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Abstract-The use of a family of time-frequency shifted 
versions of a prototype signal, namely Weyl-Heisenberg 
(WH) sets, is a common feature of various concepts in sig- 
nal analysis, processing and digital communication. We 
discuss the matching of WH prototype signals to important 
nonstationary environments. The statistical window opti- 
mization for the STFT/Gabor expansion of nonstationary 
processes is shown to be formally equivalent to optimal sig- 
nal design for narrowband WSSUS channels. For the case 
of underspread channels/processes we derive approximate 
solutions to the optimization problem. 

1 INTRODUCTION 

Eigenfunctions and the associated signal expansions pro- 
vide the optimum solution to a wide variety of signal pro- 
cessing problems. An obvious example is the transmission 
over a linear channel where the transmission pulses should 
be eigensignals of the channel. Another example is the 
Karhunen-Loeve transform that diagonalizes the covari- 
ance operator of a nonstationary process and thus estab- 
lishes the theoretically optimum transform for minimum 
mean-squared error filtering and source coding. Neverthe- 
less, exact and usually unstructured) eigenexpansions are 

signal bases. There are two main, pragmatical reasons for 
doing so: (i) the a priori knowledge on a linear operator 
is essentially incomplete (as e.g. in mobile communication) 
such that it does not come to the point of solving the eigen- 
value problem, and (ii) the numerical expense for the use 
of a general (unstructured) linear transform is too high. 

A classical version of a structured set of functions is ob- 
tgned by time-frequency shifting of a prototype function 

seldom use 6 in practice, rather one uses highly structured 

The associated si nal transforms are the short-time Fourier 
transform (STF?) [I ,  21 

and its discretized version, the Gabor expansion, whose co- 
efficients may be written as [l, 3, 4, 51 

where g(t is an appropriately defined Gabor analysis win- 

In digital communication (in particular time/frequency- 
division multiplex systems) one uses discrete WH sets 
{ g(mT?nF) (t)} of a transmission pulse. Here, one always 
has T F  > 1 since linear independence is compelling and 
completeness is not at  all important [6]. 
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In the context of the WH group the appropriate tool for 
operator representation is the generalized spreading func- 
tion [i’] , 

S ~ ) ( T ,  U) e‘ h (t + (i -a) T, t - (++a) T) e--IZavtdt, 

where h ., .) is the kernel of a Hilbert-Schmidt (HS) opera- 

ness in the definition of a WH time-frequency shift oper- 
ator. However, most of our results are a-invariant since 
the magnitude of S$)(T ,U)  does not depend on a. The 
generalized spreading function appears in various contexts. 
Since we shall utilize these crossconnections we give a brief 
survey: 

When the operator H corresponds to a linear, time- 
varying system, then S g ’ 2 ) ( ~ ,  U) is called the delay- 
Doppler spread function [8]; 

0 In applied mathematics [9] the generalized spreading 
function appears as the symplectic Fourier transform 
of the generalized Weyl symbol L(HQ)(t, f), i.e., the Weyl 
symbol in particularfor a = 0 and the h’ohn-Nirenberg 
symbol, or, equivalently, time-varying transfer func- 
tion for a = 1/2  [7]: 

tor H. 4 he real-valued parameter a reflects the nonunique- 

0 For rank-one projections, g @ g, S g ~ s ( r , ~ )  is well- 
known as generalized radar ambiguity function of the 
signal g(t) [I, 10, 11, 121. 

0 For a correlation operator R, whose kernel is the 
autocorrelation function of a nonstationary process, 
(R5)(t, ?’) = E{z(t)x*(t’)}, the spreading function 
can be interpreted as stochastic time-frequency cor- 
relation function of the process [13]. 

2 MATCHED CONTINUOUS EXPANSIONS 

The continuous expansion set {g(t’f)} is highly linear de- 
pendent. In a recent work [2] it has been shown that 
notwithstanding the high linear dependence of the set it 
makes sense to study its diagonalizing properties in the 
sense of a continuous off-diagonal norm. Based on a con- 
tinuous 4D kernel, 

H g ( t , f , t ’ ,  f’) = (Hg(t“f’) ,g(t’f)  >, (4) 

one can formulate a prototype optimization criterion sub- 
ject to 11g1I2 = 1 as follows: 

g,t,c=argmin ~ , ( t , f , t ’ , f ’ ) I ~ ~ ( t - t ’ ,  f - f ’ ) d t d t ’ d f d f ’  
9 J i  

t,t’,f,f’ 
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where W ( t ,  f) is a radially nondecreasing weight function 
with W(0,O) = 0 and 0 < W ( t ,  f )  < 1 that penalizes the 
off-diagonal spread of Hg(t, f ,  t’, f’). 

