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ABSTRACT

The POCS-method (projection onto convex subsets) has been proposed (see Yeh/Stark21) as an efficient way of
recovering a band-limited signal from irregular sampling values. However, both the ordinary POCS-method (which
uses one sampling point at a given time, i.e. consists of a succession of projections onto affine hyperplanes) and
the one-step method (which uses all sampling values at the same time) become extremely slow if the number of
sampling points gets large. Already for midsize 2D-problems (e.g. 128 x 128 images) one may easy run into memory
problems. Based on the theory of pseudo-inverse matrices8 new efficient variants of the POCS-method (so to say
intermediate versions) are described, which make use of a finite number of sampling points at each step. Depending
on the computational environment appropriate strategies of designing those families of sampling points (either many
families with few points, or few families with many points, overlapping families or disjoint ones. .. .) have to be found.
We also report on numerical results for these algorithms.

1. PROBLEM DESCRIPTION

The irregular sampling problem for band-limited 1-D and 2-D signals 4,5,6,9,11,16,19 has found much interest
recently. It concerns the reconstruction of a band-limited signal or image (with known frequency spectrum but
unknown amplitudes) from a sufficiently rich family of irregularly spaced sampling values.

Let us start with a description of the problem for the continuous case first. For a closed subset 1 C 1R we denote
by Bz the set of all square integrable functions f L2(1R'), i.e all signals of finite energy with spectrum spec f
supp I c c (in other words f(s) vanishes on the complement of ). If is a bounded set the multidimensional
version of the well-known Shannon sampling theorem tells us, that for any sufficiently small lattice constant a > 0
it is possible to recover the signal f completely from the set of sampling values (f(am)mEzn). In fact, a series
representation of the form

1(t) = :: 1(0112) g(t — am) (1)
mEZ

is possible. The series is convergent in the L2-sense, i.e. the quadratic mean, and uniformly. The building blocks for
this series representation are shifted versions of g which can be either a sinc-type function, i.e. the inverse Fourier
transform of the indicator function 1 of ,or more generally some g L2 with sufficiently small spectrum spec g,
satisfying i(s) 1 on . The critical value ao (the upper limit of all admissible values a) is usually called the
Nyquist rate (for c2).

In case of irregular sampling no signal reconstruction in such a simple form can be expected. But if the sampling
density is high enough, complete reconstruction of the signal is still possible. The reader is referred to the applied
literature3'6'7'10'13"4 for various (iterative and non-iterative) reconstruction methods. In thispaper we concentrate
on new variants of the POCS method.

For the numerical test of the various methods we have worked with IRSATOL, a toolbox (for research purposes)
based on the mathematical software package MATLAB, and developed at the Math.Dept. of the Univ. of Vienna,
working on 486PC's and SUN workstations. The setup for the experiments was the following. We start with a
complex signal vector or matrix with known spectrum (usually small compared to the signal format) and a family of
sampling coordinates. For the reconstruction we assume that only the sampling values of the given signal at those
sampling coordinates are available. This approach allows us to measure the mean square error between the given
signal and the reconstructed one. Our standard example for this paper is depicted in Fig. 3. It shows a 1-D signal,
with real and imaginary parts, and the sampling values marked by crosses. The signal length is 512, the FFT of the
sequence has at most 51 non-zero values, and it is known at which coordinates those may appear, and we work with
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93 sampling coordinates. This allows some irregularity, but on the other hand some of the larger gaps are about the
size of the Nyquist rate.

2. GENERAL POCS METHODS

The POCS method"2"2"7'22'23 in general can be described as algorithm which produces, starting with an arbitrary
vector which is usually the zero-vector, a sequence of approximations through projections on convex sets in some
Hubert space. In most cases one is searching for the unique element fo in the intersection C := fliElCi of a family
C = (Cj)jEJ of convex sets. Denoting the projection from the full signal space 7-1 into the convex set C by P we
obtain from an arbitrary starting element fo a sequence f, of approximations through ffl+i := Pr. f . The standard
strategy for most applications consists in choosing a finite sequence of convex sets , to use each of those convex sets
exactly once to produce a cycle of projections, and to iterate on that cycle, until the changes become marginal, or in
many cases the determined number of cycles (or amount of time available) has been used up.

