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ABSTRACT

We study the coupled Navier-Stokes Ginzburg-Landau model
of nematic liquid crystals introduced by F.H. Lin, which is a
simplified version ofthe Ericksen-Leslie system. We generalize
the model to compact n-dimensional Riemannian manifolds,
deriving the system from a variational principle, and provide a
very simple proof of local well-posedness for this coupled
system using a contraction mapping argument. We then
prove that this system is globally well-posed and has compact
global attractors when the dimension of the manifold M is
two. A small data result in n dimensions follows easily.
Finally, we introduce the Lagrangian averaged liquid crystal
equations, which arise from averaging the Navier-Stokes fluid
motion over small spatial scales in the variational principle.
We show that this averaged system is globally well-posed and
has compact global attractors even when M is three-
dimensional.
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1. INTRODUCTION

Nematic liquid crystals are well-studied and interesting examples of
anisotropic non-Newtonian fluids. A liquid crystal is a phase of a material
between the solid and liquid phases. The solid phase has strong intermole-
cular forces that keep the molecular position and orientation fixed, while in
the liquid phase, the molecules neither occupy a specific average position nor
do they remain in any particular orientation; the nematic liquid crystal phase
does not have any positional order, but does possess a certain amount of
orientational order. This phase is described by a velocity field, as well as a
director field that describes locally the averaged direction or orientation of the
constituent molecules. In this paper, we shall analyze the behavior of a certain
model of nematic liquid crystals on compact Riemannian manifolds.

We let ðM, gÞ denote a smooth, compact, connected, n-dimensional
Riemannian manifold with smooth (possibly empty) boundary @M. If
@M ¼ ;, then we assume that the Euler characteristic �ðM Þ does not vanish.
We study the following system of nonlinear partial differential equations:

ut þ ruu ¼ �grad pþ � Div Def u� � DivðrdT � rd Þ, ð1:1aÞ

div uðt, xÞ ¼ 0, ð1:1bÞ

dt þ rud ¼ � �̂�d �
1

"2
ðjdj2 � 1Þd

� �
, ð1:1cÞ

u ¼ 0 on @M; d ¼ h on @M gðh, hÞ ¼ 1 or @M ¼ ;, ð1:1dÞ

uð0, xÞ ¼ u0, dð0, xÞ ¼ d0 and d0j@M ¼ h if @M 6¼ ;: ð1:1eÞ

Here uðt, xÞ and dðt, xÞ are time-dependent vector fields onM,r denotes
the Levi-Civita covariant derivative associated to the Riemannian metric g,
Def u ¼ ð1=2Þðruþ ruT Þ denotes the (rate of) deformation tensor, the super-
script ð�ÞT denotes the transpose, �̂� denotes the rough Laplacian of g defined
in (2.4), and �, �, � are positive constants. In the case that M is flat, an open
subset of Euclidean space for instance, thenr is the componentwise gradient,
and �̂� is the componentwise Laplacian given in coordinates xi by
�̂� ¼

Pn
i¼1ð@

2=@xi@xiÞ. The system of Eq. (1.1) is the simplified Ericksen-
Leslie model (Refs. [9,10,13]) of nematic liquid crystals first introduced by
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F.H. Lin in Ref. [14] and later analyzed by F.H. Lin and C. Liu in Refs.
[16,17]. Beautiful numerical simulations can be found in Ref. [21].

This system couples the Navier-Stokes (NS) equations with the
Ginzburg-Landau (GL) penalization of the harmonic map heat flow. The
vector field uðt, xÞ is the velocity field of the fluid, while dðt, xÞ is the penalized
(Ginzburg-Landau) approximation to the unit-length director field, repre-
senting the orientation parameter of the nematic liquid-crystal.

The parameter 
 > 0 is the penalization parameter, � denotes the kine-
matic viscosity of the fluid, � is an elastic constant, and � is the relaxation-
time parameter.

The coupling term DivðrdT � rd Þ preserves the regularity of the
Navier-Stokes equations: when velocity u ¼ 0, Eq.(1.1a) becomes DivðrdT �
rd Þ ¼ �grad p, so that when dt ¼ 0, d is a solution of the static portion of
Eq. (1.1c) together with the constraint DivðrdT � rd Þ ¼ �grad p. This con-
straint pushes the gradient flow towards a ‘‘regular’’ (H s, s sufficiently large)
stationary solution. Even though the coupling term has two derivatives,
analytically, it is essentially identical to the advection term ruu.

Results

We begin by extending the simplified Ericksen-Leslie model of
F.H. Lin to a compact Riemannian manifold with boundary. This extension
introduces a new curvature term in the basic energy laws, and provides a
covariant (coordinate-independent) descriptionof the liquid crystal dynamics.
Motion on the sphere is an important application.

In Section 2, we prove that the system of Eq. (1.1) actually arises from
a simple variational principle (the system was originally derived using bal-
ance laws). The variational principle is the key to our analysis, for it gives
the correct scaling; namely, it shows that when d is taken to have one
derivative greater regularity than u, the liquid crystal system behaves just
as the usual Navier-Stokes equations, a fact which was not previously
known (see Ref. [16]). In fact, according to Ref. [19], because the interaction
term DivðrdT � rd Þ in Eq. (1.1a) formally has as many derivatives as the
diffusion term, the standard Galerkin procedure for obtaining local solu-
tions, in which both the velocity and director field were simultaneously
projected onto a finite dimensional subspace, had failed in prior attempts.

Section 3 is devoted to a brief review of the Riemannian geometry of
the two-sphere S

2 with the standard induced metric, and a computation of
the covariant derivative and curvature tensor in spherical coordinates.

In Section 4, we give a very simple proof of local well-posedness of the
system Eq. (1.1) on ðM, gÞ (in Theorem 4.1) using the contraction mapping
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theorem; this significantly simplifies the clever, but lengthy,modified Galerkin
procedure employed by Lin and Liu in Ref. [16]. Moreover, the proof does
not require use of either the maximum principle or higher-order energy laws.

In Section 5, we describe the basic energy laws on Riemannian
manifolds, and show (in Propositions 5.1, 5.2, and 5.3) that on two-dimen-
sional Riemannian manifolds with smooth boundary (possibly empty),
there exists uniform estimates for uðt, �Þ in H1 and dðt, �Þ in H2 for
almost all t.

In Section 6, we prove the global well-posedness ofthe system (1.1), as
well as the existence of absorbing sets for u inH sþ1 and d inH sþ2, and hence
of a compact global attractor when the dimension is n ¼ 2 (see Theorems 6.1
and 6.2). We then prove in Proposition 6.1 that global solutions exist in n
dimensions, provided that the initial data is taken sufficiently small. When
@M ¼ ;, brute-force energy estimates may be computed, but when @M is not
empty, we use the Ladyzhenskaya method to obtain the uniform bounds.
We remark that the existence of global attractors for this system was not
previously known. We also remark that since the Navier-Stokes equations
are a subsystem of Eq. (1.1), one does not expect to be able to prove results
in dimension three which do not already exist for the Navier-Stokes equa-
tions; namely, the problem of unique classical solutions remains open, while
weak solutions exist.[16].

Finally, in Section 7, we introduce the Lagrangian averaged liquid crys-
tal Eq. (7.6). This system is based on the Lagrangian averaged Navier-Stokes
equations (see Ref. [22] and references therein), and is derived by averaging
the Navier-Stokes flow over small spatial scales which are smaller than some
positive small number �. We show that this averaged system retains the
structure of the original system derived by Lin in the form of averaged
energy laws, but has the advantage of being globally well-posed on three-
dimensional domains (see Theorem 7.1). The averaged energy law shows that
when both the fluid flow is averaged together with the director field, both u
and d scale similarly, and d is not required to have one-derivative greater
regularity. Of course, physically, it seems much more natural to average the
fluid flow, since the molecular orientation is already an averaged quantity. We
believe that the averaged liquid crystal system will be an ideal model for
numerical computation.

Some Notation and Interpolation Inequalities

We shall use the notation H s
ðTM Þ to denote the H s-class vector

fields on the manifold M. The H s
ðTM Þ inner-product is given, in any
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local chart, by

hu, vis ¼
Xs
j�j¼0

hD�u,D�vi,

where

hu, vi ¼

Z
M

gðxÞ uðxÞ, vðxÞð ÞðxÞ

denotes the L2 inner-product, � ¼ ð�1, . . . ,�nÞ is a multi-index, and

j�j ¼ �1 þ � � � þ �n, D
�
¼ @�1

1 � � � @
�n
n :

Alternatively, we may choose a finite collection of vector fields fXjg
spanning each tangent space TxM, and let D� ¼ rX�1

� � � rX�k
denote a

differential operator of order k ¼ j�j. We shall denote the H s
ðTM Þ norm by

jujs ¼ hu, uis,

h�, �i ¼ h�, �i0, and j � j ¼ j � j0. We setH1
0 ðTM Þ to consist of those vector fields

in H1
ðTM Þ which have zero trace on @M. Similarly, vectors in H1

h ðTM Þ

have trace h on @M. For s � 1 and h 2 H s�ð1=2Þ
ðT@MÞ, we let

H s
h ðTM Þ ¼ fd 2 H s

ðTM Þ \H s�ð1=2Þ
ðT@M Þ j dj@M ¼ h, jhðxÞj ¼ 1g,

denote the space of H s vector fields on M which have (H1) trace h on @M,
where jhðxÞj2 ¼ gðxÞðhðxÞ, hðxÞÞ.