For a given HS operator H one can find a numerically 
tractable reformulation of the optimization problem in 
terms of the smoothed spreading function of the operator 
and the ambiguity function of the prototype signal: 

gopt,c = argmax(ISHI’* *(I  - w), IS9m12), IIgII’ = 1 ,  

(5) where ** denotes the convolution of 2D functions. 
An existing application of the matched continuous expan- 

sion is discussed in [2]. When the HS operator at  hand is a 
correlation operator the kernel defined by (4) carries over 
to the correlation of the STFT coefficients 

(Rzg(t’9f’), g(t’f))  = E { STFT$’)(t, f)STFT$’)*(t’, f’)} , 

and the prototype optimization gives the STFT analysis 
window with optimally uncorrelated coefficients. 

3 MATCHED DISCRETE EXPANSIONS 

The matching of a discrete WH set {g( mT7nF)A to a HS 
operator has been recently studied for the speci c case of 
a correlation operator [ 5 .  This derivation was based on 

more general setup consistent with 51. 
specific assumptions on k and T, F .  We here discuss a 

Consider a discrete WH set with e r ements defined by 

the time-frequency rid. T b e explicit consideration of the 

g(mT,nF)(t) = g(t - mT + To)eJ2X(nF-uO)t 

where TO E [0, T ] ,  YO E [0, F denote the sampling phase of 

sampling phase is akey point in the following derivation. 
The action of the operator H on the WH set determines 

a 4D discrete kernel: 

Hg(m, n, m‘, n’) %f (Hg(m’T’n’F) , g(mT’nF)). (6) 

The discrete WH set is characterized by the prototype func- 
tion g(t the grid constants T,  F and the sampling phases 

optimum diagonalization of H can be written as 
TO, YO. 4 he matching of the expansion set in the sense of 

subject to 11g112 = 1 and TF = k, where k is an application 
dependent constant and M$)(T, F ,  T O ,  UO) denotes an off- 
diagonal norm: 

M$)(T, ~ , r ~ , v ~ ) = C ~ ~ ~ ( m , n ,  m’,n‘)l’W(m-m:n-n’), 
m,m’,n,n’ 

where W ( m , n )  is a nonnegative off-diagonal measure 
(W(0,O) = 0 and radially nondecreasing). 

Random Phase Approach. The general optimization 
problem (7) is too complicated for a numerically tractable 
solution. Moreover, in most of the practical applications 
there is no possibility to  adapt the sampling phase of the 
WH set. Hence, we eliminate the sampling phase depen- 
dence via randomization, where the time and frequency 
sampling phases are uniformly distributed random vari- 
ables with probability density functions 

where x [ o , T ] ( ( )  is the indicator function of the interval 
[ O , T ] .  The expectation of the discrete off-diagonal norm 

22 

w.r.t. the uniformly distributed random sampling phase 
leads to [14]: 

Am A n  

. ~ ~ ~ S H ( T , ~ ) ~ ~ ~ S ~ ~ ~ ( T -  AmT,u - AnF)I2dTdv, 

For given grid constants, the window optimization problem 
subject to 11g1I2 = 1 is thus structurally equivalent to ( 5 ) :  

7 T , F )  ’ 
!?opt$ = argmax(1 - Is, I Y \ s g @ g 1 2 ) ,  (8) 

where 3$F)(~, v) is a weighted-periodized version of the 
operator’s magnitude-squared spreading function: 

m n  

Matched Grid for Underspread Operators. In the 
context of approximate operator diagonalization via WH 
sets operators with restricted spreading function play a dis- 
tinguished role. We characterize the s reading constraint 
by a O/l-valued indicator function X H ~ T ,  U): 

In order to obtain closed form analytical results we restrict 
the discussion to a rectangular shape of X H ( T , V )  charac- 
terized by [--rmaZr Tmaz] x [-vmaz, vmaz]. When the area 
of this centered rectange is smaller than one we call the 
operator underspread and in the converse case overspread 
[14]. For such underspread operators the generalized Weyl 
symbol L(HQ)(t, f) is a 2D lowpass function that is uniquely 
characterized by its samples on a rectangular grid with 

expansion of the operator [14] 
T = -  and F = &. This leads to a discrete WH 

2vln,* 

m n  

where the prototype operator P(m) is given by 

frequency shifting operator and the grid ratio is 

S(“) P ( a ) ( ~ , ~ )  = X H ( T , V ) ,  S(‘!”) denotes the WH time- 

Re arding the problem of matching a discrete WH set to an 
unierspread operator, we have typically TF < 1 while the 
critical grid for the symbol sampling (9) leads to TF >> 1. 
However, we suggest to use the matched grid ratio 10 for 

no strict proof for optimality, but apart from the symbol 
sampling argument there are two other lines of reasoning 
that all lead to (10). 

