
L2(Ω)

]
+ ‖v‖2

V3(T ) + ‖q‖2
L2(0,T ;H2(Ω))

+ κ‖v‖2
L2(0,T ;H4(Γ)) ≤ C̄N3(u0, F )(8.19)

for some constant C̄ depending on M , κ, and ε1.

8.8. Weak limits as ε2 → 0. Since the estimate (8.19) is independent of ε2,
the weak limit as ε2 → 0 of the sequence (v, h, q) exists. We will denote the weak
limit of (v, h, q) by (vκ, hκ, qκ). By lower semicontinuity, (8.8) and thus (8.19) hold
for the weak limit (vκ, hκ, qκ). Furthermore,

〈vκt, ϕ〉 +
ν

2

∫
Ω

Dη̄vκ : Dη̄ϕdx + σ

∫
Γ

Θ̄
[
[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ

]
· ϕdS

+ κ

∫
Γ

Δ0vκ · Δ0ϕdS − (qκ, ā
�
kϕ

k
,�)L2(Ω)(8.20)

= 〈F,ϕ〉 − σ

∫
Γ

Θ̄
[
[M(h̄)(−∇0h̄, 1)] ◦ η̄τ

]
· ϕdS

for all ϕ ∈ H1;2(Ω; Γ) and a.a. t ∈ [0, T ].

9. Estimates independent of κ and ε1.

9.1. Energy estimates which are independent of κ. Although (8.19) does
not imply that hκ ∈ H4(Γ), hκ is indeed in H4(Γ) by (7.4). Therefore, we have that
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(vκ, hκ, qκ) satisfies

vκ
i
t − ν[āk�Dη̄(vκ)i�],k = −(āki qκ),k + F̃ i in (0, T ) × Ω,(9.1a)

ājivκ
i
,j = 0 in (0, T ) × Ω,(9.1b)

[νDη̄(vκ)ji − qκδ
j
i ]ā

�
jN� = σΘ̄[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ on (0, T ) × Γ,(9.1c)

+ σΘ̄[Mh̄(−∇0h̄, 1)] ◦ η̄τ + κΔ2
0vκ

ht ◦ η̄τ = [(h̄,α) ◦ η̄τ ]vα − vz on (0, T ) × Γ,(9.1d)

v = ũ0 on {t = 0} × Ω,(9.1e)

h = 0 on {t = 0} × Γ.(9.1f)

Having (9.1c), (A.7) in Appendix A implies that hκ is in H5(Γ) for a.a. t ∈ [0, T ]
with estimate∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds ≤ C(ε1)

∫ t

0

[
‖∇4

0hκ‖2
L2(Γ) + ‖vκ‖2

H3(Ω) + ‖qκ‖2
H2(Ω) + 1

]
ds,

where the forcing f in (A.7) is given by

[νDη̄(vκ)ji − qκδ
j
i ]ā

�
jN� − σΘ̄[Mh̄(−∇0h̄, 1)] ◦ η̄τ .

By the same argument, (7.18) holds with all θ replaced by κ. Therefore, by (8.4)
(which follows from (7.18)),∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds ≤ C(ε1)

∫ t

0

[
‖vκt‖2

H1(Ω) + ‖∇4
0hκ‖2

L2(Γ) + ‖∇2
0vκ‖2

H1(Ω1)

]
ds

+ C(ε1)N2(u0, F ).(9.2)

With this extra regularity of hκ, the energy estimate (8.19) can be made inde-
pendent of κ. In section B.2 in Appendix B, we prove that

ν1

2
‖∇4

0hκ(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vκ)dSds

+ C ′
∫ t

0

[
1 + ‖ṽ‖2

H3(Ω) + ‖h̃t‖2
H2.5(Γ) + ‖h̃‖2

H5(Γ)

]
‖∇4

0hκ‖2
L2(Γ)ds

+ C ′
∫ t

0

[
‖h̃‖2

H5(Γ) + 1
]
ds + δ

∫ t

0

‖vκ‖2
H3(Ω)ds + δ1

∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds

for some constant C ′ depending on M , ε1, δ, and δ1. By (9.2),

ν1

2
‖∇4

0hκ(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vκ)dSds

+ C ′N2(u0, F ) + C ′
∫ t

0

[
‖∇2

0vκ‖2
H1(Ω1)

+ K(s)‖∇4
0hκ‖2

L2(Γ)

]
ds(9.3)

+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + δ1

∫ t

0

‖vκt‖2
H1(Ω)ds,

where

K(s) := 1 + ‖ṽ‖2
H3(Ω) + ‖h̃t‖2

H2.5(Γ) + ‖h̃‖2
H5(Γ).
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With (9.3), (8.11) now is replaced by

[
‖∇2

0vκ(t)‖2
L2(Ω1)

+ ‖∇4
0hκ(t)‖2

L2(Γ)

]
+

∫ t

0

[
‖∇∇2

0vκ‖2
L2(Ω1)

+ κ‖vκ‖2
H4(Γ)

]
ds

≤ C ′N2(u0, F ) + C ′
∫ t

0

[
‖vκt‖2

L2(Ω) + ‖∇2
0vκ‖2

H1(Ω1)
+ K(s)‖∇4

0hκ‖2
L2(Γ)

]
ds

+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + δ1

∫ t

0

‖vκt‖2
H1(Ω)ds(9.4)

for some C ′ depending on M , ε1, δ, and δ1, where (A.5) is applied to bound κ‖vκ‖2
H3(Γ)

(this is where ‖vκt‖2
L2(Ω) comes from). Similar computations lead to

[
‖∇0vκ(t)‖2

L2(Ω1)
+ ‖∇3

0hκ(t)‖2
L2(Γ)

]
+

∫ t

0

[
‖∇∇0vκ‖2

L2(Ω1)
+ κ‖vκ‖2

H3(Γ)

]
ds(9.5)

≤ CN2(u0, F ) + C

∫ t

0

‖∇4
0hκ‖2

L2(Γ)ds + δ

∫ t

0

‖vκ‖2
H3(Ω)ds

for some constant C depending on M and δ.
In Appendix C, we establish the following κ- and ε1-independent inequality for

the time-differentiated problem:

∫ t

0

‖∇2
0hκt‖2

L2(Γ)ds ≤
∫ t

0

∫
Γ

[
[Lh̄(hκ)(∇0h̄,−1)] ◦ η̄τ

]
t
· vκtdS

+ CN3(u0, F ) + C

∫ t

0

K(s)
[
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

]
ds

+ (δ + Ct1/2)

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ1 + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds + δ2‖∇4

0hκ‖2
L2(Γ)

for some constant C depending on M , δ, δ1, and δ2. Therefore, (8.14) can be replaced
by the following estimate:

[
‖vκt‖2

L2(Ω) + ‖∇2
0hκt‖2

L2(Γ)

]
+

∫ t

0

[
‖∇vκt‖2

L2(Ω) + κ‖Δ0vκt‖2
L2(Γ)

]
ds

(9.6)

≤ CN3(u0, F ) + C

∫ t

0

K(s)
[
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

]
ds

+ (δ + Ct1/2)

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ1 + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds + δ2‖∇4

0hκ‖2
L2(Γ).

9.2. κ-independent estimates. Just as in section 8.7, we find that

∫ t

0

[
‖vκ‖2

H3(Ω) + ‖qκ‖2
H2(Ω)

]
ds

≤ C(M)N2(u0, F ) + C(M)

∫ t

0

[
‖vκt‖2

H1(Ω) + ‖∇2
0vκ‖2

H1(Ω1)

]
ds.(9.7)

By choosing δ = δ1 = δ2 = 1/8 and T > 0 so that CT 1/2 < 1/8 in (9.6), we find that
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∫ t

0

[
‖vκ‖2

H3(Ω) + ‖qκ‖2
H2(Ω)

]
ds ≤ CN3(u0, F ) +

1

8
‖∇4

0hκ‖2
L2(Γ)

+ C(M)

∫ t

0

[
‖∇2

0vκ‖2
H1(Ω1)

+ K(s)
(
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

)]
ds.(9.8)

Combining the estimates (7.27), (8.9), (9.4), and (9.5) with (9.6),[
‖vκ‖2

H1(Ω) + ‖∇2
0vκ‖2

L2(Ω1)
+ ‖∇2

0hκ‖2
H2(Γ) + ‖vκt‖2

L2(Ω) + ‖∇2
0hκt‖2

L2(Γ)

]
(t)

+

∫ t

0

[
‖∇vκ‖2

L2(Ω) + ‖∇∇0vκ‖2
L2(Ω1)

+ ‖∇∇2
0vκ‖2

L2(Ω1)
+ ‖vκt‖2

H1(Ω)

]
ds

≤ C ′N3(u0, F ) + C ′
∫ t

0

[
‖vκt‖2

L2(Ω) + K(s)
(
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

)]
ds

for some constant C ′ depending on M and ε1. By the Gronwall inequality and (8.4),

sup
0≤t≤T

[
‖vκ‖2

H2(Ω) + ‖vκt‖2
L2(Ω) + ‖∇2

0hκt‖2
L2(Γ) + ‖∇4

0hκ‖2
L2(Γ)

+ ‖qκ‖2
H1(Ω)

]
(t) + ‖vκ‖2

V3(T ) + ‖qκ‖2
L2(0,T ;H2(Ω)) ≤ C(ε1)N3(u0, F ).

9.3. Weak limits as κ → 0. Just as in section 8.8, the weak limit (vε1 , hε1 , qε1)
of (vκ, hκ, qκ) as κ → 0 exists in V (T ) × L2(0, T ;H4(Γ)) × L2(0, T ;H2(Ω)) with
estimate

sup
0≤t≤T

[
‖vε1(t)‖2

H2(Ω) + ‖vε1 t(t)‖2
L2(Ω) + ‖∇2

0hε1 t(t)‖2
L2(Γ) + ‖∇4

0hε1(t)‖2
L2(Γ)

+ ‖qε1(t)‖2
H1(Ω)

]
+ ‖vκ‖2

V3(T ) + ‖qε1‖2
L2(0,T ;H2(Ω)) ≤ C(ε1)N3(u0, F ).(9.9)

Equation (9.9) implies that for a.a. t ∈ [0, T ],

‖vκ(t)‖H2.5(Γ) ≤ C̄(t)

for some C̄(t) independent of κ, and therefore for a.a. t ∈ [0, T ],

κ

∫
Γ

Δ0vκ · Δ0ϕdS → 0

as κ → 0. This observation with (8.20) shows that (vε1 , hε1 , qε1) satisfies, for a.a.
t ∈ [0, T ],

(vκt, ϕ)L2(Ω) +
ν

2

∫
Ω

Dη̄vκ : Dη̄(ϕ)dx + σ

∫
Γ

Θ̄Lh̄(hκ)
[
−h̄,σ ◦ η̄τϕσ + ϕz

]
dS

− (āji qκ, ϕ
i
,j)L2(Ω) = 〈F̃ , ϕ〉 + σ〈Θ̄Mh̄(−∇0h̄ ◦ η̄τ , 1), ϕ〉Γ(9.10)

for all ϕ ∈ H1;2(Ω; Γ). Since (9.10) also defines a linear functional on H1(Ω), by the
density argument, we have that (9.10) holds for all ϕ ∈ H1(Ω). As (vε1 , hε1 , qε1) are
smooth enough, we can integrate by parts and find that (vε1 , hε1 , qε1) satisfies (7.2)
with (7.2c) replaced by
(9.11)

[νDη̄(vε1)
j
i − qε1δ

j
i ]ā

�
jN� = σ

[
Θ̄[(Lh̄(hε1) + M(h̄))(∇0h̄,−1)] ◦ η̄τ

]
on (0, T ) × Γ.
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9.4. H5.5-regularity of hκ. By (9.11), we have the following lemma.
Lemma 9.1. For a.a. t ∈ [0, T ], hε1(t) ∈ H5.5(Γ) with

‖hε1‖2
H5.5(Γ) ≤ C(M)

[
‖vε1 t‖2

H1(Ω) + ‖∇vε1‖2
L2(Ω) + ‖∇2

0vε1‖2
H1(Ω1)

+ ‖∇4
0hε1‖2

L2(Γ)

+ ‖F‖2
H1(Ω) + 1

]
,(9.12)

and hence

(9.13) ‖hε1‖2
L2(0,T ;H5.5(Γ)) ≤ C(M)eC(M)+TN3(u0, F ).