For each x 2M, we let B �x ¼ fv 2 TxM j gðxÞðv, vÞ � �g, and set B � ¼
[x2MB

�
x. We let H s

ðM,B �Þ denote the H s-class maps from M into B �.
We have the product rule

D�ð f gÞ ¼
X
j�j�j�j
���>0

c�, � D
�f

� �
D���g
� �

:

For any integer s � 0, we set

Dsu ¼ fD�u : j�j ¼ sg, kDsukLp ¼
X
j�j¼s

kD�ukLp :

We define the spaces

V ¼ fu 2 C1
ðTM Þ j div u ¼ 0, gðu, nÞ ¼ 0 on @Mg,

W ¼ fu 2 C10 ðTM Þ j div u ¼ 0g,

LIQUID CRYSTALS ON RIEMANNIAN MANIFOLDS 1107



and through-out the paper, we shall use W s and V s to denote the closure in
H s of V and W , respectively. It follows that

V s
¼ fu 2 H s

ðTM Þ j div u ¼ 0, gðu, nÞj@M ¼ 0g,

W s
¼ u 2 H s

ðTM Þ [H1
0 ðTM Þ j div u ¼ 0

� 	
:

In section 4, we shall give an equivalent definition ofW s using powers of the
Stokes operator.

We shall need some standard interpolation inequalities, which follow
from the Gagliardo-Nirenberg inequalities:[25,29]

Suppose

1

p
¼
i

n
þ a

1

r
�
m

n

� �
þ ð1� aÞ

1

q

where i=m � a � 1 (if m� i � n=r is an integer � 1, only a<1 is allowed ).
Then for f :M ! TM,

jDif jLp � CjD
mf jaLr � jf j

1�a
Lq ð1:2Þ

In what follows, we shall use C as a generic constant. Some specific cases in
two dimensions (n ¼ 2) that we shall need are as follows:

jvjL1 � C D
2v



 

1=2
L2 jvj

1=2

L2 ð1:3Þ

jvjL4 � C Dvj j
1=2

L2 jvj
1=2

L2 ð1:4Þ

jDivjL2 � C v
1�ði=mÞ

L2




 


Dmv


 


i=m
L2
: ð1:5Þ

Equation (1.3) is often called the Agmon inequality, while Eqs. (1.4)–
(1.5) are often referred to as the Ladyzhenskaya inequalities.

We will make use of

Lemma 1.1. (The Uniform Gronwall Lemma). Let g, h, y, y0, be in
L1

locððt0,1ÞÞ and satisfy y
0
� gyþ h for t � t0 andZ tþr

t

gðsÞ ds � a1,

Z tþr

t

hðsÞ ds � a2,

Z tþr

t

yðsÞ ds � a3,

for t � t0, where r, a1, a2, a3 are positive constants. Then

yðtþ rÞ �
a3

r
þ aþ 2

� �
ea1 , 8t � t0:

See Ref. [28] for the proof.
We shall use div for the divergence operator on vector fields, and Div

for the divergence operator on sections of T �M � TM.
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2. THE VARIATIONAL PRINCIPLE

In this section, we shall explain how the system of Eq. (1.1) arise from
a simple variational principle, Eq. (1.1a) being the first variation of the
action with respect to the Lagrangian flow variable, and Eq. (1.1c) being
the L2 gradient flow of the first variation of the action with respect to the
director field. Previous derivations used balance arguments, rather than
variational principles, to derive liquid crystal models such as Eq. (1.1).

We let �ðt, xÞ denote the Lagrangian flow variable, a solution of the
differential equation

@t�ðt, xÞ ¼ uðt, �ðt, xÞ, �ð0, xÞ ¼ x:

For I ¼ ½0,T �, and each t 2 I , u 2 C 0
ðI ,W s

Þ, s > ðn=2Þ þ 2, the map �ðt, �Þ :
M!M is an H s volume-preserving diffeomorphism with H s inverse, and
restricts to the identity map on the boundary @M. We shall denote this set of
maps by Ds,D. It is a fact, that for s > ðn=2Þ þ 1, the set Ds,D is a C1 (weak)
Riemannian manifold (see Ref. [8] and Ref. [26]).

We define the action function S: Ds,DH
sþ1
ðTM Þ \H1

0 ðTM Þ ! R by

Sð�, d Þ ¼
1

2

Z
I

Z
M

fgð�ðxÞÞðuðt, �ðt, xÞÞ, uðt, �ðt, xÞÞÞ

þ �gð�ðxÞÞðr½dðt, �ðt, xÞÞ�,r½dðt, �ðt, xÞÞ�Þ þ 2Fðd Þg dt, ð2:1Þ

where Fðd Þ ¼ ð1=4
2Þðjdj2 � 1Þ2. Notice that

f ðd Þ ¼ grad Fðd Þ,

where

f ðd Þ  
1


2
jdj2 � 1
� �

d

is the (GL) nonlinearity in Eq. (1.1c). The first term on the right-hand-side
of Eq. (2.1) is the kinetic energy of the fluid, the second term is the elastic
energy of the polymers, and the third term is the unit-length constraint on the
director field d. As a consequence of the right-invariance of S with respect to
the lifted action of Ds,D, we may compute the kinetic energy of the fluid as
well as the elastic energy along the particle trajectory �ðt,xÞ. The interaction,
or coupling, between the velocity u and the director d comes precisely from
the elastic energy being computed along the Lagrangian flow �ðt, xÞ.

The elastic energy ð1=2Þ
R
M jrdj

2 is a simplified form of the Oseen–
Frank energy, given upto the null-Lagrangian byZ

M

�1jdiv dj2 þ �2jd ! curl dj2 þ �3jd � curl dj2
� �

: ð2:2Þ
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The terms in the integrand represent, respectively, the energy due to splay,
bending, and twisting of the polymers in the nematic liquid crystal. When � ¼
�1 ¼ �2 ¼ �3, then (2.2) reduces to �

R
M jrdj

2. We see that in the Eulerian
frame, for a director field which is exactly taking values in the unit sphere, the
energy is given by

Energy ¼
1

2

Z
M

juðxÞj2 þ �jrdj2
� �

:

The penalized form of this energy is then

E ¼
1

2

Z
M

juðxÞj2 þ �jrdj2 þ 2�Fðd Þ
� �

, ð2:3Þ

where we suppress the explicit dependence on the small parameter 
 > 0.
The action Eq. (2.1) is the right-translated time-integral of the energy

function Eq. (2.3). The penalization was motivated by the study of harmonic
maps of simply-connected domains O into spheres (see Ref. [2,5]); in parti-
cular, the space H1

h ðO, S1
Þ ¼ ; when jdegreeðhÞj � 1 so that only infinite

energy minimizers exist. As a fix for this problem, the penalization method
is invoked, which enlarges the space of potential minimizers to H1

h ðO, R2
Þ

(which is obviously not empty) and simultaneously imposes the unit-length
constraint.

To compute the first variation of S with respect to �, we let " 7!�" be a
smooth curve in Ds,D such that �0 ¼ e, and ðd=d"Þj"¼0�" ¼ w 2W

s. We let
D=d" denote the covariant derivative along the curve �". Let �" ¼ � # �"

so that

�0
¼ �, and ðd=d"Þj"¼0�

"
¼ w # �:

Then (setting � ¼ 1 for the moment),

hD1Sð�, d Þ, ��i

¼
d

d"






"¼0

Sð�", d Þ ¼

Z
I

Z
M

fgð�ðt, xÞÞððD=d"Þ"¼0@t�
"
ðt, xÞ, @t�ðt, xÞÞ

þ gð�ðt, xÞÞððD=d"Þ"¼0rðdðt,�
"
ð�ðt, xÞÞÞ,rðdðt, �ðt, xÞÞÞg dx dt,

where r is computed with respect to the moving Lagrangian coordinate y ¼
�ðt, xÞ, and where we have used dx to denote the Riemannian volume-form .
We useD1 andD2 to denote the Frechét derivatives of Swith respect to � and
d, respectively. Integrating by parts, and using the fact that @t� ¼ u # � and
that � has Jacobian determinant equal to one, we see that

hD1Sð�, d Þ, ��i

¼

Z
I

Z
M

gð�ðt, xÞÞð�ððD=dtÞ@t�ðt, xÞ,wðt, �ðt, xÞÞ dx dt
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þ