If the convex set happens to be a linear subspace (vector subspace) V of 7-1 the projection mapping is just the
orthogonal projection from 7-1 onto V1 . It is well known that it can be obtained by taking any orthonormal basis for
(gj)jEJ1 for V in order to write P as >jEJ. < 1, f > fi . IfV is relatively large within 7-1, i.e. ifthe codimension of V
with respect to '1-1 is small, it is better to describe the projection as Id —P2 . This is true in particular for hyperspaces
vn = {fI < 1, n >== O}, where n is some normal vector of length one, where we have Pv(f) f— < 1 n > n.

If the convex set is an affine subspace of the signal space 'H, i.e. some translate of a linear subspace, e.g.
C = u + V, for some fixed element u 7-1, then the convex projection Pc is an affine mapping, which can be desribed
through Pc(f) = Pv(f—u)+u. In the case ofahyperplane V this means that Pc(f) f—(< f,n > —< u,n >)n.

For the efficiency of any variant of such a POCS method the following three ingredients are relevant:

. The choice of the family of convex sets

. The description of the projection operators (constructive)

. A strategy to run through the family of convex families (in a certain order, possibly with repetitions)

3. VARIANTS OF THE SINGLE STEP POCS METHOD

During the investigation of the POCS-method it turned out that the order at which the sampling values were
used may have a strong influence on the rate of convergence of the POCS-method. The following paragraphs explain
several strategies to find optimal or suboptimal orders for the sampling points and describe corresponding numerical
experiments. Since we are mostly interested in practical applications of the POCS method (and not so much in
abstract theory for the infinite case) we only have to discuss cases which involve a finite FT and therefore a finite
number of sampling points.

3.1 Standard POCS Method

The standard (single-step) POCS method for iD-problems as described by Yeh/Stark makes use of the sampling
points in their "natural" order, i.e. from left to right. It has been explained in section 9.2 in "Theory and Practice
of Irregular that this is often not a very good strategy (after the correction at a sampling point has been
carried out the sampling value at a close neighbor does not contribute much to improve the approximation in terms
of the global signal energy) On the other hand, for 2D situations there is no such natural order of indices for random
sampling sets. Therefore alternative strategies (while still keeping the single step approach) have to be investigated.

3.2 POCS method with permutations

For the iD-case this is only a simple, but efficient modification of the standard POCS method and for the 2D-case
it is the only natural one:

Fixing an arbitrary enumeration of the (finite) sampling set the algorithm is applied to each sampling value
according to its given index. For the iD-case we have observed good improvement of the speed of convergence
(compared to the standard method) by applying this simple strategy (the extra computational load consists only in
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determining some permutation of the index set) . Although the actual rate of convergence depends on the given choice
of the index-sequence we have found that "most" index sequences give more or less the same rate of convergence,
and only few choices of the order (such as the left-to-right one) result in slower convergence. Only in few cases we
have observed index sequences which result in a rate of convergence significantly better than the average rate of
convergence. In the 2D-case there is no natural way of going through the sampling set (to compare with), but the
fact that "most" choices for the index sequence result in some average rate of convergence is still true. From our
experiments we conclude that it does not make sense to look for the "optimal" index sequence for a given sampling
set. In the few cases we have found such sequences there was no evident criterion for determining why it was good,
nor is there any way of calculating it a priori.

Observe that the structure of this algorithm (one determines first one cycle of single-steps, which is then iterated
over and over again) has the consequence that each of the sampling points is used at a regular frequency, i.e. for a
large number of steps each point is used almost equally often. Alternative strategies (to be described below) therefore
have to involve ideas about the frequency at which the different sampling points are used during the process.

3.3 Maximal Correction Method

The observation that applying a POCS-step at the "next" point x2 may result in a very small improvement of
the quality of the approximation led us to the maximal correciion method. The idea behind the maximal correction
method is the following: After each single iteration step the error between the approximation and the given sampling
values is calculated, and the next step of this algorithm is a single POCS step using the sampling point at which the
error takes its maximum.