Via Frame Theory. For elliptical symmetry of XH(?, U) 
the optimum prototype signal for continuous expansions 
is a Gaussian pulse with matched scale (to be discussed 
in Sec. 5). Both the theoretical result in [4] and numeri- 
cal results in [3] show that for the matched Gaussian, the 
matched grid ratio (10) leads to the tightest WH frame for 

Via Residual Off-Dia onal Norm. For underspread 
operators the residual off-gagon$ norm will be dominated 
by the nearest side-diagonals /Am1 = 1,lAnl = 1 such 
that it suffices to consider a & ? ’ F ) ( ~ ,  U) with W ( m ,  n) = 0 

any value of the product TF underlying a WH set. & A  e ave 

TF < 1. 
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whenever m # 0 or n # 0. For a X H ( r , u )  with rectan- 
gular shape the centered gap left by $$‘F)(r lu)  is an ap- 
proximate measure for the residual off-diagonal norm since 
S g o p l ~ g o p t ( ~ ,  U) will be well concentrated about the origin. 
Optimizing the area of the gap rectangle left by S^(HT’F)(r, U) 
should minimize the residual off-diagonal norm. This op- 
timization leads again to the matched grid ratio (10). 

4 SIGNAL DESIGN FOR WSSUS CHANNELS 

We now show that the prototype optimization criteria 
discussed in the foregoing section are applicable to the op- 
timum signal design in the context of communication over 
time-varying channels. 

WSSUS. Wade-Sense Stationary Uncorrelated Scattering 
(WSSUS) is a statistical model for time-varying communi- 
cation channels, particularly for the mobile radio channel 
[8,  71. In the WSSUS model, H is a stochastic linear time- 
varying system characterized by a zero-mean generalized 
spreading function with correlation 

where CH(T, U) is the scattering function of the channel. 
The a priori knowledge of the scattering function is clearly 
insufficient to determine eigensignals. Moreover, two indi- 
vidual realizations may not have any common eigensignal. 
Hence, it does not make sense to ask for eigensignals of a 
stochastic system. 

Minimum Expected Distortion. Notwithstanding the 
nonexistence of eigensignals one may still ask for an opti- 
mum signal which comes closest to an eigensignal in the 
sense of minimum expected orthogonal distortion. The OF- 
thogonal distortion of an unit norm input signal g ( t )  is 
given by 

l l~H,91I2 = IIHgl12 - I(Hs19) l 2  > llsll = 1. 

The minimization of the expectation I I ~ H , ~ [ ~ ~  over the WS- 
SUS ensemble leads to the following optimization problem 
subject to llgll = 1 

which is equivalent to the continuous WH matching crite- 
rion (5)  when one replaces the magnitude squared spread- 
ing function ISH(T, . ) I 2  by the channel’s scattering function 

Minimum Expected Interference. The above dis- 
cussed optimum single pulse may be of interest as a test 
signal, but for digital communication one has to take 
into account interference from time-frequency neighbour- 
ing pulses. We here consider a time-frequency division 
setup where the input signal is a weighted linear combina- 
tion of a WH set based on a transmission pulse g(t):  

c H ( T ,  U). 

m n  

One may identify T as the symbol rate and F as the channel 
separation. However, we treat cross and self interference in 
a common manner such that our results are independent 
of the actual rule for channel access. 

We furthermore assume uncorrelated pulse amplitudes 
with normalized power: 

where 6”‘ is the Kronecker symbol (6”’ = 1 for m = 
m’ else zero). A matched filter receiver for the symbol 
associated to gCmTrnF)(t) evaluates an inner product of 
g(mT,nF) ( t )  and the channel’s output signal (Hz)(t) (we 
assume noise free observation): 

~ ( m , n ) = ( H z , ~ ( ~ ~ ’ ~ ~ ) ) = C  p(m’,n’)H,(m,n,m’,n’), 

where we have used the kernel defined in (6 . Due to the 

contains undesirable contributions from other pulses. The 
optimum transmission pulse minimizes the total expected 
energy of all interfering distorted pulses: 

m’,n’ 

distortion caused by the channel the matche d’ filter output 

9 
gopt = arg min E H , ~  

. H g ( m ,  n,  m’, n’)W(m - m’, n - n’)12} ,  

where the expectation is over the WSSUS channel and the 
amplitude ensemble, and the weight function W ( m ,  n se- 

tion: 

In order to compute the expectation in (12) we 

note that Ep{lC,, Enp(m’,  n’ )Hg(m,n,  m’, .’)I2} = 

Cm, C,,IHg(m,n, m’, n’)lz and, since in general 

lects contributions from pulses with different T F  loca li za- 
def W ( m  - m’, 12 - n‘) = 1 - bnn)6”t. 