Z
I

Z
M

gð yÞððD=d"Þj"¼0rd # �"ð yÞ �D�"ð yÞ,rdðt, yÞÞ dy dt

¼

Z
I

Z
M

gð yÞðð�utðt, yÞ � ruuðt, yÞ � grad pðt, yÞ,wðt, yÞÞ dy dt

þ

Z
I

Z
M

fgð yÞðrwðrd Þ,rd Þ þ gð yÞðrdðt, yÞ � rw,rd Þg dy dt

¼

Z
I

Z
M

gð yÞðð�utðt, yÞ � ruuðt, yÞ � grad pðt, yÞ,wðt, yÞÞdy dt

þ

Z
I

Z
M

gð yÞð�DivðrdT � rdÞ,wÞ dy dt,

where D�" denote the matrix of partial derivatives of �", and where the last
equality follows from the fact that hrwðrd Þ,rd i ¼ 0, since divw ¼ 0. Thus,
sincew is an arbitrary variation of �, we arrive at the Euler-Lagrange equation

ut þ ruu ¼ �grad p�DivðrdT � rd Þ:

The viscosity (diffusion) term follows from the Itö formula by allowing
�ðt, xÞ to be a stochastic process, and replacing deterministic time derivatives
with stochastic backward-in-time mean derivatives (see Ref. [12]). Thus Eq.
(1.1a) follows as the first variation of the action function S with respect to �.
Eq. (1.1b) follows immediately from the fact that � is volume-preserving.

Letting d " ¼ d þ "�d, a much simpler computation verifies that

hD2Sð�, d Þ, �d i ¼
d

d"






"¼0

Sð�, d "Þ ¼

Z
I

Z
M

gð yÞ �̂�d � f ðd Þ, �d
� �

dy dt,

where

�̂�d ¼ �r�r ð2:4Þ

is the rough Laplacian and r� is the L2 formal adjoint of the covariant
derivative r. Hence, Eq. (1.1c) is simply the L2 gradient flow of d 7!
Sð�, d Þ given by

d

dt
ðdðt, �ðt, xÞÞ ¼ D2Sð�, d Þ ¼ �̂�d � f ðd Þ:

We remark that

Div rdT � rd
� �

¼ rdT � �̂�d þ gðRðei, �Þd,rei d Þ, ð2:5Þ

where R is the Riemannian curvature tensor which is defined for vector
fields X ,Y ,Z on M by

RðX ,Y ÞZ ¼ rXrYZ � rYrXZ þ r½X ,Y �Z,
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and where feig is any local orthonormal frame. The curvature term in
Eq. (2.5) will play an important role in the energy behavior of the system.

3. LIQUID CRYSTALS ON THE SPHERE

Let ð y1, y2, y3
Þ be the standard Cartesian coordinates on R

3, and set

y1
¼ sin � cos�, y2

¼ sin � sin�, y3
¼ cos �:

Letting x1
¼ � and x2

¼ � denote spherical coordinates on S
2, the induced

metric (from R
3) is given by

g ¼ d�2 þ sin2 �d�2,

and the induced volume form is

 ¼
ffiffiffiffiffiffiffiffiffiffi
det g

p
d� d� ¼ sin � d� d�:

For a vector field v on S
2, we may express it as

v ¼ v�e� þ v�e�,

where ðe� ¼ @=@�, e� ¼ ð1= sin �Þð@=@�ÞÞ is the usual orthonormal basis.
Given two vector fields v and w on S

2, the covariant derivative of v in
the direction w is given by

rwv ¼ w�
@v�
@�
þ
w’

sin �

@v�
@’
� w’v’ cot �

� �
e�

þ w�
@v’
@�
þ
w’

sin �

@v’
@’
þ w’v� cot �

� �
e’

¼ w�
@v�

@�
þ w’

@v�

@’
� w’v’ sin � cos �

� �
@

@�

þ w�
@v’

@�
þ w’

@v’

@’
þ w�v’ þ w’v�
� �

cot �

� �
@

@’

We component notation, ðrvÞij ¼ rjv
i.

The (rate of ) deformation tensor is computed simply by symmetriza-
tion of the matrix ru. The divergence of a vector field v on S

2 is given by

div v ¼
1

sin �

@

@�
sin �v�ð Þ þ

1

sin �

@v�
@�

,
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and the gradient of a function p : S
2
! R is

grad p ¼
@p

@�
e� þ

1

sin �

@p

@�
e�:

In coordinates,

½Div Def u�i ¼
1

2
rj ðruÞ

i
j þ ðruÞ

j
i

� �
,

and the rough Laplacian of a vector field d is given by

�̂�d
h ii

¼ g jkrkrjd
i,

where g jk denotes the components of g�1. As to the energy law on S
2, we

must specify all of the components of the Riemannian curvature tensor R.
Because of the symmetries of R, each component Rijkl is either 0 or plus-or-
minus

R1212 ¼ R2121 ¼ sin2 �:

We have thus shown how to explicitly compute each term of Eq.(1.1) in the
case that M ¼ S

2 with the induced metric.
Because �ðS2

Þ does not vanish, the seminormZ
S

2
jruðxÞj2 , u 2 H1

ðT S
2
Þ

induces an H1 norm which is equivalent to the usual norm juj1.

4. LOCAL WELL-POSEDNESS

Let P denote the Leray orthogonal projection from L2
ðTM Þ ontoW 0,

and let

A ¼ �P Div Def

denote the Stokes operator, an unbounded, positive, self-adjoint operator
on W 0, with domain DðAÞ ¼ H2

ðTM Þ \W1. As usual, we set

W s
¼ DðAs=2Þ, s � 0:

This is a Hilbert space with inner-product hAs=2u,As=2vi for u, v 2 DðAs=2Þ.
The norm jAs=2uj is equivalent to the H s norm.
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We first prove the local well-posedness of classical solutions. Let

_HH sþ1
h ðTM Þ :¼ d 2 H sþ1

h ðTM Þ j �̂�d ¼ 0 on @M
n o

for vector fields h defined on the boundary @M.

Theorem 4.1. Suppose 2 � dimðM Þ � 4 and set s0 ¼ ðn=4Þ þ ð1=2Þ. For
s 2 ðs0, 5=2Þ and u0 2W

s, d0 2
_HH sþ1
h ðTM Þ, there exists T > 0 depending

only on the data and M, such that

u 2 C 0
ð½0,T �,W s

Þ, d 2 C 0
ð½0,T �, _HH sþ1

h ðTM ÞÞ

are solutions to the system of Eq. (1.1).

Proof. It will be convenient to recast the Eqs. (1.1c) and (1.1e) so that the
solution has zero trace on @M. For any boundary data h 2 Hsþð1=2Þ

ðT@MÞ,
wemay choose 2 H sþ1

ðTM Þ such that traceð Þ ¼ h and �̂� ¼ 0on @M. Let

~dd ¼ d �  , so that ~ddj@M ¼ 0 and �̂� ~ddj@M ¼ 0:

We rewrite the system (1.1) as an evolution equation in

X s
 W s

$ _HH sþ1
0 ðTM Þ :

ut þ �Auþ Pruu ¼ �P� Div r½ ~dd þ  �T � r½ ~dd þ  �
� �

, ð4:1aÞ

~ddt þ ru ~dd ¼ � �̂�d � ~ff ð ~dd Þ þ �̂� 
� �

, ð4:1bÞ

u ¼ 0 on @M, ~dd ¼ 0 on @M or @M ¼ ;, ð4:1cÞ

uð0, xÞ ¼ u0, ~ddð0, xÞ ¼ ~dd0ðxÞ  d0ðxÞ þ  ðxÞ, ð4:1dÞ

where

~ff ð ~ddÞ  
1


2
j ~dd þ  j2 � 1
� �

ð ~dd þ  Þ:

We define the vector

x  ðu, ~dd Þ 2 X s;

and define the maps

�1 : X
s
! Y1,

�1ðxÞ ¼ �P ruuþDiv r½ ~dd þ  �T � r½ ~dd þ  �
� �� �

,
ð4:2Þ

1114 SHKOLLER



and

�2 : X
s
! Y2,

�2ðxÞ ¼ �ru ~dd � � ~ff ð ~ddÞ þ ��̂� ,
ð4:3Þ

for some Banach spaces Y1 and Y2 to be determined.Thus, the vector

�  ð�1,�2Þ : X
s
! Y1 ! Y2:

Next, we define the semigroup

SðtÞ ¼
e�t�A 0

0 et��̂�

� �

We can now express the system Eq. (4.1) as the integral equation

xðt, �Þ ¼ SðtÞx0 �

Z t

0

Sðt� sÞ�ðxðsÞÞ ds ¼ 	xðt, �Þ: ð4:4Þ

Since for s 2 ðs0, 5=2Þ, e
�t�A :W s

!W s and et��̂� : _HH sþ1
0 ðTM Þ !