Although the computational overhead (at each iteration step two arrays are subtracted and the maximum of
the resulting array has to be found) the maximal correction method showed superior performance compared to the
standard POCS- method.

Investigating the frequency the sampling values are used in the correction method it turns out that some sampling
points in regions with a high sampling density are only rarely used or not at all. On th other hand isolated samples
as well as samples in sparse regions are used more frequently. To demonstrate this phenomenon we have chosen a
sampling set with variable gap sizei, small gaps near the boundary and larger gaps in the center. Fig. 2 describes
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the size of gaps between the sampling points. The frequency at which the sampling points are used by the maximal
correction method is shown in Fig. 1) and indicates a clear correlation betweenthe gap size and the frequency at
which points are used.

Nevertheless the following typical problem that may arise with this method: There are two "critical" sampling
points at which the given approximation deviates most from the given sampling values. Applying the correction step
at the point with the maximal error may increase the error at the second critical sampling point. Therefore that
point will be used next. If now that correction causes in turn a large error at the first critical point, that point has
to be used next to compensate the error, so that stagnation of the approximation process may occur . To prevent
this the correction method with aging, where we have tried to force that each sampling point is used regularely (at
least from time to time), was introduced.

3.4 Correction method with aging

The correction method with aging uses an aging-mechanism, which counts how often each sampling point has
been ignored. After each step of the POCS algorithm the age of all sampling points that were not used in this step
are incremented, whereas the counter for the point that has been used is set to zero.

In the course of the approximation the sampling values are used according to the maximal correction method, till
the age of a sampling point exceeds a predefined treshold. If this happens the sampling point is used for the next
iteration step independent of the maximum of the approximation error. If the sampling points are very irregular
distributed across the domain of the signal to be approximated there are locations (clusters) where the gaps between
the sampling points are small compared to the average distance.

To prevent sampling points of a cluster of being used too often, a slight variant of the aging-algorithm was
introduced. In the modified algorithm the aging-counter of the left and the right neighbours of each used point were
also diminished.

3.5 Red-black strategy

Another strategy for improving the convergence rate of the POCS-method is to use a so called red-black scheme.
This means in connection with the POCS method that at the beginning the sampling sequence is divided in two
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subsequences, for example the sampling points with even indices ("the red ones") and those with odd indices ("the
black ones"). First the algorithm is applied to the "red" and than to the "black" samples. Using a natural generali-
sation of the red-black scheme first the sampling points with indices 1 + s• k (s E N fixed) then all sampling points
with indices 2 + s . , and so on are used (s denotes the grid size or offset of the red-black scheme.).

3.7 Comparison of POCS-methods

Fig. 3 shows a typical test signal of length 512 consisting of 51 pure frequences and 93 sampling values. Each
method stopped the reconstruction after 8 cycles (i.e. 8 . 93 744 single steps) and the reconstructed signals were
compared to the original one (cf. Fig. 4).

As can be seen from Fig. 4 the maximal correction method is close to machine precision after aboul 8 cycles. The
POCS method with permutations ("Perm. POCS") and the Red/Black variant also show an acceptable behavior of
convergence, at least a much better rate of convergence than using the standard algorithm. For the sake of comparison
we have also included a random POCS method, where the sampling points are used in a complete random order
without making use of cycles ("Random POCS"). This behavior of convergence for the different methods is typical
for many 1-D situations.

3.8 Conclusion

Using the sampling values as they occur in the index set (standard method) has the advantage that no lengthly
search is required to determine which point shall be used for the next iteration step . But the experiments showed
that even with a small data set the convergence rate of this algorithm can be insufficient for practical applications.

At least in a noise free environment the correction method showed the best results, but growing data sets might
lead to the conclusion that even the small computational overhead necessary for this algorithm is not tolerable on a
given machine and for a given implementation.