Proof. We write the boundary condition (9.11) as

(9.14) Lh̄(hε1) =
1

σ
J−2
h̄

(−∇0h̄, 1) ·
{

Θ̄−1
[
[νDη̄(vε1)

j
i − qε1δ

j
i ]ā

�
jN�

]}
◦ η̄−τ −M(h̄).

By Corollary 7.1, Lh̄ is uniformly elliptic with the elliptic constant ν1 which is in-
dependent of M which defines our convex subset CT (M). Since h̄ ∈ H(T ), M(h̄) ∈
L2(0, T ;H2.5(Γ))∩L∞(0, T ;H1(Γ)), and hence by (8.19), the right-hand side of (9.14)
is bounded in H1.5(Γ). The important point is that these bounds are independent of
ε1. Thus, elliptic regularity of Lh̄ proves the estimate

‖hε1‖2
H5.5(Γ) ≤ C(M)

[
‖Dη̄(vε1)‖2

H1.5(Γ) + ‖qε1‖2
H1.5(Γ) + 1

]
so that with (8.4), (9.12) is proved.

9.5. Energy estimates which are independent of ε1. Having estimate
(9.12), one can follow exactly the same procedure as in section 9.2 to show that
the constant C ′ appearing in (9.9) is independent of ε1, provided that we have an
ε1-independent version of (9.4). By section B.2, we indeed have such an estimate:

ν1

2
‖∇4

0hε1(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hε1)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vε1)dSds

+ CN2(u0, F ) + C

∫ t

0

K(s)‖∇4
0hε1‖2

L2(Γ)ds + (δ + Ct1/2)

∫ t

0

‖vε1‖2
H3(Ω)ds

+ (δ1 + Ct1/2)

∫ t

0

‖vε1 t‖2
H1(Ω)ds

for some constant C depending on M , δ, and δ1. Therefore, we can conclude that

sup
0≤t≤T

[
‖vε1‖2

H2(Ω) + ‖vε1 t‖2
L2(Ω) + ‖∇2

0hε1 t‖2
L2(Γ) + ‖∇4

0hε1‖2
L2(Γ)

(9.15)

+ ‖qε1‖2
H1(Ω)

]
(t) + ‖vε1‖2

V3(T ) + ‖qε1‖2
L2(0,T ;H2(Ω)) ≤ C(M)eC(M)+TN3(u0, F ).

Remark 15. Literally speaking, we cannot use ∇2
0(ζ

2
1∇2

0vε1) as a test function
in (9.10), since it is not a function in H1(Ω). However, since hε1 ∈ H5.5(Γ) for
a.a. t ∈ [0, T ], (9.10) also holds for all ϕ ∈ H1(Ω)′ ∩H−1.5(Γ) and ∇2

0(ζ
2
1∇2

0vε1) is a
function of this kind.

9.6. Weak limits as ε1 → 0. The same argument leads to the fact that weak
limits of (vε1 , hε1 , qε1) (denoted by (v, h, q)) as ε1 → 0 exist and (v, h, q) satisfies (7.1).
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9.7. Uniqueness. In this section, we show that for a given (ṽ, h̃) ∈ YT , the
solution to (7.1) is unique in YT . Suppose (v1, h1) and (v2, h2) are two solutions (in
YT ) to (7.3). Let w = v1 − v2 and g = h1 − h2; then w and g satisfy

〈wt, ϕ〉 +
ν

2

∫
Ω

Dη̃w : Dη̃ϕdx + σ

∫
Γ

Θ̃

[
L̃h̃

(∫ t

0

(h̃,αwα − wz)ds

)]
◦ η̃τ

× (−h̃,α ◦ η̃τϕα + ϕz)dS = 0(9.16)

for all ϕ ∈ Vv(T ) with w(0) = 0, where L̃ equals L, except L1 = L2 = 0. Since w is
in Vv(T ), letting w = ϕ in (9.16) leads to[

‖v‖2
H1(Ω) + ‖∇2

0v‖2
L2(Ω1)

+ ‖∇4
0h‖2

L2(Γ) + ‖vt‖2
L2(Ω) + ‖∇2

0ht‖2
L2(Γ)

]
(t)

+

∫ t

0

[
‖∇v‖2

L2(Ω) + ‖∇∇0v‖2
L2(Ω1)

+ ‖∇∇2
0v‖2

L2(Ω1)
+ ‖vt‖2

H1(Ω)

]
ds

≤ C(M)

∫ t

0

K(s)
[
‖∇4

0h‖2
L2(Γ) + ‖∇2

0ht‖2
L2(Γ)

]
ds.

Therefore, by the Gronwall inequality and the zero initial condition (w(0) = 0),
we have that w (and hence g) is identical to zero.

10. Fixed-point argument. From previous sections, we establish a map ΘT

from YT into YT ; i.e., given (ṽ, h̃) ∈ CT (M), there exists a unique ΘT (ṽ, h̃) = (v, h)
satisfying (7.1). Theorem 4.1 is then proved if this mapping ΘT has a fixed point.
We shall make use of the Tychonoff fixed-point theorem which states as follows.

Theorem 10.1. For a reflexive Banach space X, and C ⊂ X a closed, convex,
bounded subset, if F : C → C is weakly sequentially continuous into X, then F has
at least one fixed point.

In order to apply the Tychonoff fixed-point theorem, we need to show that
Θ(ṽ, h̃) ∈ CT (M), and this is the case if T is small enough. In the following dis-
cussion, we will always assume T is smaller than a fixed constant (for example, say
T ≤ 1) so that the right-hand side of (9.15) can be written as C(M)N3(u0, F ).

Remark 16. The space YT is not reflexive. We will treat CT (M) as a convex
subset of XT and apply the Tychonoff fixed-point theorem on the space XT .

Before proceeding with the fixed-point proof, we note that Lemma 6.3 implies
that for a short time, the constant C(M) in (8.1) and (8.4) can be chosen to be
independent of M . To be more precise, for a.a. 0 < t ≤ T1,

‖q‖2
L2(Ω) ≤ C

[
‖vt‖2

L2(Ω) + ‖∇v‖2
L2(Ω) + ‖∇4

0h‖2
L2(Γ) + ‖F‖2

L2(Ω) + 1
]
,(10.1)

‖v‖2
H3(Ω) + ‖q‖2

H2(Ω) ≤ C
[
‖vt‖2

H1(Ω) + ‖∇v‖2
H1(Ω) + ‖∇0v‖2

H1(Ω1)

+ ‖∇2
0v‖2

H1(Ω) + ‖F‖2
H1(Ω) + 1

]
,

(10.2)

and

‖h‖2
H5.5(Γ) ≤ C

[
‖vt‖2

H1(Ω) + ‖∇v‖2
L2(Ω) + ‖∇2

0v‖2
H1(Ω1)

+ ‖∇4
0h‖2

L2(Γ)

+ ‖F‖2
H1(Ω) + 1

]
(10.3)

for some constant C independent of M .
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10.1. Continuity in time of h. By the evolution equation (7.1d) and the fact
that v ∈ V3(T1), ht ∈ L2(0, T1;H

2.5(Γ)). Since h ∈ L2(0, T1;H
5.5(Γ)), we have that

h ∈ C0([0, T1];H
4(Γ)) by the standard interpolation theorem. Although there is no

uniform rate that h converges to zero in H4(Γ), we have the following lemma.
Lemma 10.2. Let (v, h) = ΘT1(ṽ, h̃). Then ‖h(t)‖H2.5(Γ) converges to zero as

t → 0, uniformly for all (ṽ, h̃) ∈ CT1(M).
Proof. By the evolution equation (7.1d),

‖h(t)‖H2.5(Γ) ≤
∫ t

0

‖h̃,αvα − vz‖H2.5(Γ)dS ≤ C(M)N3(u0, F )1/2t1/2.

The lemma follows directly from the inequality.
By Lemma 10.2 and the interpolation inequality, we also have the following

lemma.
Lemma 10.3. ‖∇2

0h(t)‖H1.5(Γ) converges to zero as t → 0, uniformly for all

h̃ ∈ CT1(M) with estimate

(10.4) ‖∇2
0h(t)‖H1.5(Γ) ≤ C(M)N3(u0, F )t1/4

for all 0 < t ≤ T1.

10.2. Improved energy estimates. In order to apply the fixed-point theorem,
we have to use the fact that the forcing F is in V2(T ). We also define a new constant

N(u0, F ) := ‖u0‖2
H2.5(Ω) + ‖F‖2

V2(T1)
+ ‖F‖2

L∞(0,T1;L2(Ω)) + ‖F (0)‖2
H1(Ω) + 1.

Note that N3(u0, F ) ≤ N(u0, F ).
Remark 17. For the linearized problem (7.1), we need only F ∈ V1(T ) to obtain

a unique solution (v, h) ∈ YT .

10.2.1. Estimates for ∇2
0v near the boundary. Note that

1

2

d

dt

[
‖ζ1∇2

0v‖2
L2(Ω) + σ

∫
Γ

Θ̃BÃαβγδ∇2
0h,αβ∇2

0h,γδdS

]
+

ν

2
‖ζ1Dη̃(∇2

0v)‖2
L2(Ω)

= 〈F,∇2
0(ζ

2
1∇2

0v)〉 −
ν

4

∫
Ω

[
∇2

0(ã
k
i ã

�
i)v

j
,� + ∇2

0(ã
k
i ã

�
j)v

i
,�

]
(ζ2

1∇2
0v

j),kdx

− ν

2

∫
Ω

[
∇0(ã

k
i ã

�
i)∇0v

j
,� + ∇0(ã

k
i ã

�
j)∇0v

i
,�

]
(ζ2

1∇2
0v

j),kdx

− ν

2

∫
Ω

Dη̃(∇2
0v)

j
i ã

k
i ζ1ζ1,k∇2

0v
jdx +

∫
Ω

qã�k[∇2
0(ζ

2
1∇2

0v
k)],�dx− σ

(
3∑

k=1

Ik +

8∑
k=1

Jk

)
,

where Ik’s and Jk’s are defined in section B.1 (with ¯ replaced by ,̃ and no ε1 and ε2).
As in [7] and [8], we study the time integral of the right-hand side of the identity

above in order to prove the validity of the requirement of applying the Tychonoff
fixed-point theorem. By interpolation and (9.9),

∫ t

0

∫
Ω

[
∇2

0(ã
k
i ã

�
i)v

j
,� + ∇2

0(ã
k
i ã

�
j)v

i
,�

]
(ζ2

1∇2
0v

j),kdxds

≤ C

∫ t

0

‖ãã‖H2(Ω)‖∇v‖L∞(Ω)‖v‖H3(Ω)ds
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≤ C(M)C(δ)

∫ t

0

‖v‖1/2
H3(Ω)‖v‖

1/2
H1(Ω)ds + δ‖v‖2

L2(0,T ;H3(Ω))

≤ C(M)C(δ)N(u0, F )1/2
∫ t

0

‖v‖1/2
H3(Ω)ds + δC(M)N(u0, F )

≤ C(M)N(u0, F )
[
C(δ)t3/4 + δ

]
.

Similarly,∫ t

0

∫
Ω

[
∇0(ã

k
i ã

�
i)∇0v

j
,� + ∇0(ã

k
i ã

�
j)∇0v

i
,�

]
(ζ2

1∇2
0v

j),kdxds

+

∫ t

0

∫
Ω

Dη̃(∇2
0v)

j
i ã

k
i ζ1ζ1,k∇2

0v
jdxds ≤ C(M)N(u0, F )

[
t1/2 + C(δ)t + δ

]
.