_HH sþ1
0 ðTM Þ are strongly continuous semigroups, it follows that

SðtÞ : X s
! X s is a strongly continuous semigroup for t � 0,

ð4:5Þ

and that for t > 0, SðtÞ : V s�1
!H s

ðTM Þ ! X s. For s 2 ðs0, 2Þ, we set

Y1 ¼ V
0, Y2 ¼ H

1
ðTM Þ;

we have the standard estimate (see Ref. [29]) that

kSðtÞkLðY1!Y2,X
sÞ � Ct

�� , � 2 ð0, 1Þ, t 2 ð0, 1�: ð4:6Þ

Thus, it suffices to prove that for s 2 ðs0, 2Þ, the map � : X s
! Y1 ! Y2 is

locally Lipschitz.
Using Lemma 5.3, Ref. [29, Chapter 17], we have that for s 2 ðs0, 2Þ

ð f , gÞ 7!f g : H s
!H s

! H1. It follows that u 7!u� u : H s
! H1,

d 7!ðrdT � rd Þ : H sþ1
! H1, and ðu, d Þ 7!rud : H s

!H sþ1
! H1. The

fact that d 7! f ðd Þ : H sþ1
! H1 follows because H sþ1 forms a Schauder

ring. This, together with the fact that P : H s
ðTM Þ ! V s is a bounded

projection, yields that

� : X s
! Y1 ! Y2 is a locally Lipschitz map: ð4:7Þ

Now for the interval of values of 2 � s<5=2, we proceed as follows.
We set

Y1 ¼ V
�, Y2 ¼ H

1þ�
ðTM Þ, � 2 0, 1

2

� �
:
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In this case, we consider the space X s with s� � 2 ð0, 2Þ and
find that Eq. (4.6) still holds. Furthermore, Eq. (4.7) will continue to hold
provided that we find the interval of values of s for which the
multiplication operation ð f , gÞ 7! f g maps H s

!H s into H1þ�. Lemma
5.7 of Ref. [29] shows that for � 2 ð0, 1=2Þ taken sufficiently small, and
� ¼ 1=2� �, there exists 
ss 2 ð�, 2þ �Þ such that this multiplication opera-
tion holds.

Fix � > 0 and set

Z ¼ x 2 Cð½0,T �,X s
Þjxð0Þ ¼ ðu0, ~dd0Þ, kxðt, �Þ � xð0ÞkX s<�

n o
:

We want to choose T sufficiently small so that 	 : Z! Z is a contraction.
By Eq. (4.5), we can choose T1 so that

kSðtÞx0 � x0kX s � �=2 8t 2 ½0,T1�:

If x 2 Z, then by (4.7) we have a bound

k�ðxðsÞÞkV s�1!H sðTM Þ � K1 for s 2 ½0,T1�:

Using (4.6), we have that

Z t

0

Sðt� sÞ�ðxðsÞÞ ds

����
����
X s

� Ct1=2K1;

hence, for t 2 ½0,T2�, and with x ¼ ðu, ~ddÞ,

k	ðuðtÞ, ~ddðtÞÞ �	ðvðtÞ, eðtÞÞkX s

¼

Z t

0

Sðt� sÞ �ðuðsÞ, ~ddðsÞÞ ��ðvðsÞ, eðsÞÞ
h i

ds

����
����
X s

� Ct1=2K sup ðuðsÞ, ~ddðsÞÞ � ðvðsÞ, eðsÞÞ
��� ���

X s
:

Choosing T � T2 small enough so that CT1=2K<1, we see that by the
contraction mapping theorem, 	 has a unique fixed point in Z, and this
proves the theorem. œ

Remark 4.1. In the case that @M ¼ ;, we may take s > s0 and place no
restrictions on the dimension n of the manifold. This difference arises
because et�̂� is a strongly continuous semi-group in all H s, s > s0, when
there is no boundary. In the case that @M 6¼ ;, we used the subspace
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_HH sþ1
0 to obtain a strongly continuous semigroup for s 2 ðs0, 5=2Þ. In order to

obtain strong continuity at t¼ 0 for larger values of s, it is necessary to insist
upon the additional compatibility conditions, �2d0 ¼ � � ��

md0 ¼ 0 on @M
for all integers 2 � m<s=2.

5. BASIC ENERGY LAWS ON RIEMANNIAN MANIFOLDS

In this section, we shall establish a priori estimates for solutions of the
liquid crystal system Eq. (1.1) which are uniform in time. By the local well-
posedness result, Theorem 4.1, we may assume that there exists unique solu-
tions u 2 C 0

ð½0,T �,W s
Þ and d 2 C 0

ð½0,T �, _HH sþ1
h ðTM ÞÞ for some time T. Of

course, d is also in C1
ð½0,T �, _HHs�1

h ðTM ÞÞ. We shall state our estimates on this
time interval, and use the continuation argument to extend the time interval;
alternatively, one may mollify the Eq. (1.1) and obtain smooth global
solutions to the mollified equations, and use the a priori estimates to pass
to limits of the mollification parameter.

In this section, we show that the system Eq. (1.1) admits the following
energy law:

d

dt
Eðu; dÞ :¼

d

dt

1

2

Z
M

juðxÞj2 þ �jrdj2 þ 2�Fðd Þ
� �



¼ � �jDef uj2 þ ��j�̂�d � f ðd Þj2
� �

� � TracehRð�, uÞd,r�d i,

ð5:1Þ

for 0<t � T , where ei denotes a local orthonormal frame. WhenM has zero
curvature, then E is a Lyapunov function for the system Eq. (1.1), with the
property that

EðuðtÞ, dðtÞÞ � Eðu0, d0Þ, 8t � 0,

and if Eðuðt1Þ, dðt1ÞÞ ¼ Eðuðt2Þ, dðt2ÞÞ for t1<t2, then ðuðtÞ, dðtÞÞ ¼ ðu�, d �Þ
are equilibrium solutions. Even, when the curvature R 6¼ 0, the energy
remains uniformly bounded.

For the following lemma, which is standard, we suppose that x 7!
dðt, xÞ is C2, and that t 7!dðt, xÞ is C1. By Sobolev’s embedding theorem,
this is accomplished with s > 2.

Lemma 5.1. Suppose that @M 6¼ ;,

jdðt, �ÞjL1 � jd0jL1 , 8t 2 ½0,T �:

Proof. For any v, we will use the notation jvðxÞj2 ¼ gðxÞðvðxÞ, vðxÞÞ. We
compute the pointwise inner-product of Eq. (5.3b) with d, and use the fact
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that gð�̂�dðxÞ, dðxÞÞ ¼ ð1=2Þ4jdðxÞj2 � jrdðxÞj2. Hence, 8x 2M, we obtain

1

2

d

dt
jdj2 þ

1

2
gðgrad jdj2, uÞÞ �

1

2
4jdj2 þ jrdj2 ¼ �

1


2
jdj4 � jdj2
� �

:

ð5:2Þ

We consider ðx, tÞ 2 Q  M ! ½0,T �; since jdðt, xÞj is regular, it has a max-
imum on this set. Assume that jdðt, xÞj2 � jd0j

2
L1 � 1, and that a maximum

occurs in Q. Then at this point, grad jdj2 ¼ 0, and �jdj2<0, so that
by Eq. (5.2) ðd=dtÞjdj2<0, but this is a contradiction. œ

Thus, for d0 2 H
sþ1
ðM,B �Þ, s > 2, jdðt, �ÞjL1 � �, 8t > 0.

Remark 5.1. To achieve the bound of the previous lemma, we could have
replaced the term rud in Eq. (1.1c) by ru�d where u� ¼ J � � u with J � a
Friedrichs mollifier. Since u� is smooth, standard parabolic regularity shows
that d, which is a function of �, is smooth as a function of ðt, xÞ, and hence
satisfies the maximum principle. Then passing to the limit as �! 0, and
using Eq. (5.1), shows that the bound given by Lemma 5.1 holds for s > 1 as
well.

Proposition 5.1. For t 2 ð0,T �, the energy law (5.1) holds, and solutions ðu, d Þ
remain bounded in W 0

!H1
h ðTM Þ if @M 6¼ ; and in W 0

!H1
ðM,B �Þ if

@M ¼ ;.