The advantage of the improved rate of convergence (compared to the standard method) of the permutation
strategy and the red-black scheme is the simplicity of the algorithms. It costs only little time to generate the
corresponding index sequences.
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4. PSEUDO-INVERSE MATRICES AND IRREGULAR SAMPLING

4. 1 Geometric description

From an abstract point of view we have the problem of determining a vector in some finite-dimensional, let us
say n-dimensional Euclidean space (real or complex) with inner product ( i.e. real/complex Hilbert space fl denoted
by V' or lJ to our best knowledge from a sequence of scalar products ((f, gj))1 . Since these scalar products do
not contain any information about directions orthogonal to the linear subspace space flo generated by the system
of functions (g)=1 the best we can achieve is the best approximation ía E flo of the given function f, i.e. the
orthogonal projection of f onto 7(o . Let M be the r x n matrix whose i-th row is the vector gj and let s be the set
of scalar products ((1 gj))1 . Obviously s satisfies s = f M . It is clear that dirnfl0 r , but of course one has
strict inequality if the sequence is not linear independent. In such a situation there are many ways to represent fa as
a linear combination of the "basis" vectors and the question is which one should be determined. Since all coefficient
vectors A = (A):=1 which represent the same vector f = \jgj = A . M form an affine subspace of V' (or JR'S)
there is a uniquely determined sequence A0 (for each f in fl) with minimal £2-norm in this affine space. If M is
invertible, the inverse matrix M' describes the linear mapping f '—÷ A0 (by means of matrix multiplication from the
right). If M is not invertible, the pseudo-inverse18 of M will describe the required linear mapping. We shall write
pinv(M) or M+ for the pseudo-inverse also called Moore-Penrose inverse of a matrix M. In the general case the
matrix pinv(M) can be used to solve the minimal norm least square problem (MNLSQ-problem) described above 8

The standard method of calculating pinv(M) involves the determination of a singular value composition (SVD) for
the matrix M. The following identity2° may signifincantly reduce the computational load for determining pinv(M).

pinv(M) = M' pinv(M . M') = pinv(M' . M) M'. (2)

Observe that GM := M . M' is exactly the Gram matrix of the sequence (gj)1 which appears at various places
in the applied literature'9 (e.g. the one-step method of Yeh and Stark2' makes use of GM, although they only discuss
the case where GM is invertible.)
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Note also that in certain cases the application of formula 2 in general might be numerically less stable than the
direct determination of pinv(M) , but we consider this as a minor problem for our situations compared to the memory
problems with a huge SVD for M itself. In fact, the dimension of GM =M . M' is exactly r x r, i.e. the number
of vectors involved, which is usually very small compared to the signal length. But for images or long signals with
many samples even using formula 2 will not avoid that this pseudo-inverse method reaches its bounds (requiring too
much memory or too much time).

4.2 Application in irregular sampling

In this section we discuss shortly how pseudo-inverse matrices can be used in connection with the irregular
sampling problem. Pseudo-inverse matrix methods work efficient if the number of sampling points is small. While
large gaps between sampling points may lead to divergence in some iterative algorithms, pseudo-inverse methods can
still provide a good reconstruction of the signal.

Recall that I E B1 is a band-limited discrete signal of length n with sampling values (f(t1))1 = ((f,gj))1
where gj is a sinc-type function, obtained by cyclic shift of since along the sampling coordinate t (since we have
the reproducing convolution equation7'2° f =f * sincn). B, the space of band-limited signals can be spanned by
the collection (gi)=1 , i.e. any element f in B can be represented as a finite linear combination of these shifted
sinc-functions : f = > \jgj , if there are sufficiently many sampling points available, in particular, if the maximal
gap between sampling points is sufficiently small (depending on the diameter of the spectrum 1).