For the pressure term, by interpolation and (8.10),

∫ t

0

∫
Ω

qã�k[∇2
0(ζ

2
1∇2

0v
k)],�dxds

≤ C(M)

∫ t

0

[
‖q‖L∞(Ω) + ‖q‖W 1,4(Ω) + ‖q‖H1(Ω)

]
‖v‖H3(Ω)ds

≤ C(M)C(δ)

∫ t

0

‖q‖2
H1(Ω)ds + δ

[
‖v‖2

L2(0,T ;H3(Ω) + ‖q‖2
L2(0,T ;H2(Ω))

]
≤ C(M)N(u0, F )

[
C(δ)t1/2 + δ

]
.

By the estimates already established in Appendix B, with the help of (6.6), it is also
easy to see that

∫ t

0

(
3∑

k=1

Ik +

8∑
k=1

Jk

)
ds ≤ C(M)N(u0, F )

[
t1/4 + t1/2 + C(δ)t2/3 + δ

]
.

Finally, for the forcing term, by the extra regularity we assume on F ,∫ t

0

〈F,∇2
0(ζ

2
1∇2

0v)〉ds ≤
∫ t

0

‖F‖H2(Ω)‖v‖H2(Ω)ds ≤ N(u0, F ) +

∫ t

0

‖v‖2
H2(Ω)ds

≤ N(u0, F ) + C(M)N(u0, F )t.

Therefore,

[
‖∇2

0v(t)‖2
L2(Ω1)

+ σEh̃(∇2
0h)

]
+ ν

∫ t

0

‖Dη̃(∇2
0v)‖2

L2(Ω1)
ds

≤ ‖u0‖2
H2(Ω) + CN(u0, F ) + C(M)N(u0, F )

[
C(δ)(t3/4 + t2/3 + t1/2 + t) + δ

]
.

By Corollary 7.1,

[
‖∇2

0v(t)‖2
L2(Ω1)

+ ‖∇4
0h(t)‖2

L2(Γ)

]
+

∫ t

0

‖∇2
0v‖2

H1(Ω1)
ds

≤ CN(u0, F ) + C(M)N(u0, F )
[
C(δ)O(t) + δ

]
as t → 0,(10.5)
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where C depends on ν, σ, ν1, and the geometry of Γ.
By similar computations, we can also conclude (the (7.27), (8.9), and (9.5) vari-

ants) that

[
‖v(t)‖2

L2(Ω) + ‖∇2
0h(t)‖2

L2(Γ)

]
+

∫ t

0

‖v‖2
H1(Ω)ds

≤ CN(u0, F ) + C(M)N(u0, F )O(t) as t → 0;(10.6) [
‖∇0v(t)‖2

L2(Ω1)
+ ‖∇3

0h(t)|2L2(Γ)

]
+

∫ t

0

‖∇0v‖2
H1(Ω1)

ds

≤ CN(u0, F ) + C(M)N(u0, F )O(t) as t → 0;(10.7)

‖∇v(t)‖2
L2(Ω) +

∫ t

0

‖vt‖2
L2(Ω)ds

≤ CN(u0, F ) + C(M)N(u0, F )O(t) as t → 0,(10.8)

where C depends on ν, σ, ν1, and the geometry of Γ.

10.2.2. L2
tH

1
x-estimate for vt. For the time-differentiated problem, we are not

able to use estimates such as those in sections 8.6 and 10.2.1, since no ε1-regularization
is present; nevertheless, we can obtain estimates at the ε1-regularization level and then
pass ε1 to the limit once the estimate is found to be ε1-independent. We have that

1

2

d

dt
‖vt‖2

L2(Ω) +
ν

2
‖Dη̄vt‖2

L2(Ω) +
σ

2

d

dt

∫
Γ

Θ̄Āαβγδht,αβht,γδdS

= 〈Ft, vt〉 − ν

∫
Ω

[
(āki ā

�
j)tv

j
,� + (āki ā

�
j)tv

i
,�

]
vjt,kdx +

∫
Ω

qtā
�
ktv

k
,�dx

+
1

2

∫
Γ

(Θ̄Āαβγδ)tht,αβht,γδdS −
∫

Γ

Θ̄√
det(g0)

[√
det(g0)(Ā

αβγδ)th,αβ

]
,γδ

httdS

− 2

∫
Γ

Θ̄,γĀ
αβγδht,αβhtt,δdS −

∫
Γ

Θ̄,γδĀ
αβγδht,αβhttdS

−
∫

Γ

Θ̄
[
Lαβγ

1 h̄,αβγ

]
t
httdS −

∫
Γ

Θ̄(L2)thttdS + K1 + K3 + K4 + K5 + K6,

where Ki’s are defined in Appendix C (without ε2).
As in the previous section, the time integral of the right-hand side of the identity

above is studied. It is easy to see that∫ t

0

[
〈Ft, vt〉 − ν

(
(āki ā

�
j)tv

j
,� + (āki ā

�
j)tv

i
,�

)
vjt,k + K1 + K5 + K6

]
ds

≤ C(M)N(u0, F )
[
t1/4 + t1/2 + C(δ)(t1/2 + t) + δ

]
,

and by Appendix C, particularly Remark 22,∫ t

0

∫
Γ

[
1

2
(Θ̄Āαβγδ)tht,αβht,γδ −

Θ̄√
det(g0)

[√
det(g0)(Ā

αβγδ)th,αβ

]
,γδ

htt

− 2Θ̄,γĀ
αβγδht,αβhtt,δ − Θ̄,γδĀ

αβγδht,αβhtt

]
dSds

≤ C(M)N(u0, F )t1/2.
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Special treatment is needed for the rest of the terms, and we break this procedure
into several steps.

Step 1. Let B1 =
∫ t

0

∫
Ω

(qā�k)tv
k
t,�dxds. By the “divergence-free” condition (7.2b),

B1 =

∫ t

0

∫
Ω

ā�ktqv
k
t,�dxds−

∫ t

0

∫
Ω

ā�ktqtv
k
,�dxds.

By interpolation and (8.1),∣∣∣∣
∫ t

0

∫
Ω

ā�ktqv
k
t,�dxds

∣∣∣∣
≤ C(M)C(δ)

∫ t

0

‖q‖2
L2(Ω)ds + δ

[
‖q‖2

L2(0,T ;H1(Ω)) + ‖vt‖2
L2(0,T ;H1(Ω))

]
≤ C(M)N(u0, F )

[
C(δ)t + δ

]
.

For the second integral, we have the following identity:

∫ t

0

∫
Ω

ā�ktqtv
k
,�dxds =

∫
Ω

(ā�ktqv
k
,�)(t)dx−

∫
Ω

ā�kt(0)q(0)uk
0,�dx

−
∫ t

0

∫
Ω

(ā�ktv
k
,�)tqdxds.

By the identity ā�kt = −āikv̄
j
,iā

�
j ,∣∣∣∣

∫ t

0

∫
Ω

(ā�ktv
k
,�)tqdxds

∣∣∣∣ ≤
∫ t

0

∫
Ω

∣∣∣[ā�kttvk,� + ā�ktv
k
t,�

]
q
∣∣∣dxds

≤ C(M)

∫ t

0

(1 + ‖v̄t‖H1(Ω))‖∇v‖L4(Ω)‖q‖L4(Ω)ds.

Therefore,∣∣∣∣
∫ t

0

∫
Ω

(ā�ktv
k
,�)tqdxds

∣∣∣∣
≤ C(M)C(δ)N(u0, F )

∫ t

0

‖q‖2α
H1(Ω)‖q‖

2(1−α)
L2(Ω) ds + δ

∫ t

0

(1 + ‖v̄t‖2
H1(Ω))ds

≤ C(M)N(u0, F )2
[
C(δ)(t + t

1−α
2 ) + δ

]
,

where α = 3
4 if n = 3 and α = 1

2 if n = 2.

The second integral equals
∫
Ω
∇u0 : (∇u0)

T q(0)dx, which is bounded by CN(u0, F ).

It remains to estimate the first integral. By adding and subtracting
∫
Ω
ā�kt(0)qvk,�dx,

we find, by āt(0) ∈ H2(Ω), that∣∣∣∣
∫

Ω

(ā�ktqv
k
,�)(t)dx

∣∣∣∣ ≤
∫

Ω

∣∣∣(ā�kt − ā�kt(0))(qvk,�)(t)
∣∣∣dx +

∫
Ω

∣∣∣ā�kt(0)qvk,�

∣∣∣dx
≤ C‖āt(t) − āt(0)‖L4(Ω)‖q‖L2(Ω)‖∇v‖L4(Ω)

+ C(δ1)‖∇v‖2
L2(Ω) + δ1‖q‖2

L2(Ω).
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Noting that

‖∇v‖2
L2(Ω) =

∥∥∥∥∇u0 +

∫ t

0

∇vtds

∥∥∥∥
2

L2(Ω)

≤
[
‖∇u0‖L2(Ω) +

∫ t

0

‖∇vt‖L2(Ω)ds

]2

≤ 2
[
‖u0‖2

H1(Ω) + C(M)N(u0, F )t
]
,

(9.9), (6.5c), and (10.1) imply that∣∣∣∣
∫

Ω

ā�ktqv
k
,�(t)dx

∣∣∣∣ ≤ C(M)N(u0, F )t1/2 + C(δ1)N(u0, F )

+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
.

Summing all the estimates above, we find that

|B1| ≤ C(δ1)N(u0, F ) + C(M)N(u0, F )2
[
C(δ)(t + t

1−α
2 ) + δ

]
+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
.

Remark 18. It may be tempting to use an interpolation inequality to show
that q ∈ C([0, T ];X) for some Banach space X by analyzing qt via Laplace’s equa-
tion. The problem, however, is that the boundary condition for qt has low regularity
L2(0, T ;H−1.5(Γ)) (by the fact that ht ∈ L2(0, T ;H2.5(Γ))), and thus standard elliptic
estimates do not provide the desired conclusion that qt ∈ L2(0, T ;H1(Ω)′) (and hence
by interpolation, q ∈ C([0, T ];H0.5(Ω))). However, suppose that qt ∈ L2(0, T ;H1(Ω)′);

then we can estimate
∫ t

0

∫
Ω
ā�ktqtv

k
,�dxds by the following method:∣∣∣∣

∫ t

0

∫
Ω

ā�ktqtv
k
,�dxds

∣∣∣∣ ≤
∫ t

0

‖āikv̄
j
,iā

�
jv

k
,�‖H1(Ω)‖qt‖H1(Ω)′ds

≤ C(M)N(u0, F )
[
t + t5/8

]
.

Step 2. Let B2 =
∫ t

0

∫
Γ

Θ̃
[
[Lαβγ

1 h̃,αβγ ]thtt + (L2)thtt

]
dSds. It is easy to see that∣∣∣∣

∫ t

0

∫
Γ

Θ̄(L2)thttdSds

∣∣∣∣ ≤ C(M)

∫ t

0

[
‖v‖L∞(Γ) + ‖vt‖L2(Γ)

]
ds

≤ C(M)N(u0, F )1/2(t + t3/4).

For parts involving L1, we have∫ t

0

∫
Γ

Θ̃
[
Lαβγ

1 h̃,αβγ

]
t
httdSds =

∫ t

0

∫
Γ

Θ̃
[
Lαβγ

1

]
t
h̄,αβγhttdSds (≡ B1

2)

+

∫ t

0

∫
Γ

Θ̃Lαβγ
1 h̄t,αβγhttdSds (≡ B2

2).

By interpolation,

|B1
2 | ≤ C(M)

∫ t

0

‖Θ̄‖L∞(Γ)‖h̃‖W 1,4(Γ)‖htt‖L4(Γ)dSds

≤ C(M)

∫ t

0

[
‖v‖H2(Ω) + ‖vt‖H1(Ω)

]
ds

≤ C(M)N(u0, F )1/2t1/2,
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while by (6.6) and Corollary 6.5,

|B2
2 | ≤

∫ t

0

‖Θ̄‖H1.5(Γ)‖h̃t‖H2.5(Γ)‖Lαβγ
1 ‖H1.5(Γ)‖htt‖H0.5(Γ)ds

≤ C(M)‖Lαβγ
1 ‖H1.5(Γ)

∫ t

0

‖h̃‖H2.5(Γ)

[
‖v‖H2(Ω) + ‖vt‖H1(Ω)

]
ds

≤ C(M)N(u0, F )t1/4.