Proof. Using the formula Eq. (2.5), we rewrite Eqs. (1.1a) and (1.1c) as

ut þ ruu ¼ � grad pþ � Div Def u� �rdT � �̂�d

� gðRðei, �Þd,rei d Þ, ð5:3aÞ

dt þ rud ¼ � �̂�d �
1


2
ðjdj2 � 1Þd

� �
, ð5:3bÞ

where ei is any local orthonormal frame. Adding the L2 inner-product of
Eq. (5.3a) with u to the L2 inner-product of Eq. (5.3b) with dt þ rud, we
obtain the basic energy law

1

2

d

dt
juj2 þ �jrdj2 þ 2�

Z
M

FðdðxÞÞ

� �

¼ � �jDef uj2 þ �� �̂�d � f ðd Þ



 


2� �

� � Trace hRð�, uÞd,r�d i: ð5:4Þ

In the case of a flat manifold, such as a bounded domain in R
n, R¼ 0, and

Eq. (5.4) reduces to the basic energy law Eq. (1.8) in Ref. [16].
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From Lemma 5.1, we have that

jdðt, �ÞjL1 � C, t > 0: ð5:5Þ

It follows that

Trace hRð�, uÞd,r�d i � CjRjL1jujjdj
1=2
j�̂�dj1=2

� C"j�̂�dj2 þ
C

"
ðjMjjRjL1jujÞ

4=3

� C"j�̂�dj2 þ "juj2 þ
C

"4
ðjMjjRjL1Þ

4

� C"j�̂�dj2 þ c�1
0 ðM Þ"jDef uj2 þ

C

"4
ðjMjjRjL1Þ

4,

where the second and third inequalities follow from Young’s inequality
Eq. (6.2), and the last inequality follows from the Poincaré inequality for
c0ðM Þ > 0, a positive constant depending on M. Taking " > 0 sufficiently
small so that

K ¼ minðc0 � ", 1� 2"Þ > 0,

the basic energy law Eq. (5.4) on a Riemannian manifold yields the follow-
ing differential inequalities:

1

2

d

dt
juj2 þ jrdj2 þ 2

Z
M

Fðd Þ

� �

� �K C jDef uj2 þ j�̂�dj2 þ 2

Z
M

Fðd Þ

� �
þ �0 , ð5:6aÞ

1

2

d

dt
juj2 þ jrdj2 þ 2

Z
M

Fðd Þ

� �

� �K C juj2 þ jrdj2 þ 2

Z
M

Fðd Þ

� �
þ �0 , ð5:6bÞ

where

�0 ¼ C ðK þ C="� 1ÞjMj þ
1

"4
jMj4jRjL1

� �
: ð5:7Þ
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Using the classical Gronwall lemma, we obtain

juj2 þ jrdj2 þ 2

Z
M

Fðd Þ

� �

� ju0j
2
þ jrd0j

2
þ 2

Z
M

Fðd0Þ

� �
e�KCt þ �0ð1� e

�KCt
Þ: œ

Thus, in the case that T ¼ 1,

lim sup
t!1

juðtÞj2 þ jrdðtÞj2 þ 2

Z
M

FðdðtÞÞ

� �
� �0 ð5:8aÞ

lim sup
t!1

juðtÞj2 þ jrdðtÞj2
� �

� �0 þ 2jMj, ð5:8bÞ

where �0 is given by Eq. (5.7).
When R¼ 0, we do not need to rely on the maximum principle to

establish Proposition 5.1 or to establish the existence of an L1 absorbing
set for Eq. (5.3b).

Lemma 5.2. Suppose that @M ¼ ;, R ¼ 0, and that d is a global solution to Eq.
(1.1c). There exists �1 > 0 independent of d0 such that for sufficiently large t,

jdðt, �ÞjL1 � �1:

For solutions on ½0,T �, kdðt, �ÞkL1 remains uniformly bounded.

Proof. From the energy law Eq. (5.1) with R¼ 0, there is a t > t�ð
rr Þ for
which all bounded subsets of L2

ðTM Þ, contained in the ball of radius 
rr, will
enter the L2 ball of radius �0 (see Ref. [28]).

For p > 2, we take the pointwise inner-product of Eq. (5.3b) with
pjdjp�2d and integrate over M to obtain the differential inequality

d

dt
jdj

p
Lp ¼ �p

Z
M

jrdj2jdjp�2� pð p� 2Þ

Z
M

jdjp�2
jrjdjj2

þ
1


2
jdj

p
Lp � jdj

p�2
Lp

� �

� �pð p� 2Þ

Z
M

jdjp�2
jrjdjj2þ

1


2
jdj

p
Lp : ð5:9Þ
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Using the interpolation inequality (see Ref. [20])

jdj
p
Lp � Cpjdj

2

Z
M

jrjdjp=2j2

� �ð p�2Þ=p

¼ Cpjdj
2 p2

4

Z
M

jdjp�2
jrjdk2

 !ð p�2Þc=p

,

we see that

�pðp�2Þ

Z
M

jdjp�2
jrjdjj2�

1

Cp

� �p=2ðp�2Þ
4pðp�2Þ

p2
�p=ðp�2Þ

0

" #
jdj

p
Lp

� �p=ðp�2Þ
:

Using Bernoulli’s trick in the differential inequality Eq. (5.9), we get a uni-
form bound for jdðt, �ÞjLp which is independent of p (even if the constant Cp
tends to infinity), and thus we may pass to the limit as p!1. œ

From Lemma 5.2, we obtain

Proposition 5.2. If R¼ 0 and @M ¼ ;, we have the energy law

d

dt

1

2

Z
M

ðjuðxÞj2þ �jrdj2þ 2�Fðd ÞÞ ¼ � �jDef uj2þ ��j�̂�d� f ðd Þj2
� �

,

and solutions ðu, d Þ remain bounded in W 0
!H1

ðTM Þ for all t 2 ð0,T �.

In two dimensions with R¼ 0, the analysis of Ref. [16] yielded global
solutions of Eq. (1.1) with u of class H1 and d of class H2, but the estimates
were not uniform in time.

Proposition 5.3. For n¼ 2, uðt, �Þ is uniformly bounded in the H1 topology and
dðt, �Þ is uniformly bounded in the H2 topology, for t 2 ½0,T �.

Proof. It follows from Eq. (5.6a) that

K C

Z tþr

t

jDef uðsÞj2 þ j�̂�dðsÞj2 þ 2

Z
M

FðdðsÞÞ

� �
ds

� r�0 þ juj2 þ jrdj2 þ 2

Z
M

Fðd Þ

� �
, 8r > 0,
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so

lim sup
t!1

Z tþr

t

jDef uðsÞj2 þ j�̂�dðsÞj2 þ 2

Z
M

FðdðsÞ

� �
ds � ðrþ 1Þ�0:

Therefore,Z tþr

t

Def uðsÞ


 

2þj�̂� dðsÞj2 þ 2

Z
M

F ðdðsÞÞ

� �
ds is uniformly bounded:

ð5:10Þ

Now let

A2
¼ jDef uj2 þ j�̂�d � f ðd Þj2, B 2

¼ jrDef uj2 þ jrð�̂�d � f ðd ÞÞj2:

Using Eqs. (5.10) and (5.5), we have that

Z tþr

t

A2
ðsÞ ds is uniformly bounded. ð5:11Þ

In the case that R¼ 0, it follows from a similar argument as in Eqs. (4.4)–
(4.8) of Ref. [16] that for some constants c1, c2, c3 > 0,

d

dt
A2
ðtÞ þ c1B

2
ðtÞ � c2A

4
ðtÞ þ c3: ð5:12Þ

When R 6¼ 0, we find that for c4 > 0,

d

dt
A2
ðtÞ þ c1B

2
ðtÞ � c2A

4
ðtÞ þ c3 þ c4 Trace hRð�,4uÞd,r�d i:

The last term is bounded by "jRj2L1jDiv Def uj2 þ ðC="Þjrdj2, so by taking
" > 0 sufficiently small and adjusting the constants as necessary, we see that
Eq. (5.12) still holds.

Thus, usingEq. (5.8) andappealing to theuniformGronwall Lemma1.1,
we see that

AðtÞ is uniformly bounded in time.

Because of Eq. (5.5), we may extract a uniform bound for jDef uj2 þ j�̂�dj2.
Hence, we have an a priori uniform bound for u in the H1 topology and for
d in the H2 topology.
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6. GLOBAL WELL-POSEDNESS

AND GLOBAL ATTRACTORS

6.1. Manifolds Without Boundary

We shall first consider a closed Riemannian manifold such as, for
example, the two-sphere S

2; for such manifolds, simple brute-force energy
estimates work.

Theoem 6.1. For n¼ 2, s > 1, @M ¼ ;, and u0 2W
s, d0 2 H

sþ1
ðM,B �Þ,

u 2 C 0
ð½0,1Þ,W s

Þ \ C1
ðð0,1Þ !M Þ,

d 2 C 0
ð½0,1Þ,H sþ1

ðM,B �ÞÞ \ C1
ðð0,1Þ !M Þ

are solutions to the system of Eq. (1.1). Moreover, there exists a compact
global attractor for the system Eq. (1.1) in W s

!H sþ1
ðM,B �Þ. In the case

that R¼ 0, we can replace H sþ1
ðM,B �Þ with H sþ1

ðTM Þ.