If the matrix M contains the shifted sinc-function gi as i-th row then the optimal approximation fa of f through
linear combinations of these functions, i.e. the orthogonal projection of f by elements of Bn (their linear span) can
be obtained by means of the pseudo-inverse pirzv(M), even if there are linear dependencies between the rows of M
(which happens, if r > i.e. there are more samples than spectral points):

ía (f pinv(M)) . M = A0 . M. (3)
Here A0 := = f . pinv(M) is the unique sequence with minimal t2-norm among those sequences A which
satisfy A . M = fa

Applying formula 2 we can determine fa as:

ía (f M') . pinv(M . M') . M. (4)

Equation 4 shows that it is possible to determine f from the sampling sequence (f(t)) = f . M' alone even
without knowing f itself. Finally observe that it is not even necessary to establish the full matrix M in order to
calculate the coefficient sequence (f(t1))1 . pinv(M . M') , because the entries of the Gram matrix GM are just
values of the sinc-function at differences of sampling coordinates, due to the fact that the inner product of two
shifted sinc-functions is just the value of that sinc-function at the difference of the shift parameters (remember that
the sine-function enjoys the reproducing convolution equation7'2° sinc *sinc = sinc). Furthermore, it is easy to
obtain therefrom the linear combination of shifted sinc-function using a double FFT. In fact, it suffices to establish
first a sequence with the coefficients A0 inserted at the sampling coordinates and zero elsewhere. The FFT of this
sequence is the multiplied by lç and the inverse of the resulting sequence is exactly ía A0 . M. The limitation
of this approach is therefore not the signal length, but rather the number of sampling points. Thus even for signals
which would not allow to take correspondingly huge matrices M into the computer memory can be applied if these
tricks are used for the implementation, and if there are not too many sampling points.

5. FINITE SPLITTINGS OF SAMPLING SETS

In Section 3. we have been concentrating on sequences of projections on hyperplanes, i.e. subspaces of the signal
space of codimension one. The correction at each step was just a multiple of one of the functions gj . In the preceding
paragraph we have seen how we can obtain projections for an arbitrary finite dimensional subspace fl via the
pseudo-inverse of the corresponding matrix M. This method enables us to build correction terms, which are finite
linear combinations of (a small number of) vectors which give the best possible improvement of the approximation
by terms of this form. We shall now use this knowledge to provide alternative strategies, still following the general
idea of POCS.
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5.1 Strategies of splitting the sampling set

One obvious variant of the POCS method for irregular sampling is to choose an arbitrary covering (I, ) of
the sampling index sequence I = {1, .. . r}. We will mainly concentrate on partitions, although it is possible to
use some of the indices repeatedly. Let then l(j be the linear span of {gji e I, }. Furthermore let M, be the
matrix containing the signals {g2i E I } as rows. The mapping P3 : h —÷ (h . M) . pinv(M1) describes therefore the
projection from ?-( onto 7-( . It is used to describe the projection of a given approximate signal fa onto the affine
space A := {h : h(t) = s Vi E I3}. Recall that s = ((1 g))1 is the given sequence of sampling values.

One step in any of the new variants of the POCS method is performed as follows: A particular index set Ij is
choosen. The "subproblem" is to find an approximation fj E A3 for f. Now fa,j can be obtained from the previous
approximation by the pinv-solution of (si)iEI3 = I M . As described in section 4.2 this requires only to establish
the pseudo—inverse of the matrix G, := M • M, which contains only sampling values of the sinc-function. Since each
of those projections will be used very often we start the algorithms by establishing all those matrices for any of the
occurring index families (I, ) and keep them in storage.

One cycle of POCS-steps consists of a sequence of projections, using all of the index sets, in some order. Once
more one cycle is counted as one iteration, and successive approximations to f are obtained by running a couple of
iterations of the given algorithm.

Three "splittting strategies" to obtain the partition (I) have been implemented:

1 . Arithmetical strategy: Each I, simply contains k successive sampling indices for some fixed Ic.

2. Tiling strategy: Put a regular grid over the signal domain and collect the indices of the sampling values in
each "tile" to form 12.

3. Grid strategy: start as in 2., but then form "grids" by taking one sampling index out of each tile to get the
set 13.

5.2 Numerical results

The grid strategy prefers sampling values in "sparse" regions, because as soon as all points of a block are used
up, it begins to use the previous samples once more. In the one dimensional case numerical experiments showed
that the numerical stability of the matrices M obtained by the grid strategy are usually better than for the other
strategies. In this case the sampling values are better distributed over the signal domain, which appears to keep the
linear dependencies among the rows of M "lower" Also all matrices M of the grid strategy are of the same size
which is usually not true for the tiling method.