Therefore,

|B2| ≤ C(M)N(u0, F )(t + t3/4 + t1/4).

Step 3. Let B3 =
∫ t

0
K3ds =

∫ t

0

∫
Γ

Θ̄[Lh̄(h)]t[(v̄ ◦ η̄−τ ) · (∇0ht)]dSds. The L1 and
L2 part of B3 is bounded by

C(M)

∫ t

0

‖Θ̄‖H1.5(Γ)‖v̄‖H1.5(Γ)‖h̄‖H3.5(Γ)‖h̄t‖H2(Γ)‖ht‖H2(Ω)ds,

and hence∣∣∣∣
∫ t

0

Θ̄
[
Lαβγ

1 h̄,αβγ + L2

]
t
[(v̄ ◦ η̄−τ ) · (∇0ht)]dSds

∣∣∣∣ ≤ C(M)N(u0, F )t1/4.

By the integration by parts formula, the highest order part of B3 can be expressed as∫ t

0

∫
Γ

Θ̄(v̄ ◦ η̄−τ )√
det(g0)

[√
det(g0)(Ā

αβγδ)th,αβ

]
,γδ

∇0htdSds (≡ B1
3)

+

∫ t

0

∫
Γ

Θ̄(v̄ ◦ η̄−τ )Āαβγδht,αβ∇0ht,γδdSds (≡ B2
3)

+ 2

∫ t

0

∫
Γ

[Θ̄(v̄ ◦ η̄−τ )],γĀ
αβγδht,αβ∇0ht,δdSds (≡ B3

3)

+

∫ t

0

∫
Γ

[Θ̄(v̄ ◦ η̄−τ )],γδĀ
αβγδht,αβ∇0htdSds (≡ B4

3).

It is easy to see that

|B1
3 | ≤ C(M)

∫ t

0

‖Θ̄v̄ ◦ η̄−τ‖H1.5(Γ)‖h̄t‖H2(Γ)‖h‖H4(Γ)‖ht‖H2(Γ)dS

≤ C(M)N(u0, F )t

and

|B3
3 | ≤ C(M)

∫ t

0

‖Θ̄v̄ ◦ η̄−τ‖W 1,4(Γ)‖Ā‖L∞(Γ)‖ht‖H2(Γ)‖ht‖W 2,4(Γ)dS

≤ C(M)N(u0, F )t1/2.

For B2
3 , by the integration by parts formula,

B2
3 =

1

2

∫ t

0

∫
Γ

Θ̄(v̄ ◦ η̄−τ )Āαβγδ∇0

[
ht,αβht,γδ

]
dSds

= −1

2

∫ t

0

∫
Γ

1√
det(g0)

∇0

[√
det(g0)Θ̄(v̄ ◦ η̄−τ )Āαβγδ

]
ht,αβht,γδdSds,
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and hence

|B2
3 | ≤

∫ t

0

[
‖∇0Θ̄‖L4(Γ)‖v̄Ā‖L∞(Γ) + ‖Θ̄‖L∞(Γ)‖v̄Ā‖W 1,4(Γ)

]
× ‖ht‖W 2,4(Γ)‖ht‖H2(Γ)ds

≤ C(M)N(u0, F )1/2
∫ t

0

‖v‖H3(Ω)ds

≤ C(M)N(u0, F )t1/2.

For B4
3 , noting that

Θ̄,γδ = det(∇0η̄
τ ),γδ

√
det(Gh̄) ◦ η̄τ + det(∇0η̄

τ ),γ
√

det(Gh̄) ◦ η̄τ ,δ
+ det(∇0η̄

τ ),δ
√

det(Gh̄) ◦ η̄τ ,γ + det(∇0η̄
τ )
√

det(Gh̄) ◦ η̄τ ,γδ

and ‖∇0 det(∇0η̄
τ )‖H0.5(Γ) ≤ C(M)t1/2, we find that

|B4
3 | ≤ C(M)

∫ t

0

‖∇0 det(∇0η̄
τ )‖H0.5(Γ)‖∇2

0ht‖H0.5(Γ)‖∇0ht‖H1.5(Γ)ds

+ C(M)

∫ t

0

‖det(∇0η̄
τ )‖L∞(Γ)‖∇0η̄

τ‖2
L∞(Γ)‖∇2

0ht‖L2(Γ)‖∇0ht‖L2(Γ)ds

≤ C(M)N(u0, F )t1/2 + C(M)N(u0, F )3/4
∫ t

0

‖v‖1/2
H3(Ω)ds

≤ C(M)N(u0, F )(t1/2 + t3/4).

Combining all the estimates, we find that

|B3| ≤ C(M)N(u0, F )(t + t1/2 + t3/4).

Step 4. Let B4 =
∫ t

0
K4ds =

∫ t

0

∫
Γ

Θ̄[Lh̄(h)]t[(∇0h̄,−1)t · (v ◦ η̄−τ )]dSds. Integrat-
ing by parts,

B4 = −
∫ t

0

∫
Γ

Lh̄(h)
[
Θ̄t(∇0h̄,−1)t · (v ◦ η̄−τ ) + Θ̄(∇0h̄,−1)t · (v ◦ η̄−τ )t

+ Θ̄(∇0h̄,−1)tt · (v ◦ η̄−τ )
]
dSds +

∫
Γ

Θ̄Lh̃(h)[(∇0h̃,−1)t · (v ◦ η̄−τ )]dS.

For the first integral, (6.8) implies that

∣∣∣∣
∫

Γ

Θ̄Lh̃(h)[(∇0h̃,−1)t · (v ◦ η̄−τ )]dS

∣∣∣∣
≤ ‖Θ̄‖L∞(Γ)‖Lh̃(h)‖L2(Γ)‖∇0h̃t‖L4(Γ)‖v ◦ η̄−τ‖L4(Γ)

≤ C(M)N(u0, F )‖h̃t‖H1.5(Γ)

≤ C(M)N(u0, F )t1/8.
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It is also easy to see that

∣∣∣∣
∫ t

0

∫
Γ

Lh̄(h)
[
Θ̄t(∇0h̄,−1)t · (v ◦ η̄−τ ) + Θ̄(∇0h̃,−1)t · (v ◦ η̄−τ )t

]
dSds

∣∣∣∣
≤ C(M)

∫ t

0

[
‖v‖L∞(Γ) + ‖vt‖L4(Γ)

]
‖Lh̃(h)‖L2(Γ)‖∇0h̃t‖L4(Γ)ds

≤ C(M)N(u0, F )1/2
∫ t

0

[
‖v‖H3(Ω) + ‖vt‖H1(Ω)

]
ds

≤ C(M)N(u0, F )t1/2.

For the remaining terms, the H0.5(Γ)-H−0.5(Γ) duality pairing leads to

∣∣∣∣
∫ t

0

∫
Γ

Θ̄Lh̃(h)(∇0h̃,−1)tt · vdSds
∣∣∣∣

≤
∫ t

0

‖Θ̄‖H1.5(Γ)‖Lh̃(h)‖H0.5(Γ)‖v‖H1.5(Γ)‖h̃tt‖H0.5(Γ)ds.

By interpolation,

‖Lh̃(h)‖H0.5(Γ) ≤ C(M)
[
‖h‖1/2

H5.5(Γ)‖h‖
1/2
H3.5(Γ) + 1

]
,

and hence ∣∣∣∣
∫ t

0

∫
Γ

Θ̃Lh̃(h)(∇0h̃,−1)tt · (v ◦ η̄−τ )dSds

∣∣∣∣
≤ C(M)N(u0, F )

∫ t

0

‖h̃tt‖H0.5(Γ)

[
‖∇5

0h‖
1/2
L2(Γ) + 1

]
ds

≤ C(M)C(δ)N(u0, F )

∫ t

0

[
‖∇5

0h‖L2(Γ) + 1
]
ds + δC(M)N(u0, F )

≤ C(M)N(u0, F )
[
C(δ)(t1/2 + t) + δ

]
.

All the inequalities above give us

|B4| ≤ C(M)N(u0, F )
[
C(δ)(t1/2 + t) + t1/8 + δ

]
.

Summing all the estimates above, we find that

[
‖vt‖2

L2(Ω) + σ

∫
Γ

Θ̄Āαβγδht,αβht,γδ|2dS
]
(t) + ν

∫ t

0

‖Dη̃vt‖2
L2(Ω)ds

≤ ‖vt(0)‖2
L2(Ω) + σ

∫
Γ

|Gαβ
0 ht,αβ(0)|2dS + (C + C(δ1))N(u0, F )

+ C(M)N(u0, F )
[
C(δ)(t + t3/4 + t1/2 + t1/4 + t1/8 + t

1−α
2 ) + δ

]
+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
,
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and by Corollary 7.1,[
‖vt(t)‖2

L2(Ω) + ‖∇2
0ht(t)‖2

L2(Γ)

]
+

∫ t

0

‖vt‖2
H1(Ω)ds

≤ (C + C(δ1))N(u0, F ) + C(M)N(u0, F )
[
C(δ)O(t) + δ

]
(10.9)

+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
,

where C depends on ν, σ, ν1, and the geometry of Γ. Since this estimate is independent
of ε1, we pass ε1 to zero and conclude that the solution (v, h) to (7.1) also satisfies
(10.9).

10.3. Mapping from CT (M) into CT (M). In this section, we are going to
choose M so that Θ(ṽ, h̃) ∈ CT (M) if (ṽ, h̃) ∈ CT (M).

Summing (10.5), (10.6), (10.7), (10.8), and (10.9), by (6.5) we find that[
‖v(t)‖2

L2(Ω) + ‖∇0v(t)‖2
L2(Ω1)

+ ‖∇2
0v(t)‖2

L2(Ω1)
+ ‖vt(t)‖2

L2(Ω)

+ ‖∇2
0h(t)‖2

L2(Γ) + ‖∇3
0h(t)‖2

L2(Γ) + ‖∇4
0h(t)‖2

L2(Γ) + ‖∇2
0ht(t)‖2

L2(Γ)

]
+

∫ t

0

[
‖v‖2

H1(Ω) + ‖∇0v‖2
H1(Ω1)

+ ‖∇2
0v‖2

H1(Ω1)
+ ‖vt‖2

H1(Ω)

]
ds

≤ (C + C(δ1))N(u0, F ) + C(M)N(u0, F )
[
C(δ)O(t) + δ

]
+ δ1

[
‖vt‖2

L2(Ω) + ‖∇4
0h‖2

L2(Γ)

]
,

where C depends on ν, σ, ν1, and the geometry of Γ. Choosing δ1 = 1
2 ,[

‖v(t)‖2
L2(Ω) + ‖∇0v(t)‖2

L2(Ω1)
+ ‖∇2

0v(t)‖2
L2(Ω1)

+ ‖vt(t)‖2
L2(Ω)

+ ‖∇2
0h(t)‖2

L2(Γ) + ‖∇3
0h(t)‖2

L2(Γ) + ‖∇4
0h(t)‖2

L2(Γ) + ‖∇2
0ht(t)‖2

L2(Γ)

]
+

∫ t

0

[
‖v‖2

H1(Ω) + ‖∇0v‖2
H1(Ω1)

+ ‖∇2
0v‖2

H1(Ω1)
+ ‖vt‖2

H1(Ω)

]
ds

≤ C1N(u0, F ) + C(M)N(u0, F )2
[
C(δ)O(t) + δ

]
,

where C1 depends on ν, σ, μ, and the geometry of Γ. Similar to section 8.7, for
a.a. 0 < t ≤ T ,[

‖v(t)‖2
H2(Ω) + ‖vt(t)‖2

L2(Ω) + ‖∇2
0h(t)‖2

H2(Γ) + ‖∇2
0ht(t)‖2

L2(Γ)

]
+

∫ t

0

[
‖v‖2

H3(Ω) + ‖vt‖2
H1(Ω) + ‖q‖2

H2(Ω)

]
ds(10.10)

≤ C2N(u0, F ) + C(M)N(u0, F )2
[
C(δ)O(t) + δ

]
for some constant C2 depending on C1.