Proof. Taking the H s inner-product of Eq. (1.1a) with u and adding the
H sþ1 inner-product of Eq. (1.1c) with d, we find that

1

2

d

dt
juj2s þjdj

2
sþ1

� �
���juj2sþ1� �jdj

2
sþ2þ� hPDiv ðrdT � rd Þ,uis



 


þjhPruu,uisjþ jhrud,d isþ1jþ �jhf ðd Þ,d isþ1j: ð6:1Þ

We shall estimate each of the nonlinear terms on the right-hand-side of Eq.
(6.1); as we showed in the proof of Theorem 4.1, the projection P acting on
the nonlinear terms, maps Hs�1 into itself continuously, so it suffices to
estimate hruu, uis and hDiv ðrdT � rd Þ, uis in the third and fourth terms.
Using Proposition 5.3, we may interpolate the nonlinear terms between
juj1 and jujsþ1 and jdj2 and jdjsþ2, respectively.

We have that

hruu, uis ¼
X
�¼s

hD�ðruuÞ,D
�ui

¼
X
�¼s

X
j�j�s
����0

c�, �ðD
�
ruÞðD���uÞ,D�u

� �

¼
X
�¼s

X
j�j�s�1
����0

c�, �ðD
�
ruÞðD���uÞ,D�u

� �

� C
Xs�1

m¼0

Dmþ1u


 



L4 D
s�m



 


L4 D

su


 

:
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where we set j�j ¼ m so that j�� �j ¼ s�m, and the last equality follows
from the fact that hruðD

suÞ,Dsui ¼ 0, since div u ¼ 0. For m ¼ 0, . . . , s� 1,
we use Eqs. (1.4) and (1.5) to estimate

jDmþ1ujL4 jDs�mjL4 jDsuj

� CjDmþ1uj1=2jDmþ2uj1=2jDs�muj1=2jDs�mþ1uj1=2jDsuj

� Cjuj
ðsþ1Þ=s
1 juj

2ðs�1Þ=2s
sþ1 :

Using Young’s inequality,

a�b � "aþ
C

"
b1=ð1��Þ, a, b > 0, 0<�<1, ð6:2Þ

it follows that

hPruu, uis � "juj
2
sþ1 þ

C

"
jujsþ1

1 :

For the next term, we have that

DivðrdT � rd Þ, u
� �

s
¼
X
j�j¼s

D�DivðrdT � rd Þ,D�u
� �

� C
X
j�j¼s
j�j¼sþ1

X
j�j�s
����0

Z
M

ðD�rd ÞðD���rd ÞðD�uÞ

� C
Xsþ1

m¼0

ðDmþ1d ÞðDs�mþ2d Þ, ðDsuÞ
� �

, ð6:3Þ

where m ¼ j�j. In the case that m ¼ 1, . . . , s, Eq. (6.3) is bounded by

C
Xs
m¼1

jDmþ1dj2L4 jD
s�mþ1dj2L4 � Cjdj2jdsþ2juj

1=s
1 juj

ðs�1Þ=s
sþ1

� "jdj2sþ2 þ
C

"
jdj22juj

2=s
s juj

2ðs�1Þ=s
sþ1 , ð6:4Þ

where the first inequality follows from repeated use of Eq. (1.5), and the last
inequality follows from ab � "a2

þ ðC="Þb2, where a, b > 0. One more appli-
cation of Eq. (6.2) shows that Eq. (6.4) is bounded by

"jdj2sþ2 þ "juj
2
sþ1 þ

C

"1þs
jdj2s2 juj

2
1:
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In the case that m ¼ 0, sþ 1, Eq. (6.3) is bounded by

Cjdjsþ2jdjL4 jDsujL4 � Cjdjsþ2jdj2juj
1=2s
1 juj

ð2s�1Þ=2s
sþ1

� "jdj2sþ2 þ
C

"
jdj22juj

1=s
1 juj

2ðs�1Þ=s
sþ1

� "jdj2sþ2 þ "juj
2
sþ1 þ

C

"1þs
jdj2s2 juj1,

where the first inequality follows from Eq. (1.5), and the last two inequalities
follow from Eq. (6.2). It follows that

P DivðrdT � rd Þ, u
� �

s
� "juj2sþ1 þ "jdj

2
sþ2 þ

C

"1þs
jdj2s2 juj1 þ juj

2
1

� �
:

We next compute that

hrud, d isþ1 ¼
X

j�j¼sþ1

hD�ðrud Þ,D
�ui

� C
X

j�j¼sþ1

X
j�j�sþ1
����0

hðD�rd ÞðD���uÞ,D�rd i

� C
Xs
m¼0

hðDmþ1d ÞðDs�mþ1uÞ,Dsþ1d i, ð6:5Þ

since for m ¼ sþ 1, we have that hruðD
sþ1d Þ,Dsþ1d i ¼ 0. We estimate the

case m ¼ 0 first in Eq. (6.5):

jDdjL4 jDsþ1djL4 jDsþ1uj � Cjdj2jujsþ1jdj
1=2
sþ1jdj

1=2
sþ2

� Cjdj
ð2sþ1Þ=2s
2 jujsþ1jdj

ð2s�1Þ=2s
sþ2

� "jdj2sþ2 þ
C

"
jdj

ð2sþ1Þ=2
2 jujsþ1

� �4s=ð2sþ1Þ

� "jdj2sþ2 þ "juj
2
sþ1 þ

C

"2sþ2
jdj4sþ2

2 ,

where the last two inequalities follow from two applications of the Young’s
inequality.

For the cases 1 � m � s, Eq. (6.5) is bounded by CjDmþ1djL4 jDs�mþ1
!

ujL4 jdjsþ1, so by Eqs. (1.4) and (1.5), we find that for m ¼ 1, . . . , s,

jDmþ1dj1=2jDmþ2dj1=2jDs�mþ1uj1=2jDs�mþ2uj1=2jDsþ1dj

� Cjdj
ð2s�2mþ3Þ=2s
2 jdj

ð2mþ2s�3Þ=2s
sþ2 juj

ð2m�1Þ=2s
1 juj

ð2s�2mþ1Þ=2s
sþ1

� "jdj2sþ2 þ
C

"
jdj22juj

ð4m�2Þ=ð2s�2mþ3Þ
1

� �
juj
ð4s�4mþ2Þ=ð2s�2mþ3Þ
sþ1

� �
,
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where we have used Young’s inequality for the last step. Another applica-
tion of Young’s inequality yields the estimate

hrud, d isþ1 � "jdj
2
sþ2 þ "juj

2
sþ1 þ

C

"ð2s�2mþ5Þ=ð2s�2mþ3Þ
jdj

4=ð2s�2mþ3Þ
2 juj2m�1

1 ,

m ¼ 1, . . . , s:

For the final nonlinear term, we have that

h f ðd Þ, disþ1 � C
Xsþ1

m¼0

Xm
n¼0

hðDnd ÞðDm�nd ÞðDsþ1�md Þ,Dsþ1d i

� jDndjL8 jDm�ndjL8 jDsþ1�mdjL4 jDsþ1dj:

Using the estimate

jvjL8 � jvj5=8
L2 jvj

3=8
2 , ð6:6Þ

together with Eq. (1.5) and Young’s inequality, we have that

h f ðd Þ, disþ1 � Cjdj
2ðsþ2Þ=s
2 jdj

2ðs�2Þ=s
sþ2 � "jdj2sþ2 þ

C

"
jdjsþ2

2 :

Letting

� ¼ C
1

"
jdjsþ2

2 þ jujsþ1
1

� �
þ

1

"1þs
jdj2s2 juj1 þ juj

2
1

� �
þ

1

"2þ2s
ðjdj4sþ2

2 Þ

�

þ
Xs
m¼1

1

"ð2s�2mþ5Þ=ð2s�2mþ3Þ
jdj

4=ð2s�2mþ3Þ
2 juj2m�1

1

#
,

and taking " > 0 sufficiently small so that

K ¼ min �� 4", � � 4"ð Þ > 0,

the basic inequality Eq. (6.1) takes the form

d

dt
juj2s þ jdj

2
sþ1

� �
� �K juj2sþ1 þ jdj

2
sþ2

� �
þ C � ð6:7Þ

so that

d

dt
juj2s þ jdj

2
sþ1

� �
� � ~KK juj2s þ jdj

2
sþ1

� �
þ C �, ð6:8Þ

1126 SHKOLLER



for some constant ~KK > 0. Letting c1 ¼ C ~KK > 0, the classical Gronwall
lemma gives

juj2s þ jdj
2
sþ1

� �
� ju0j

2
s þ jd0j

2
sþ1

� �
e�c1t þ C �ð1� e�c1tÞ,

so that we have the uniform (in t) bound on ½0,T �, and as an a priori
estimate,

lim sup
t!1

juj2s þ jdj
2
sþ1

� �
� C �: ð6:9Þ

Thus, since the time interval of existence from Theorem 4.1 only
depends on the initial data, the a priori bound Eq. (6.9) together with the
continuation property gives the global well-posedness result. Standard para-
bolic regularity results show that the solutions are smooth on the parabolic
interior.