It is clear that the behavior of the three splitting variants depends on the sampling set and on the number of
blocks, in which the sampling set is split. We use again the signal shown in Fig. 3 for our experiments. To minimize
the computational effort, it is obvious that one should store the various appearing pseudo-inverse matrices, because
they do not change during iterations. To make the comparison ot the three strategies fair, we have splitted the
sampling set for each method in such a way, that one obtains the same number 1 of submatrices M for all methods.
In the first experiment (the result is shown in Fig 5) 1 is 5. That means for the arithmetic strategy, that we take the
first successive sampling points, then the next , doing this 5 times (so all matrices (M)1 are of size x
The sizes of the 5 matrices of the tiling strategy depend on the number of sampling points in each "tile" . For the
grid strategy the size of all matrices M, is equal to the number of sampling points of that block with most sampling
points. As mentioned above samples in sparse regions may be used multiple. This kind of weigthing results in higher
computational effort, but the advantage is better stability for the reconstruction. Fig. 6 shows the convergence
behavior of the three splitting methods using 20 submatrices.

The influence of the chosen number and size of the matrices is documented in Fig 7. The test image is of size
64 x 64 with 137 spectral points and 196 samples. The method under use is the grid strategy. The name pocsl says
that the matrices M are of size 1 x 1, which is nothing than the single step method. Analogous pocslö means that
the matrices are of size 162 x 162, (162 since we are dealing with a 2-D situation). One can see that using few large
matrices gives a good reconstruction but the pseudo-inversion of large matrices costs much time. The single step
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method is fast but the approximation not very good. The best performance arises for an "intermediate" strategy,
i.e. splitting the sampling set in such a way, that one obtains not too many midsize matrices.

It appears as a promising and easy task to implement these variants of the POCS method on parallel computers,
especially for larger images (for example 256 x 256 and beyond).

5.3 Bunched sampling

Actually a special case of the general approach taken here is the case of "bunched" sampling. We call a discrete
sampling sequence a bunched sampling sei, if it is the finite union of (possibly different) lattices. To be more precise
let us give a detailed description for the 2D-case: We call a family X = (x)1 a bunched sampling set for the plane,
if there are offset parameters x2 and y as well as lattice constants c and /3 ,such that X = UjEI(xj, y) + L, where
the lattices L1 are given by L := (ajZ) x (f32Z). In that particular case we can split the irregular but bunched
sampling set into several regular subsequences and the convex sets to be used for the reconstruction of fo are the
families Ci := {f E B If(l) fo(l) \/m E Z2}. The corresponding pseudo-inverse of such a family C has a very
simple strucure. Actually the pseudo-inverse matrices do not have to be established, but the necessary calculations
can be carried out very efficient just making use of few FFT's. This has been explained in detail in our contribution
for the SPIE918 and goes back to the paper by Oakley/Cunningham/Little'5.

The fact that in case ofbunched sampling pseudo-inversion can be replaced by FFT's allows to go for signal lengths
and image dimensions, which could never be treated with ordinary matrix methods (using SVD , for example).

6. SUMMARY

In this note we have presented "intermediate" versions of the POCS method (between the single-step and the
one-step version), as well as improved strategies for the single-step POCS method. For each of those methods one
can say that the sampling set has to be grouped into subfamilies, which are used in a certain order. From our
experiments so far it appears that the optimal layout (which of course depends on the specific problem size and
implementation) will be obtained by choosing not too many families, but try to keep on the other hand the number
of matrices (pseudo-inverse matrices) to be kept in storage comparatively small. For the overall effort to obtain
a certain degree of approximation one has to take into account the time to determine the sampling subfamilies,
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to establish the corresponding pseudo-inverse matrices, and finally the number of cycles required. At least for 2D
problems those strategies can be much more efficient than the simple version of POCS for the irregular sampling
problem. More detailed investigations, also concerning the question of parallel implementations of those algorithms,
have to be carried out in the future.
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