By (6.6), (6.8), and (7.1d),∫ t

0

‖ht‖2
H2.5(Γ)ds ≤

∫ t

0

[
1 + ‖h̃‖2

H3.5(Γ)

]
‖v‖2

H2.5(Γ)ds

≤ C(M)N(u0, F )t1/4(10.11)
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and∫ t

0

‖htt‖2
H0.5(Γ)ds ≤ C(M)

∫ t

0

[
‖h̃t‖2

H1.5(Γ)‖v‖2
H2(Ω) + ‖h̃‖2

H2.5(Γ)‖vt‖2
H1(Ω)

]
ds

≤ C(M)N(u0, F )
[
t1/4 + t1/2

]
.(10.12)

Also, by (10.3) and (10.10),∫ t

0

‖h‖2
H5.5(Γ)ds ≤ C

∫ t

0

[
‖vt‖2

H1(Ω) + ‖∇v‖2
L2(Ω) + ‖∇2

0v‖2
H1(Ω1)

+ ‖∇4
0h‖2

L2(Γ)

+ ‖F‖2
H1(Ω) + 1

]
ds

≤ C3N(u0, F ) + C(M)N(u0, F )2
[
C(δ)O(t) + δ

]
(10.13)

for some constant C3 depending on C2.
Combining (10.10), (10.11), (10.12), and (10.13), we have the following inequality:[

‖v(t)‖2
H2(Ω) + ‖vt(t)‖2

L2(Ω) + ‖h(t)‖2
H4(Γ) + ‖ht(t)‖2

H2(Γ)

]
+

∫ t

0

[
‖v‖2

H3(Ω) + ‖vt‖2
H1(Ω) + ‖h‖2

H5.5(Γ) + ‖ht‖2
H2.5(Γ) + ‖htt‖2

H0.5(Γ)

]
ds

≤ (C2 + C3)N(u0, F ) + C(M)N(u0, F )2
[
C(δ)O(t) + δ

]
.

Let M = 2(C2+C3)N(u0, F )+1 (and hence corresponding T0 and T in Lemma 6.3
and Corollary 7.1 are fixed). Choose δ > 0 small enough (but fixed) so that

C(M)N(u0, F )2δ ≤ 1

4

and then choose T > 0 small enough so that

C(M)N(u0, F )2C(δ)T ≤ 1

4
.

Then for a.a. 0 < t ≤ T ,[
‖v(t)‖2

H2(Ω) + ‖vt(t)‖2
L2(Ω) + ‖h(t)‖2

H4(Γ) + ‖ht(t)‖2
H2(Γ)

]
+

∫ t

0

[
‖v‖2

H3(Ω) + ‖vt‖2
H1(Ω) + ‖ht‖2

H2.5(Γ) + ‖htt‖2
H0.5(Γ)

]
ds

≤ C2N(u0, F ) +
1

2
,

and therefore

sup
0≤t≤T

[
‖v(t)‖2

H2(Ω) + ‖vt(t)‖2
L2(Ω) + ‖h(t)‖2

H4(Γ) + ‖ht(t)‖2
H2(Γ)

]
+ ‖v‖2

V3(T ) + ‖h‖2
H(T ) ≤ 2C2N(u0, F ) + 1,(10.14)

or in other words,

‖(v, h)‖2
Y (T ) ≤ 2C2N(u0, F ) + 1.

Remark 19. Equation (10.14) implies that for (ṽ, h̃) ∈ CT (M) (with M and
T chosen as above), the corresponding solution to the linear problem (7.1) (v, h) =
ΘT (ṽ, h̃) is also in CT (M).
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10.4. Weak continuity of the mapping ΘT .
Lemma 10.4. The mapping ΘT is weakly sequentially continuous from CT (M)

into CT (M) (endowed with the norm of XT ).
Proof. Let (vp, hp)p∈N be a given sequence of elements of CT (M) weakly conver-

gent (in YT ) toward a given element (v, h) ∈ CT (M) (where CT (M) is sequentially
weakly closed as a closed convex set) and let (vσ(p), hσ(p))p∈N be any subsequence of
this sequence.

Since V3(T ) is compactly embedded into L2(0, T ;H2(Ω)), we deduce the following
strong convergence results in L2(0, T ;L2(Ω)) as p → ∞:

(aj�)p(a
k
� )p → aj�a

k
� and (aj�)p(a

�
k)p → aj�a

�
k,(10.15a)

[(aj�)p(a
k
� )p],j → (aj�a

k
� ),j and [(aj�)p(a

�
k)p],j → (aj�a

�
k),j ,(10.15b)

(aki )p → aki .(10.15c)

Now let (wp, gp) = ΘT (vp, hp) and let qp be the associated pressure so that (qp)p∈N is in
a bounded set of V2(T ). Since XT is a reflexive Hilbert space, let (wσ(p), gσ(p), qσ(p))p∈N

be a subsequence weakly converging in XT × V2(T ) toward an element (w, g, q) ∈
XT × V2(T ). Since CT (M) is weakly closed in XT , we also have (w, g) ∈ CT (M).

For each φ ∈ L2(0, T ;H1(Ω)), we deduce from (7.3) (and Remark 6) that∫ T

0

[
(wt, φ)L2(Ω) +

μ

2

∫
Ω

Dηw : Dηφdx + σ

∫
Γ

Lh(g)(g,αφα − φz)dS

+

∫
Ω

qajiφ
i
,jdx

]
dt =

∫ T

0

〈F, φ〉dt,

which with the fact that, from (10.15), for all t ∈ [0, T ], w ∈ Vv, provides that (w, g)
is a solution of (2.16) in CT (M), i.e., (w, g) = ΘT (v, h).

Therefore, we deduce that the whole sequence (ΘT (vn, hn))n∈N weakly converges
in CT (M) toward ΘT (v, h), which concludes the lemma.

10.5. Uniqueness. For the uniqueness result, we assume that u0, F , and Γ are
smooth enough (e.g., u0 ∈ H5.5(Ω), F ∈ V4(T ), Γ is a H8.5 surface) so that u0 and
the associated u1, q0 satisfy compatibility condition (4.4). Therefore, the solution
(v, h, q) is such that v ∈ V6(T ), q ∈ L2(0, T ;H5(Ω)) and h ∈ L∞(0, T ;H7(Γ)) ∩
L2(0, T ;H8.5(Γ)), ht ∈ L∞(0, T ;H5(Γ)) ∩ L2(0, T ;H5.5(Γ)), htt ∈ L∞(0, T ;H2(Γ)) ∩
L2(0, T ;H3.5(Γ)). This implies a ∈ L∞(0, T ;H5(Ω)), and hence by studying the
elliptic equation

(a�ia
k
i qt,k),� =

[
νa�i(a

k
pa

j
pv

i
,j),k� + a�itv

i
,� + a�iF,�

]
t
− [(a�ia

k
i )tq,k],� in Ω,

qt = J−2
h

[(
σLh(h)Ni − νDη(v)

�
ia

j
iNj

)
t
− (ajiNj)tq

]
a�iN� on Γ,

we find that qt ∈ L2(0, T ;H2(Ω)), and this implies vtt ∈ L2(0, T ;H1(Ω)). By the
interpolation theorem, we also conclude that vt ∈ C0([0, T ];H2.5(Ω)).

Suppose (v, h, q) and (ṽ, h̃, q̃) are two sets of solutions of (1.1). Then

(v − ṽ)t − ν[ak�Dη(v − ṽ)i�],k = −aki (q − q̃),k + δF,(10.16a)

aji (v − ṽ)i,j = δa,(10.16b) [
ν[Dη(v − ṽ)]�i − (q − q̃)δ�i

]
aj�Nj = σΘ

[
Lh(h− h̃)(−∇0h, 1)

]
◦ ητ(10.16c)

+ δL1 + δL2 + δL3,
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(h− h̃)t ◦ ητ = [h,α ◦ ητ ](vα − ṽα) − (vz − ṽz)(10.16d)

+ δh1 + δh2 + δh3,

(v − ṽ)(0) = 0,(10.16e)

(h− h̃)(0) = 0,(10.16f)

where

δF = f ◦ η − f ◦ η̃ + ν[(ak�a
j
� − ãk� ã

j
�)ṽ

i
,j ],k + ν[(ak�a

j
i − ãk� ã

j
i )ṽ

�
,j ],k(10.17a)

− (aki − ãki )q̃,k,

δa = (aji − ãji )ṽ
i
,j ,(10.17b)

δL1 = σΘ
[
Lh(h̃)(∇0h−∇0h̃, 0)

]
◦ ητ − ν(aki a

j
� − ãki ã

j
�)ṽ

�
,kNj(10.17c)

− ν(ak�a
j
� − ãk� ã

j
�)ṽ

i
,kNj + (aji − ãji )q̃Nj ,

δL2 = Θ̃[Lh̃(h̃) ◦ ητ ](∇0h̃ ◦ ητ −∇0h̃ ◦ η̃τ , 0)(10.17d)

+
[
ΘLh(h̃) ◦ ητ − Θ̃Lh(h̃) ◦ η̃τ

]
(∇0h̃ ◦ η̃τ ,−1),

δL3 =
[
[Lh(h̃) − Lh̃(h̃)](∇0h̃,−1)

]
◦ η̃τ ,(10.17e)

δh1 = (h,α ◦ ητ − h,α ◦ η̃τ )ṽα,(10.17f)

δh2 =
[
(h,α − h̃,α) ◦ η̃τ

]
ṽα,(10.17g)

δh3 = −(h̃t ◦ ητ − h̃t ◦ η̃τ ).(10.17h)

We will also use δL and δh to denote
∑3

k=1 Lk and
∑3

k=1 δhk, respectively.
Similar to (11.3) in [8], we also have the following estimates.
Lemma 10.5. For f ∈ H2(Ω) and g ∈ H1.5(Γ),

‖f ◦ η − f ◦ η̃‖L2(Ω) ≤ C
√
t‖f‖H2(Ω)

[∫ t

0

‖v − ṽ‖2
H1(Ω)ds

]1/2

,(10.18)

‖g ◦ ητ − g ◦ η̃τ‖L2(Γ) ≤ C
√
t‖g‖H1.5(Γ)

[∫ t

0

‖v − ṽ‖2
H1(Ω)ds

]1/2

(10.19)

for some constant C.
Remark 20. Assuming the regularity of h, ht, and htt given in the beginning of

this section, we have

(10.20) ‖δL2‖H2(Γ) + ‖δh1 + δh3‖H2.5(Γ) ≤ C
√
t

[∫ t

0

‖v − ṽ‖2
H3(Ω)ds

]1/2

and

‖(δL2)t‖L2(Γ) + ‖(δh1 + δh3)t‖H1(Γ)(10.21)

≤ C

[
‖v − ṽ‖H1(Ω) +

√
t

(∫ t

0

‖v − ṽ‖2
H2(Ω)ds

)1/2
]

and
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‖∇2
0(δh3)t‖L2(Γ) ≤ C

[
‖v − ṽ‖H1(Ω) + ‖v − ṽ‖H3(Ω)

+
√
t‖h̃tt‖H3.5(Γ)

(∫ t

0

‖v − ṽ‖2
H3(Ω)ds

)1/2
]
.(10.22)

By using (10.18) to estimate ‖δF‖L2(Ω), we find that

‖∇(v − ṽ)(t)‖2
L2(Ω) +

∫ t

0

‖(v − ṽ)t‖2
L2(Ω)ds

≤ C(δ)

∫ t

0

[
‖v − ṽ‖2

H1(Ω) + ‖h− h̃‖2
H4(Γ)