Integrating Eq. (6.7) from t to tþ r and using Eq. (6.9), we have that

K

Z tþr

t

ðjuð�, �Þj2sþ1 þ jdð�, �Þj
2
sþ2Þ d� � ð1þ rÞC�: ð6:10Þ

Replacing s with sþ 1 in Eq. (6.8) and using Eq. (6.10) together with the
uniform Gronwall Lemma 1.1, we obtain that juðt, �Þj2sþ1 þ jdðt, �Þj

2
sþ2 is

uniformly bounded for t sufficiently large. This shows the existence of an
absorbing set in W sþ1

!H sþ2
ðTM Þ; hence, we obtain using Theorem I.1.1

of Ref. [28], the global attractor that we asserted. œ

6.2. Small Data Results

Since we have shown that the liquid crystal model has the same
structure as the Navier-Stokes equations, it is quite easy to establish the
existence of unique global solutions in H s spaces, s > n=2þ 1, for suffi-
ciently small initial data.

Proposition 6.1. Let @M ¼ ; and s > n=2þ 1. For u0 2W
s, d0 2 H

sþ1
ðM,

B �Þ such that ju0j
2
s þ jd0j

2
sþ1 is sufficiently small,Eq. (1.1) has a global solution in

u 2 C 0
ð½0,1Þ,W s

Þ \ C1
ðð0,1Þ !M Þ,

d 2 C 0
ð½0,1Þ,H sþ1

ðM,B �ÞÞ \ C1
ðð0,1Þ !M Þ:

Proof. Setting the parameters �, �, � equal to one, using the basic Moser
inequality

j f � gjs � C½j f jL1jgjs þ j f jsjgjL1�
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and the basic estimate Eq. (6.1), we find that for some positive constant
A,B,C and "

d

dt
juj2s þ jdj

2
sþ1

� �
� �Aþ CjujC1 þ

C

"
jdj2C1

� �
juj2s

þ �Bþ 2"þ CðjujC 0 þ jdj2C 0 Þ
� �

jdj2sþ2:

We have used the fact that a Poincaré-type inequality exists on manifolds
for which the Euler characteristic �ðM Þ does not vanish, which we assumed
at the outset. This is not, however, a limitation, as we can always add the
contribution of the L2 norm and handle the estimate in a similar fashion
(see, for example, Proposition 4.5 in Chapter 17 of Ref. [29]).

Taking 
 small enough, and letting K1 and K2 denote a new pair of
positive constants, we arrive at the inequality

d

dt
juj2s þ jdj

2
sþ1

� �
� �2K1 þ K2ðjujC1 þ jdj2C1Þ
� �

juj2s þ jdj
2
sþ1

� �
:

Assume that ju0j
2
s þ jd0j

2
sþ1 � N, and that N > 0 is so small that

jvj2s þ jwj
2
sþ1 � N ¼) jvjC1 þ jwj2C1 �

K1

K2

: ð6:11Þ

As long as juðt, �Þj2s þ jdðt, �Þj
2
sþ1 � N, we have the inequality

y0ðtÞ � �K1yðtÞ, yðtÞ ¼ juðt, �Þj2s þ jdðt, �Þj
2
sþ1,

so that yðtÞ � yð0Þ � N. Thus, if we take N small enough so that Eq. (6.11)
holds, we have the global bound yðtÞ � N, and hence global existence. œ

6.3. Manifolds with Boundary

For a Riemannian manifold with boundary, the above (brute force)
H s energy estimate does not work, because boundary terms arising from
integration by parts on the diffusion term �Div Def u do not vanish. It is
possible, however, to obtain estimates on ut and dt which provide the global
well-posedness result.

We have that

utt ¼ � Div Def ut � rutu� ruut � grad pt � �rd
T
t � �̂�d � �rd

T
� �̂�dt

� �gðRðei, �Þdt,rei d Þ � �gðRðei, �Þd,rei dtÞ
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and

dtt ¼ �rutd � rudt þ ��̂�dt � � grad f ðd Þ � dt:

Since dt ¼ 0 on @M we see that ð1=2Þðd=dtÞðjutj
2
þ jrdtj

2
Þ ¼ hut, utti � h�̂�dt,

dtti. Standard interpolation combined with Young’s inequality yields, for
constants c1, c2 > 0,

1

2

d

dt
jutj

2
þ jrdtj

2
� �

¼ c1 jDef uj2 þ j�̂�dj2 þ c2

� �
jutj

2
þ jrdtj

2
� �

:

We known that a smooth solution exists for t 2 ð0,T �, so on this time
interval, Proposition 5.3 states that for almost all t in this interval,

uðt, �Þ 2W1 and dðt, �Þ 2 H2
ðTM Þ: ð6:12Þ

It follows that if u0 2W
2, d0 2 H

3
ðTM Þ, and h 2 H5=2

ðT@MÞ, then utð0Þ 2
L2
ðTM Þ and dtð0Þ 2 H

1
0 ðTM Þ so that

ut 2 L
1
ð½0,T �,W 0

Þ and dt 2 L
1
ð½0,T �,H1

0 ðTM ÞÞ: ð6:13Þ

From Eq. (6.12), we claim that rudðt, �Þ is in H �
ðTM Þ for almost all

t 2 ð0,T � and for � 2 ð0, 5=16Þ. To see this, note that for " > 0

w 7! w w : Hp
! H �ð1þ"Þ, where p ¼ 1

2þ
1
2 �ð1þ "Þ þ "�:

We set � ¼ �ð1þ "Þ, and, for example, set " ¼ 1=4 and � � 1=4; then
� 2 ð0, 5=16Þ and p � 23=32, so the claim is established. Using standard
elliptic regularity on Eq. (5.3b), we see that d 2 H2þ�

ðTM Þ, and the H2þ�-
norm of d only depends on the initial data and M.This shows that
DivðrdT � rd Þ is in L2 so that with Eq. (6.13), we see that u is in W2. By
bootstrapping, we find that d is inH3, and the continuation argument shows
that the unique solution may be continued for all time. If h 2 C1

ðT@MÞ,
then both u and d are in C1

ðð0,1Þ !M Þ. Thus, we have the following.

Theorem 6.2. Suppose that u0 2W
2 and d0 2

_HH3
h ðTM Þ. Then there exists a

unique solution

u 2 C 0
ð½0,1Þ,W2

Þ and d 2 C 0
ð½0,1Þ, _HH3

h ðTM ÞÞ:

If h 2 C1
ðT@MÞ, then both u and d are in C1

ðð0,1Þ !M Þ.

For the weak solutions obtained in Ref. [16], Proposition 5.3
immediately proves the existence of a compact global attractor in W 0

!

H1
h (TM). A small data result may be obtained by a similar argument as

in Proposition 6.1.
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7. LAGRANGIAN AVERAGED LIQUID CRYSTALS

As we described in the introduction, the director field d describes locally
the averaged direction of the constituent molecules; it is thus reasonable, and
of practical and computational importance, to locally average the Navier-
Stokes fluid motion as well. Recently, the Lagrangian averaged
Navier-Stokes (LANS) equations were introduced as a model for the large
scale Navier-Stokes fluid motion which averages or filters over the small,
computationally unresolvable spatial scales (see Refs. [4,22] and the refer-
ences therein). The LANS equations are parameterized by a small spatial
scale � > 0—fluid motion at spatial scales smaller than � is averaged or
filtered-out. There are two types of Lagrangian averaged Navier-Stokes
equations: the isotropic and the anisotropic versions. We shall begin with
the isotropic theory, and for simplicity of presentation, we shall assume
that M is flat.

The isotropic LANS equations for the mean velocity uðt, xÞ are
given by

@tð1� �
2�Þuþ ruð1� �

2�Þu� �2
ruT � 4u

¼ � grad p� �ð1� �2�ÞAu ð7:1aÞ

div uðt, xÞ ¼ 0, ð7:1bÞ

u ¼ 0 on @M, ð7:1cÞ

uð0, xÞ ¼ u0, ð7:1dÞ

where A :¼ �P� is the Stokes operator, and P is the Leray projector.
Eq. (7.1a) has an equivalent representation as

@tuþ ruuþ U
�
ðuÞ ¼ �ð1� �2�Þ�1 grad p� �Au ð7:2aÞ

U
�
ðuÞ ¼ �2

ð1� �2�Þ�1 Div ru � ruT þ ru � ru� ruT � ru
� �

: ð7:2bÞ

When @M ¼ ; the LANS equations take on a particularly familiar ‘‘sub-
grid-stress’’ form with Eq. (7.2) becoming

@tuþ ruuþDiv��ðuÞ ¼ � grad pþ ��u ð7:3aÞ

��ðuÞ ¼ �2
ð1� �2�Þ�1

ru � ruT þ ru � ru� ruT � ru
� �

, ð7:3bÞ

where �� representing the sub-grid or ‘‘Reynolds stress.’’
The remarkable feature of the LANS equations is that, unlike the

Reynolds averaged Navier-Stokes (RANS) equations or Large Eddy
Simulation (LES) models of turbulence, no additional dissipation is put
into the system. Infact, when � ¼ 0, the LANS equations conserve the
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Hamiltonian structure of the Euler equations with both a modified kinetic
energy

E �
¼

1

2

Z
M

juj2 þ 2�2
jDef uj2

� �
 ð7:4Þ

and helicity

H �
¼

Z
M

w ^ dw, w ¼ ð1� �2�Þu[, u[ ¼ gðu, �Þ, ð7:5Þ

being conserved.
This is easiest to see from Eq. (7.3), where the only term that is added

(to the NS equations) is Div ��ðuÞ; it is precisely this term which averages the
small scales, and this is accomplished by the use of nonlinear dispersion as
opposed to dissipation. A simple computation, which requires taking the L2

inner-product of the LANS equations with u when � is set to zero, shows
that Eq. (7.4) is conserved. Why is it so important not to over-dissipate the
NS equations? The answer is two fold: first, the addition of artificial
dissipation obviously and spuriously removes crucial small-scale features,
and second, artificial viscosity, which is present in RANS or LES models,
suppresses intermittency, a fundamental feature of fluid turbulence.