]
ds + (C(δ)t2 + δ)

∫ t

0

‖v − ṽ‖2
H2(Ω)ds

+ δ

∫ t

0

[
‖(v − ṽ)t‖2

H1(Ω) + ‖q − q̃‖2
H1(Ω)

]
ds.(10.23)

For the L2
tH

3
x-estimate for v − ṽ and the L2

tH
1
x-estimate for (v − ṽ)t, we have

1

2

d

dt

[
‖ζ1∇2

0(v − ṽ)‖2
L2(Ω) + 2σEh(∇2

0(h− h̃))
]

+
ν

4
‖ζ1Dη̄∇2

0(v − ṽ)‖2
L2(Ω)

≤ C
[
‖δF‖2

H1(Ω) + ‖(v − ṽ)t‖2
L2(Ω) + ‖∇(v − ṽ)‖2

L2(Ω) + ‖∇∇0(v − ṽ)‖2
L2(Ω′

1)

+ ‖∇4
0(h− h̃)‖2

L2(Γ)

]
+ δ‖v − ṽ‖2

H3(Ω) + D1 + D2 + D3

and

1

2

d

dt

[
‖(v − ṽ)t‖2

L2(Ω) + 2σEh((h− h̃)t)
]

+
ν

4
‖∇(v − ṽ)t‖2

L2(Ω)

≤ C
[
(‖∇4

0(h− h̃)‖2
L2(Γ) + ‖∇2

0(h− h̃)t‖2
L2(Γ)) + ‖δFt‖2

H1(Ω)′

]
+ δ‖v − ṽ‖2

H3(Ω)

+ E1 + E2 + E3,

where

D1 :=

∫
Ω

ζ2
1∇2

0(q − q̃)∇2
0δadx, D2 :=

∫
Γ

Θ
[
[Lh(h− h̃)] ◦ ητ

]
(∇4

0δh)dS,

D3 :=

∫
Γ

δL · ∇4
0(v − ṽ)dS

and

E1 :=

∫
Ω

(q − q̃)t(δa)tdx, E2 :=

∫
Γ

[
Θ[Lh(h− h̃)] ◦ ητ

]
t
(δh)tdS,

E3 :=

∫
Γ

(δL)t · (v − ṽ)tdS.

By using (10.20) to estimate Di and (10.21), (10.22) to estimate Ei, we obtain[
‖∇2

0(v − ṽ)(t)‖2
L2(Ω1)

+ ‖∇4
0(h− h̃)(t)‖2

L2(Γ)

]
+

∫ t

0

‖∇∇2
0(v − ṽ)‖2

L2(Ω1)
ds

≤ C(δ)

∫ t

0

[
‖(v − ṽ)t‖2

L2(Ω) + ‖∇0(v − ṽ)‖2
L2(Ω) + ‖∇4

0(h− h̃)‖2
L4(Γ)

]
ds

+ (C(δ)t2 + δ)

∫ t

0

‖v − ṽ‖2
H3(Ω)ds + δ

∫ t

0

‖q − q̃‖2
H2(Ω)ds(10.24)
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and [
‖(v − ṽ)t(t)‖2

L2(Ω) + ‖∇2
0(h− h̃)t‖2

L2(Γ)

]
+

∫ t

0

‖∇(v − ṽ)t‖2
L2(Ω)ds

≤ C(δ)

∫ t

0

[
‖v − ṽ‖2

H1(Ω) + ‖∇4
0(h− h̃)‖2

L2(Γ) + (1 + ‖h̃tt‖2
H4.5(Γ))

× ‖∇2
0(h− h̃)t‖2

L2(Γ)

]
ds(10.25)

+ (C(δ)(t + t2) + δ)

∫ t

0

‖v − ṽ‖2
H3(Ω)ds + δ‖q − q̃‖2

L2(Ω)

+ δ

∫ t

0

[
‖(v − ṽ)t‖2

H1(Ω) + ‖q − q̃‖2
H2(Ω)

]
ds.

Summing (10.23), (10.24), and (10.25), we find that

(10.26) Y (t) +

∫ t

0

Z(s)ds ≤ C(δ)

∫ t

0

k(s)Y (s)ds + (C(δ)(t2 + t) + δ)

∫ t

0

Z(s)ds,

where

k(t) = 1 + ‖h̃tt(t)‖2
H3.5(Γ),

Y (t) =
[
‖v − ṽ(t)‖2

H1(Ω) + ‖∇2
0(v − ṽ)(t)‖2

L2(Ω1)
+ ‖(v − ṽ)t(t)‖2

L2(Ω)

+ ‖h− h̃‖2
H4(Γ) + ‖(h− h̃)t‖2

H2(Γ)

]
,

Z(t) = ‖(v − ṽ)t(t)‖2
H1(Ω) + ‖∇∇2

0(v − ṽ)(t)‖2
L2(Ω1)

.

By letting δ = 1/4 and choosing Tu ≤ T so that C(δ)(T 2
u + Tu) ≤ 1/4,

(10.27) Y (t) +

∫ t

0

Z(s)ds ≤ C

∫ t

0

k(s)Y (s)ds

for all 0 < t ≤ Tu. Since Y (0) = 0, the uniqueness of the solution follows from that
Y (t) = 0 for all 0 < t ≤ Tu.

11. The analysis of the membrane traction. The analysis of the membrane
traction consists of four parts: (1) the modified linearized (and regularized) problem;
(2) the κ-independent estimates; (3) the fixed-point argument; and (4) the uniqueness
of the solution.

11.1. The modified linearized and regularized problem. Recall that the
membrane traction is

tmem =
[
JP ′′(J ) + 2P ′(J )

]
J,βg

αβη,α +
[
JP ′(J ) + P(J )

]
Hn.

For given v̄ = ρε1 ∗ ṽ (and hence η̄, ḡ, etc.), we define (for fixed but small ε > 0)

Lε
m̄ =

1

2
J̄−1

[
(∂βρε) ∗

(
ḡ

g0

)][
J̄ P ′′(J̄ ) + 2P ′(J̄ )

]
ḡαβ η̄,α +

[
J̄ P ′(J̄ ) + P(J̄ )

]
H̄n̄.

For the linearized problem, we change the boundary condition (7.1c) to

[νDη̃(v)
j
i − qδji ]ã

�
jN� = (Lε

m̄)i + σΘ̃
[
Lh̃(h)(−∇0h̃, 1)

]
◦ η̃τ on (0, T ) × Γ(11.1)

+ σΘ̃
[
[M(h̃)(−∇0h̃, 1)] ◦ η̃τ

]
,
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where we recall that Θ̄ = det(∇0η̄
τ )
√

det(Gh̄) ◦ η̄τ . Note that here we treat the
membrane traction as a given forcing on the boundary. The regularized problem
consists of adding the artificial viscosity, as introduced in (7.2c), in (11.1). Note that
here we also mollify J̄,β and use the equality (ρε ∗ f),β = ρε,β ∗ f .

Since Lm̄ is given as a forcing, all the estimates are essentially the same as those in
the previous sections. Therefore, we have a unique solution (vκ, hκ) to the regularized
problem (with ε1-, ε-, and κ-dependent estimates).

11.2. The κ-independent estimates. The introduction of the artificial vis-
cosity is to provide enough regularity for the solution to the linearized problem. As
in Appendix A, the κ-independent estimates are obtained by studying the normal
component of (A.1). Note that with the help of the mollification operation in (11.1),
the corresponding f in (A.1) is also a function in L2(0, T ;H1.5(Γ)). Therefore, (A.7)
is still valid. This κ-independent estimate will enable us to take the limit as κ → 0
and obtain the solution (vε1 , hε1). Essentially the same proof as in section 9.4 shows
that (9.12) still holds, and hence taking the limit as ε1 → 0, the weak limit (vε, hε)
solves the linearized problem (7.1), and all the estimates in the previous sections hold
with C(M) replaced by C(M, ε).

Remark 21. The estimate for (vε, hε) still depends on ε, where the extra ε-
regularization is used in the L2

tH
3
x-estimates, which requires estimating the following

boundary integral:∫
Γ

1

2
J̄−1

[
(∂βρε) ∗

(
ḡ

g0

)][
J̄ P ′′(J̄ ) + 2P ′(J̄ )

]
ḡαβ η̄,α∇4

0vdS.

Moreover, even though the estimate for hε1 depends only on the normal component
of Lm̄, in the linearized problem, there are still contributions to the normal direction
made by ḡαβ η̄,α.

11.3. The fixed-point argument. Similar fixed-point arguments as in sec-
tion 10 guarantee the existence of a fixed point (which is still denoted by (vε, hε)) in
the space XTε ; that is, there is a fixed point (vε, hε) ∈ V3(Tε) × H(Tε). This fixed
point satisfies the boundary condition

[νDηε
(vε)

j
i − qεδ

j
i ](aε)

�
jN� = (Lε

m)i + σΘε

[
Lhε

(hε)(−∇0hε, 1)
]
◦ ηετ(11.2)

+ σΘε

[
[M(hε)(−∇0hε, 1)] ◦ ηετ

]
on (0, T ) × Γ, where

Lε
m =

1

2
J−1
ε

[
ρε ∗

(
gε
g0

)]
,β

[
JεP ′′(Jε) + 2P ′(Jε)

]
gαβε ηε,α +

[
JεP ′(Jε) +P(Jε)

]
Hεnε.

By studying the tangential component of (11.2), we find that for γ = 1, 2,

(11.3) J−1
ε

[
ρε ∗

(
gε
g0

)]
,γ

[
JεP ′′(Jε) + 2P ′(Jε)

]
= 2[νDηε(vε)

j
i − qεδ

j
i ](aε)

�
jN�ηε

i
,γ .

Take Tε even smaller so that

1

2
≤ ‖Θε‖H1.5(Γ) ≤

3

2
,

1

2
≤ ‖aε‖H2(Ω) ≤

3

2
,

‖vε‖L2(0,Tε;H3(Ω)) ≤ ‖u0‖2
H3(Ω) + 1, ‖ηε‖H3(Ω) ≤ |Ω| + 1.
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With these bounds, (11.3) together with the assumptions that P is strictly convex
and P attains its minimum at J = 1 (that assure that the second bracket of the
left-hand side of (11.3) is bounded away from zero) implies that

(11.4)

∥∥∥∥∇0

[
ρε ∗

(
gε
g0

)]∥∥∥∥
H1.5(Γ)

≤ C(u0,Ω).

Since (11.4) is independent of the ε, we find that

(11.5) ‖gε‖H2.5(Γ) ≤ C(u0, g0,Ω).

Having (11.5), we no longer need ε-regularization to estimate the boundary integral
in Remark 21 and the study of (A.1), and hence all the estimates in the previous
sections are still valid with C(M) replaced by C(u0, g0,Ω). These ε-independent
estimates allow us to construct a solution (vε, hε) in X(T ) (where T is independent
of ε) with the same estimates. The solution of the original problem (1.1) is then the
limit of (vε, hε) as ε → 0.

11.4. The uniqueness of the solution. The uniqueness of the solution follows
from the elliptic estimate

‖g − g̃‖2
H2.5(Γ) ≤ C

[
‖v − ṽ‖2

H3(Ω) + ‖vt − ṽt‖2
H1(Ω)

]
,

which follows from the equation(
g − g̃

g0

)
,γ

Q(η) +

(
g̃

g0

)
,γ

[
Q(η) −Q(η̃)

]
= F (v, q)γ − F (ṽ, q̃)γ ,

where

Q(η) = J−1
[
JP ′′(J ) + 2P ′(J )

]
and F (v, q)γ = 2[νDη(v)

j
i − qδji ]a

�
jN�η

i
,γ .