Mathematically, for all � > 0, the three-dimensional LANS equations
are globally well-posed (see Refs. [11,23]), yet when the averaging parameter
� is taken sufficiently small, computational simulations of LANS are statis-
tically indistinguishable from the simulations of the NS equations.
Furthermore, the LANS equations provide a tremendous computational
savings as shown in simulations of both forced and decaying turbulence
Refs. [3,24]. Finally, the LANS equations arise from a variational principle
in the same fashion as the NS equations. We shall therefore base our devel-
opment of the averaged liquid crystal equations on the LANS model, and
introduce the following system of equations:

utþ�AuþruuþU
�
ðuÞ¼�ð1��2�Þ�1 grad pþDivðrdT �rd Þ

� �
, ð7:6aÞ

div uðt,xÞ¼0, ð7:6bÞ

dtþrud¼� �d�
1


2
ðjdj2�1Þd

� �
, ð7:6cÞ

u¼0 on @M, d¼h on @Mgðh,hÞ¼1 or @M¼;, ð7:6dÞ

uð0,xÞ¼u0, dð0,xÞ¼d0 and d0j@M¼h if @M 6¼;, ð7:6eÞ

where � denotes the componentwise Laplacian.
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Averaged Variational Principle

Following the notation of Section 2, we define the averaged action
function S � : Ds,D !H

sþ1
ðTM Þ \H1

0 ðTM Þ ! R by

S �ð�, d Þ ¼
1

2

Z
I

Z
M

fgð�ðt, xÞÞðuðt, �ðt, xÞÞ, uðt, �ðt,xÞÞÞ

þ 2�2gð�ðt, xÞÞðDef uðt, �ðt, xÞÞ, Def uðt, �ðt, xÞÞÞ

þ �gð�ðt, xÞÞðr½dðt, �ðt, xÞÞ�,r½dðt, �ðt, xÞÞ�Þ

þ 2Fðd Þg dt, ð7:7Þ

where we suppress the explicit dependence of u and d on � and 
.
Again, we see that Eq. (7.6a) arises as the first variation of the action

function S � with respect to �, and the remaining equations are identical to
the original system Eq. (1.1). Note, however, that now u is the mean velocity,
and it is the mean flow � which is transporting the director field d.

Averaged Energy Law

For simplicity, we shall present the formulation in the case that
@M ¼ ;, although the more general case follows in the same fashion as
we presented above. Following the notation of Section 2, we have the fol-
lowing basic averaged energy law:

1

2

d

dt
juj2 þ �2

jruj2 þ �jrdj2 þ 2

Z
M

Fðd Þ

� �
� �� jruj2 þ �2

j�uj2
� �

� ��j�d � f ðd Þj2: ð7:8Þ

From Lemma 5.2 and (7.8), it follows that there exists 
tt > 0, and some

��0 > 0 which is independent of the initial data, such that

juðt, �Þj21 þ jdj
2
1 � 
��0 8t > 
tt:

We see that the averaged energy law is, in some sense, more natural than the
standard basic energy law Eq. (5.1) since the director field d is no longer
constrained to have one derivative greater regularity than the velocity of the
fluid u: both u and d now scale similarly.

Because of the a priori uniform bound of uðt, �Þ inW1, it is very easy to
obtain an a priori bound for uðt, �Þ in W2 and d 2 H2

ðTM Þ when the
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dimðM Þ ¼ 3. We take the L2 inner-product of ð1� �2�Þ acting on (7.6a) with
ð1� �2�uÞ; we then add to this the L2 inner-product of� acting on Eq. (7.6a)
with �d, and use Lemma 5.2. Using similar estimates as the standard liquid
crystal system, we obtain an a priori energy estimate, in fact an absorbing set,
inW2

!H2
ðTM Þ, and by bootstrapping, we may easily obtain higher-order a

priori estimates. Local well-posedness follows again from the contraction
mapping argument that we gave in Theorem 4.1, so we have the following.

Theorem 7.1. For n ¼ 2, 3, s � 1, @M ¼ ;, R ¼ 0 and u0 2W
s, d0 2

H sþ1
ðTM Þ,

u 2 C 0
ð½0,1Þ,W s

Þ, d 2 C 0
ð½0,1Þ,H sþ1

ðTM Þ

are solutions to the system of Eq. (1.1). Moreover, there exists a compact
global attractor for the system Eq. (7.6) in Ws

!H sþ1
ðTM Þ.

We can generalize this theorem to Riemannian manifolds with
boundary following the method in Ref. [23] and the previous section.

8. CONCLUDING REMARKS

Gradient Flow Versus Damping

We considered the L2 gradient flow of the variation of the
action function Sð�, d Þ with respect to d in the director field Eq. (1.1e).
In the liquid crystal literature, however, it is common to see a damped
second-order equation for the director field (see Ref. [7] and references
therein), which in the context of our simplified system would mean
replacing dt with �1dtt þ �2dt for some constants �1 and �2. Of course,
both types of equations have the identical stationary solutions, but in
terms of stability, L. Simon’s result[27] guarantees that the damping term
takes over. As far as parabolic estimates are concerned, it is easy to
treat either type of equation, but we feel it is more natural to take the
path of steepest descent in relaxing the orientation towards its preferred
configuration.

Lie Advection Versus Parallel Transport

This remark concerns the coupling term rud in Eq. (1.1c). This term
arises by considering the time derivative of ðd # �Þðt, xÞ :¼ dðt, �ðt, xÞÞ, where
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for each t, �ðt, �Þ is a volume-preserving diffeomorphism in the topological
groupDs,D. In group-theoretic language, this suggests that the action ofDs,D

on the vector space of director fields is on the right. The natural action ofDs,D

on the vector space of director fields, however, is on the left, or by push-
forward: instead of d # �, the natural action is ��d :¼ D� � d # ��1: Taking the
timederivative of ½��d �ðt,xÞ givesLud, theLie derivative of d in the direction u.
The Lie derivative Lud ¼ rud � rdu, and this is the actual term which is pre-
sent in the Ericksen-Leslie model. A nontrivial extension of our analysis is
required to analyze the system Eq. (1.1) with rud replaced by Lud, and this is
accomplished in Ref. [6].

Other Fluids Models

Using our methodology, it is quite easy to study a number of other
fluids models. For example, by replacing the Oseen-Frank energy with the
Landau-Lifshitz free energy 1=2

R
M AgðrM,rM Þ, where M is the direc-

tion of magnetization in a cubic ferromagnet, we can obtain an almost
identical system of PDEs. Similarly, if we replace the vector d in our
action function S with a scalar field �, and replace the L2 gradient flow in
Eq. (1.1c) with H �1 gradient flow, we obtain a model of two-phase flow
whose interface moves via motion by mean curvature (see Ref. [20]). This
model consists of a coupled Navier-Stokes Cahn-Hilliard system, where the
interface is governed by surface tension.

The Defect Law in the Limit as 
! 0

We considered the GL penalization of the Oseen-Frank energy law so
as to obtain finite-energy minimizers, but we have yet to consider the limit of
our solutions as 
! 0. It remains an open problem to characterize the
dynamical law of the GL vortices when coupled to the Navier-Stokes
motion. Following the pioneering work in Ref. [2,18] on the dynamical
law of the GL vortices, the location of the jth vortex, aj, solves the distribu-
tional equation

@taj þ divðajuÞ ¼
�W

�aj
,

where u simultaneously solves the Navier-Stokes equations, and W ¼
P

i 6¼j

log jxi � xjj is the renormalized energy. A rigorous defect law exists when
the velocity u comes from the LANS equations, because in that case, u is
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uniformly in H1 with respect to the penalization parameter 
 > 0
(see Ref. [15]).
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