Appendix A. Elliptic regularity. We establish a κ-independent elliptic esti-
mate for solutions of

(A.1)
Θ̄√

det(g0)

[(√
det(g0)Ā

αβγδhκ,αβ

)
,γδ

(−∇0h̄, 1)
]
◦ η̄τ + κΔ2

0vκ = f,

where hκ and vκ satisfy (7.4) with hκ ∈ H4(Γ), vκ ∈ H4(Γ), and f ∈ H1.5(Γ). Letting
w = vκ ◦ η̄−τ , (A.1) is equivalent to

(A.2)
Θ̄√

det(g0)

[√
det(g0)Ā

αβγδhκ,αβ

]
,γδ

(−∇0h̄, 1) + κΔ2
0w = f ◦ η̄τ ,

which implies that

Θ̄√
det(g0)

[√
det(g0)Ā

αβγδhκ,αβ

]
,γδ

+ κJ−2
h̄

Δ2
0w · (−∇0h̄, 1)

= J−2
h̄

f ◦ η̄τ · (−∇0h̄, 1).

(A.3)

Recall that w · (−∇0h̄, 1) = hκt.
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Let Dh denote the difference quotients (with respect to the surface coordinate
system). Taking the inner product of (A.3) with D−hDh∇4

0hκ, by Corollary 7.1 we
find that

ν1

∫ t

0

‖Dh∇4
0hκ‖2

L2(Γ)ds ≤ C(ε1)

∫ t

0

[
‖hκ‖2

H2(Γ) + ‖f‖2
H1(Γ) + κ‖w‖2

H4(Γ)

]
ds.

Since the right-hand side is independent of difference parameter h, it follows that
hκ ∈ H5(Γ) (as it is already a H4-function) with the estimate

(A.4)

∫ t

0

‖∇5
0hκ‖2

L2(Γ)ds ≤ C(ε1)

∫ t

0

[
‖hκ‖2

H2(Γ) + ‖f‖2
H1(Γ) + κ‖w‖2

H4(Γ)

]
ds.

Next, we obtain a κ-independent estimate of κ‖w‖2
H4(Γ). By taking the inner

product of (A.2) with ∇2
0w and ∇4

0w, we find that

‖∇3
0hκ(t)‖2

L2(Γ) + κ

∫ t

0

‖w‖2
H3(Γ)ds

≤ C(ε1)

∫ t

0

[
‖∇3

0hκ‖2
L2(Γ) + ‖f‖2

L2(Γ) + ‖w‖2
H2.5(Ω)

]
ds(A.5)

and

‖∇4
0hκ(t)‖2

L2(Γ) + κ

∫ t

0

‖w‖2
H4(Γ)ds

(A.6)

≤ C(ε1, δ1)

∫ t

0

[
‖∇4

0hκ‖2
L2(Γ) + ‖f‖2

H1.5(Γ) + ‖w‖2
H3(Ω)

]
ds + δ1

∫ t

0

‖∇5
0hκ‖2

L2(Γ)dS,

where we use (A.5) to estimate κ
∫ t

0
‖w‖H3(Γ)ds. Equation (A.6) provides a κ-inde-

pendent estimate for κ‖w‖2
H4(Γ); hence by choosing δ1 > 0 small enough, (A.4) implies

that for all t ∈ [0, T ],

(A.7)

∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds ≤ C ′
∫ t

0

[
‖∇4

0hκ‖2
L2(Γ) + ‖f‖2

H1.5(Γ) + ‖w‖2
H3(Ω)

]
ds

for some constant C ′ depending on ε1.

Appendix B. Inequalities in the estimates for ∇2
0v near the boundary.

B.1. κ-independent estimates. Since ζ1 ≡ 1 on Γ and

(−∇0h̄ ◦ η̄τ , 1) · ∇4
0vκ = ∇4

0((−∇0h̄ ◦ η̄τ , 1) · vκ) −∇4
0(−∇0h̄ ◦ η̄τ , 1) · vκ

− 4∇3
0(−∇0h̄ ◦ η̄τ , 1) · ∇0vκ − 6∇2

0(−∇0h̄ ◦ η̄τ , 1) · ∇2
0vκ

− 4∇0(−∇0h̄ ◦ η̄τ , 1) · ∇3
0vκ,

we find that
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Γ

Θ̄
[
Lh̄(hκ) ◦ η̄τ

]
((−∇0h̄ ◦ η̄τ , 1) · ∇2

0(ζ
2
1∇2

0vκ))dS

= −
∫

Γ

Θ̄
[
Lh̄(hκ) ◦ η̄τ

][
∇4

0(−∇0h̄ ◦ η̄τ , 1) · vκ + 4∇3
0(−∇0h̄ ◦ η̄τ , 1) · ∇0vκ

+ 6∇2
0(−∇0h̄ ◦ η̄τ , 1) · ∇2

0vκ

]
dS (≡ I1)

− 4

∫
Γ

Θ̄
[
Lh̄(hκ) ◦ η̄τ

]
(∇0(−∇0h̄ ◦ η̄τ , 1) · ∇3

0vκ)dS (≡ I2)

+

∫
Γ

Θ̄√
det(g0)

∇2
0

[√
det(g0)

(
Lαβγ

1 h̃,αβγ + L2

)
◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ I3)

+

∫
Γ

2∇0Θ̄√
det(g0)

∇0

[√
det(g0)

(
Lαβγ

1 h̃,αβγ + L2

)
◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ I4)

+

∫
Γ

(∇2
0Θ̄)

[(
Lαβγ

1 h̃,αβγ + L2

)
◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ I5)

+

∫
Γ

Θ̄√
det(g0)

[
(
√

det(g0)Ā
αβγδhκ,αβ),γδ ◦ η̄τ

]
∇4

0(hκt ◦ η̄τ )dS.

The last term of the identity above, by a change of coordinates, can be written as∫
Γ

Θ̄√
det(g0)

[
(
√

det(g0)Ā
αβγδhκ,αβ),γδ ◦ η̄τ

]
∇4

0(hκt ◦ η̄τ )dS

=

∫
Γ

B√
det(g0)

∇2
0(
√

det(g0)Ā
αβγδhκ,αβ),γδ∇2

0hκtdS + R1

+ 2

∫
Γ

∇0Θ̄√
det(g0)

∇0

[
(
√

det(g0)Ā
αβγδhκ,αβ),γδ ◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ J1)

+

∫
Γ

∇2
0Θ̄√

det(g0)

[
(
√

det(g0)Ā
αβγδhκ,αβ),γδ ◦ η̄τ

]
∇2

0(hκt ◦ η̄τ )dS (≡ J2)

=
1

2

d

dt

∫
Γ

BĀαβγδ∇2
0hκ,αβ∇2

0hκ,γδdS + R′
1,

where B = bt ⊗ bt ⊗ bt ⊗ bt with b = ∇0η̄
τ , and

R1(t) =

∫
Γ

bt ⊗ bt ⊗ (∇0b
t) ⊗ (∇0b

t)∇0(
√

det(g0)Ā
αβγδhκ,αβ),γδ∇0hκtdS (≡ J3)

+

∫
Γ

bt ⊗ bt ⊗ bt ⊗ (∇0b
t)∇0(

√
det(g0)Ā

αβγδhκ,αβ),γδ∇2
0hκtdS (≡ J4)

+

∫
Γ

bt ⊗ bt ⊗ bt ⊗ (∇0b
t)∇2

0(
√

det(g0)Ā
αβγδhκ,αβ),γδ∇0hκtdS (≡ J5)

and

R′
1(t) = R1(t) + J1(t) + J2(t) −

1

2

∫
Γ

(BĀαβγδ)t∇2
0hκ,αβ∇2

0hκ,γδdS (≡ J6)

+ 2

∫
Γ

B√
det(g0)

∇0(
√

det(g0)Ā
αβγδ)∇0hκ,αβ∇2

0hκt,γδdS (≡ J7)

+

∫
Γ

B√
det(g0)

∇2
0(
√

det(g0)Ā
αβγδ)hκ,αβ∇2

0hκt,γδdS (≡ J8)
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+ 2

∫
Γ

B,γ√
det(g0)

∇2
0(
√

det(g0)Ā
αβγδhκ,αβ)∇2

0hκt,δdS (≡ J9)

+

∫
Γ

B,γδ√
det(g0)

∇2
0(
√

det(g0)Ā
αβγδhκ,αβ)∇2

0hκtdS (≡ J10).

It follows that

|I1| ≤ C(ε1)(1 + ‖∇4
0hκ‖L2(Γ))‖∇2

0vκ‖H1(Ω′
1)
,

|I3| + |I4| + |I5| ≤ C(M)(1 + ‖h̃‖H5(Γ))‖∇2
0vκ‖H1(Ω1)

and hence that

|I1| + |I3| + |I4| + |I5| ≤ C(ε1)
[
‖∇4

0hκ‖2
L2(Γ) + ‖h̃‖2

H5(Γ) + 1
]

+ δ‖vκ‖2
H3(Ω).

It follows that

|J2| + |J3| + |J5| + |J10| ≤ C(ε1)‖∇4
0hκ‖L2(Γ)‖∇2

0hκt‖L2(Γ),

|J6| ≤ C(M)(‖ṽ‖H3(Ω) + ‖h̃t‖H2.5(Γ))‖∇4
0hκ‖2

L2(Γ).

We need only obtain κ-independent estimates for the terms I2, J1, J4, J7, J8, and J9.
By the H−0.5(Γ)-H0.5(Γ) duality pairing,

|I2| ≤ C(M)
[
‖∇2

0hκ‖H2.5(Γ) + 1
]
‖vκ‖H2.5(Γ).

Therefore, by interpolation and Young’s inequality,

(B.1) |I2| ≤ C
[
‖hκ‖2

H4(Γ) + 1
]

+ δ1‖∇2
0hκ‖2

H3(Γ) + δ‖vκ‖2
H3(Ω)

for some C depending on M , δ, and δ1.
For J1, J4, and J9, we find that

|J1| + |J4| + |J9| ≤ C(ε1)‖hκ‖H4.5(Γ)‖vκ‖H2.5(Γ)

≤ C ′
[
‖∇2

0hκ‖2
H2(Γ) + 1

]
+ δ1‖∇2

0hκ‖2
H3(Γ) + δ‖vκ‖2

H3(Ω)

for some constant C ′ depending on M , ε1, δ, and δ1.
For J7 and J8, by the H−1.5(Γ)-H1.5(Γ) duality pairing,

|J7| + |J8| ≤ C(M)‖B‖H1.5(Γ)‖h̄‖H3.5(Γ)‖hκ‖H4.5(Γ)‖vκ‖H2.5(Γ).

Similarly to the estimate in (B.1), we find that

|J7| + |J8| ≤ C(M)
[
‖hκ‖2

H4(Γ) + 1
]

+ δ1‖∇2
0hκ‖2

H3(Γ) + δ‖vκ‖2
H3(Ω).

Summing all the estimates and then integrating in time from 0 to t, by Corollary 7.1
and the fact that B is close to 1 in the uniform norm for T small,

ν1

2
‖∇4

0hκ(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hκ)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vκ)dSds

+ C ′
∫ t

0

K(s)‖∇4
0hκ‖2

L2(Γ)ds + C ′
∫ t

0

[
‖h̃‖2

H5(Γ) + 1
]
ds

+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + δ1

∫ t

0

‖∇2
0hκ‖2

H3(Γ)ds

for some constant C ′ depending on M , ε1, δ, and δ1, where

K(s) := 1 + ‖ṽ‖2
H3(Ω) + ‖h̃‖2

H5(Γ) + ‖h̃t‖2
H2.5(Γ).
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B.2. ε1-independent estimates. We next obtain ε1-independent estimates for
the first two terms of I1, as well as those for I2, J1, J2, J3, J4, J5, J9, and J10 with
hκ replaced by hε1 . Let

I1
1 = −

∫
Γ

Θ̄
[
Lh̃(hε1) ◦ η̄τ

][
∇4

0(−∇0h̄ ◦ η̄τ , 1) · vε1
]
dS,

I2
1 = −4

∫
Γ

Θ̄
[
Lh̃(hε1) ◦ η̄τ

][
∇3

0(−∇0h̄ ◦ η̄τ , 1) · ∇0vε1

]
dS.

By the H−1.5(Γ)-H1.5(Γ) duality pairing,

|I1
1 | + |I2

1 | ≤ C(M)‖Lh̃(hε1)‖H1.5(Γ)‖vε1‖H2.5(Γ)‖(∇0h̃) ◦ η̄τ‖H2.5(Γ).

Therefore, by (6.6) and (9.12),

|I1
1 | + |I2

1 | ≤ C(M)t1/4
[
‖hε1‖2

H5.5(Γ) + 1
]
‖vε1‖H3(Ω)(B.2)

≤ Ct1/2
[
‖vε1 t‖2

H1(Ω) + ‖∇4
0hε1‖2

L2(Γ) + ‖F‖2
H1(Ω) + 1

]
+ (δ + Ct1/2)‖vε1‖2

H3(Ω)

for some constant C depending on M and δ.
For J1, we use an L4-L4-L2-type of Hölder inequality and conclude that

|J1| ≤ C(M)t1/2‖hε1‖H5.5(Γ)‖vε1‖H2.5(Γ),

while for the other J terms, we use the H0.5(Γ)-H−0.5(Γ) duality pairing to obtain

|J2| + |J3| + |J4| + |J5| + |J9| + |J10| ≤ C(M)t1/2‖hε1‖H5.5(Γ)‖vε1‖H2.5(Γ),

and hence all the J terms are bounded by the same right-hand side of the inequality
in (B.2). Therefore,

ν1

2
‖∇4

0hε1(t)‖2
L2(Γ) ≤

∫ t

0

∫
Γ

Θ̄
[
[Lh̄(hε1)(−∇0h̄, 1)] ◦ η̄τ

]
· ∇2

0(ζ
2
1∇2

0vε1)dSds

+ CN2(u0, F ) + C

∫ t

0

K(s)‖∇4
0hε1‖2

L2(Γ)ds + (δ + Ct1/2)

∫ t

0

‖vε1‖2
H3(Ω)ds

+ (δ1 + Ct1/2)

∫ t

0

‖vε1 t‖2
H1(Ω)ds

for some constant C depending on M , δ, and δ1.

Appendix C. L2
tH

1
x-estimates for vt. By the chain rule and integrating by

parts,∫
Γ

[
Θ̄[Lh̄(hκ)(−∇0h̄, 1)]◦η̄τ

]
t
· vκtdS =

∫
Γ

Θ̄t

[
Lh̄(hκ)

]
◦ η̄τ (−∇0h̄ ◦ η̄τ , 1) · vκtdS

+

∫
Γ

Θ̄η̄τt ·
[
∇0[Lh̄(hκ)](−∇0h̄, 1)

]
◦ η̄τ · vκtdS (≡ K1)

+

∫
Γ

Θ̄
[
[Lh̄(hκ)](∇0h̄,−1)]

]
t
◦ η̄τ · vκtdS (≡ K2).

The first term is bounded by

C(M)‖v̄‖H3(Ω)

[
‖∇4

0hκ‖L2(Γ) + 1
]
‖vκt‖L2(Γ).
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After integrating by parts, the most difficult term to estimate in K1 consists of the
integral ∫

Γ

v̄√
det(g0)

[
[
√

det(g0)Ā
αβγδhκ,αβ ],γδ(∇0h̄,−1)

]
◦ η̄τ∇0vκtdS.

Integrating from 0 to t and integrating by parts in time, we find that∫ t

0

∫
Γ

v̄√
det(g0)

[
[
√

det(g0)Ā
αβγδhκ,αβ ],γδ(∇0h̄,−1)

]
◦ η̄τ∇0vκtdSds

= −
∫ t

0

∫
Γ

v̄√
det(g0)

[
[
√

det(g0)Ā
αβγδhκ,αβ ]t,γδ(∇0h̄,−1)

]
◦ η̄τ∇0vκdSds + R3,

where R3 is bounded by

C

∫ t

0

[
1 + ‖ṽt‖2

H1(Ω)

]
‖∇4

0hκ‖2
L2(Γ)ds + δ2‖∇4

0hκ‖2
L2(Γ)

+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds

for some constant C depending on M , δ, and δ2. Next, using that

[(−∇0h̄, 1) ◦ η̄τ ] · ∇0vκ = bt(∇0hκt) ◦ η̄τ + bt(∇2
0h̄ ◦ η̄τ , 0) · vκ

and integrating by parts, we find that the integral on the right-hand side is identical
to

1

2

∫ t

0

∫
Γ

1√
det(g0)

∇0

[√
det(g0)Θ̄v̄btĀαβγδ

]
hκt,αβhκt,γδdSds + R4,

where

|R4| ≤ C(M)C(δ)

∫ t

0

‖∇4
0hκ‖2

L2(Γ)ds + δ

∫ t

0

‖vκ‖2
H3(Ω)ds.

By interpolation, the integral part is bounded by

C

[
N(u0, F ) +

∫ t

0

‖∇4
0hκ‖2

L2(Γ)ds

]
+ δ

∫ t

0

‖vκ‖2
H3(Ω)ds + Ct

∫ t

0

‖vκt‖2
H1(Ω)ds

for some constant C depending on M and δ. Therefore, K1 satisfies

∣∣∣∣
∫ t

0

K1ds

∣∣∣∣ ≤ C

∫ t

0

[
K(s)

(
‖∇4

0hκ‖2
L2(Γ) + ‖∇2

0hκt‖2
L2(Γ)

)
+ 1

]
ds + δ2‖∇4

0hκ‖2
L2(Γ)

(C.1)

+ (δ + Ct1/2)

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds

for some constant C depending on M , δ, and δ2.
For K2, by time differentiating the evolution equation, we find that

(−∇0h̄ ◦ η̄τ , 1)vκt = hκtt ◦ η̄τ + v̄τ · (∇0hκt) ◦ η̄τ − v̄τ · (∇2
0h̄ ◦ η̄τ , 0) · vκ

− (∇0h̄t ◦ η̄τ , 0) · vκ,
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and hence (after a change of coordinates)

K2 =

∫
Γ

[Lh̄(hκ)]thκttdS +

∫
Γ

[Lh̄(hκ)]t[(v̄
τ ◦ η̄−τ ) · (∇0hκt)]dS (≡ K3)

−
∫

Γ

[Lh̄(hκ)]t[(∇0h̄t, 0) · (vκ ◦ η̄−τ )]dS (≡ K4)

−
∫

Γ

[Lh̄(hκ)]t[(v̄
τ ◦ η̄−τ ) · (∇2

0h̄, 0)(vκ ◦ η̄−τ )]dS (≡ K5)

+

∫
Γ

[Lh̄(hκ)][(∇0h̄t, 0) · (vκt ◦ η̄−τ )]dS (≡ K6).

For the first term, we have∫
Γ

[Lh̄(hκ)]thκttdS =
1

2

d

dt

∫
Γ

Āαβγδhκt,αβhκt,γδdS

+

∫
Γ

1√
det(g0)

[√
det(g0)(Ā

αβγδ)t

]
,γδ

hκ,αβhκttdS (≡ K7) + R5,(C.2)

where R5 is bounded by

C
[
1 + ‖h̃t‖2

H2.5(Γ)

][
1 + ‖∇2

0hκt‖2
L2(Γ)

]
+ δ

[
‖vκ‖2

H2(Ω) + ‖∇2
0vκ‖2

H1(Ω′
1)

]
+ δ1‖vκt‖2

H1(Ω)

for some constant C depending on M , δ, and δ1. Also, by the inequality ‖hκtt‖L4(Γ) ≤
C(M)

[
‖vκ‖H2(Ω) + ‖vκt‖H1(Ω)

]
,

|K7| ≤ C‖[
√

det(g0)(Ā
αβγδ)t],γδ‖H−0.5(Γ)

∥∥∥∥ 1√
det(g0)

hκ,αβhκtt

∥∥∥∥
H0.5(Γ)

≤ C(M)C(δ, δ1)‖h̃t‖2
H2.5(Γ)‖∇4

0hκ‖2
L2(Γ) + δ‖vκ‖2

H2(Ω) + δ1‖vκt‖2
H1(Ω).

Remark 22. The bound for K7 can be refined even further as

|K7| ≤ C(M)C(δ)‖h̃t‖2
H1.5(Γ)‖∇2

0hκ‖2
H1.5(Γ) + δ‖vκ‖2

H3(Ω) + δ‖vκt‖2
H1(Ω);

it is this inequality that will be used in the proof of the fixed-point argument.
It remains to estimate K3 to K6. By proper use of Hölder’s inequality,

|K3| + |K5| + |K6| ≤ C
[
1 + ‖h̃t‖2

H2.5(Γ)

][
1 + ‖∇4

0hκ‖2
L2(Γ)

]
+ (δ + Ct1/2)‖vκ‖2

H3(Ω) + δ‖vκt‖2
H1(Ω)

for some constant C depending on M and δ. For K4, most of the terms can be
estimated in the same fashion, except the term∫

Γ

1√
det(g0)

[√
det(g0)Ā

αβγδhκt,αβ

]
[(∇0h̄t,γδ, 0) · (vκ ◦ η̄−τ )]dS,

which is identical to∫
Γ

{
1√

det(g0)

[√
det(g0)Ā

αβγδhκt,αβ

]
[(∇0h̄,γδ, 0) · (vκ ◦ η̄−τ )]

}
t

dS (≡ K8) + R6,
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where

|R6| ≤ C‖h̃‖2
H5.5(Γ)

[
‖vκ‖2

L2(Ω) + ‖∇2
0hκt‖2

L2(Γ)

]
+ δ‖vκ‖2

H3(Ω) + δ1‖vκt‖2
H1(Ω)

for some constant C depending on M , δ, and δ1. Time integrating K8 and using the
interpolation inequality together with Young’s inequality, we find that∣∣∣∣

∫ t

0

K8(s)ds

∣∣∣∣ ≤ C(M)
[
‖u0‖2

H2.5(Ω) + ‖∇2
0hκt‖L2(Ω)‖vκ‖L4(Ω)

]

≤ C(M)C(δ1, δ2)N3(u0, F ) + δ2‖∇2
0hκt‖2

L2(Γ) + δ1

∫ t

0

‖vκt‖2
H1(Ω)ds,(C.3)

where

N3(u0, F ) := ‖u0‖2
H2.5(Ω) + ‖u0‖2

H4.5(Γ) + ‖F‖2
L2(0,T ;H1(Ω))

+ ‖Ft‖2
L2(0,T ;H1(Ω)′) + ‖F (0)‖2

H1(Ω) + 1,

and we use ‖vκ‖2
H1(Ω) ≤ C

[∫ t

0
‖vκt‖2

H1(Ω)ds + ‖u0‖2
H1(Ω)

]
to obtain (C.3), and hence

6∑
i=3

|Ki| ≤ C
[
1 + ‖h̃‖2

H5.5(Γ) + ‖h̃t‖2
H2.5(Γ)

][
1 + ‖vκ‖2

L2(Ω) + ‖∇4
0hκ‖2

L2(Γ)

]
+ (δ + Ct1/2)‖vκ‖2

H3(Ω) + δ1‖vκt‖2
H1(Ω) + K8(C.4)

with K8 satisfying inequality (C.3). Finally, combining all the estimates,

∫ t

0

‖∇2
0hκt‖2

L2(Γ)ds ≤
∫ t

0

∫
Γ

[
[Lh̄(hκ)(∇0h̄,−1)] ◦ η̄τ

]
t
· vκtdS + CN3(u0, F )

(C.5)

+ C

∫ t

0

K(s)
[
‖vκ‖2

L2(Ω) + ‖∇4
0hκ‖2

L2(Γ) + ‖∇2
0hκt‖2

L2(Γ)

]
ds

+ (δ + Ct1/2)

∫ t

0

‖vκ‖2
H3(Ω)ds + (δ1 + Ct1/2)

∫ t

0

‖vκt‖2
H1(Ω)ds + δ2‖∇4

0hκ‖2
L2(Γ)

for some constant C depending on M , δ, δ1, and δ2.
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