E H  { I ( S H I S . Z @ Y ) / ~ )  = ( c H ~  IS.ZBYI~) 

such that specifically 

. lSg~g(r - ( m  - m’)T, U - ( n  - n’)F)12 d r  du. 

Without loss of generality we consider the pulse with m = 
0,n = 0 and combining the above results we have 

with eFrF) ( r ,  U )  ef cm E,, W ( m ,  n)CH(r - mT, U - 
n F ) .  Hence, the optimization of the transmission pulse 
according to (12) is equivalent to the matching criterion for 
discrete WH expansions when one replaces 13$’F)(r, u)12 

by ePF)(r, U) in (8). 

5 APPROXIMATE MATCHING 

Via Symbolic Calculus. As discussed in Sec. 3, the gen- 
eralized Weyl symbol provides a discrete WH expansion 
of underspread operators (9). The interpretation of the 
generalized Weyl symbol suggests to view (9) as a time- 
frequency-parametrized spectral decomposition of the op- 
erator [14]. However, the prototype operator P(cr) is not 
rank-one, it is natural to define the optimum prototype sig- 
nal via optimum rank-one approximation of the prototype 
operator in a HS sense: 

23 
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subject to llgll = 1. It is easy to show that this is equivalent 
to 

s:l = arg min (XH, SgBg), (a) llsll = 1. (13) 
9 

This is just the classical setup for least-squares synthesis of 
radar ambiguity functions [ll, 121. Note that (13) basically 
depends on a while the “exact” matching criteria (5), (8) 
are a-independent: 

gopt = arg min (TH,  lS~)g12) ,  llsll = 1, (14) 

where TH r,v) stands for either the magnitude squared 
spreading i unction or the scattering function. In the case of 
an incomplete a priori knowledge in the form of X H ( T ,  v) it 
is natural to use X H ( T ,  v) instead of T H ( ~ ,  v). The numer- 
ical solution of 13 essentially reduces to a partial eigen- 

ative solution of (14). We emphasize that with decreasing 
spread the a-variance of (13) gets more and more negligi- 
ble. 

Strongly Underspread Operators. For many appli- 
cations a rough matching of the prototype signal may be 
sufficient. In order to obtain a simple, approximate window 
matching rule we assume strongly underspread operators, 
i.e., 

with either rectangular 

value problem w 6h ic is less expensive compared to the iter- 

TmazVmaz << 1 (15) 

X H ( T ,  v) = ~ [ - r m ~ = , ~ m ~ = ~ ( r ) ~ [ - u ~ ~ = , u m ~ = ~ ( ~ )  (16) 

or elliptical shape 

and we assume that S ~ ( r , u )  z x a ( r , v ) .  Due to (15) 
one can replace the ambiguity function a of (real-valued) 
window by its Taylor approximation [ll, lo]: 

1 
S g ~ g ( r r ~ )  z 1 - - 2* ( F 2  r + Tiv’) (18) 

where T,’ and F,’ are the temporal and spectral moments 
of order two of the prototype signal g ( t )  defined as: 

T,’ = 4 r / t Z l g ( f ) 1 2 d t ,  t F,’ = 4 * l  f2lG(f)l2df, 

where G(f) = F{g( t ) } .  (19) 

can show that the optimum scale o 1 the prototype signal is 
Under the assumptions (15), (16 or (17), and(l8), one 

characterized by the intuitively appealing rule: 

(20) 
- Tg - r m a z ,  

this means that a rough matching may be obtained by 
starting with an arbitrary prototype function, holdin the 
shape constant and optimizing its scale according to $20). 

Matched Gaussian. For general elliptical symmetry of 

a given target function T(r ,  v) = G (( g)2  + ( $ ) 2 )  and 

Q = 0 one can obtain exact analytic solutions of the proto- 
type signal optimization criteria (13) and 14 . Consistent 
with the above discussed approximate soutions, f )  we find 
the Gaussian pulse with matched scale as a local optimum 

Fg vmaz 

(other local optimas are the equally scaled Hermite func- 
tions which are no admissible solutions for most applica- 
tions): 

where Tg and Fg are the spectral and temporal moments 
defined according to (19). Here, the matching rule holds in 
a general form: 

Tg - 0 - .  - 
Fg vo 

6 CONCLUSIONS 
The WH structure is a natural choice given an incomplete 

a priori knowledge on practically important nonstationary 
environments such as the (underspread) WSSUS channel 
or underspread processes. We have discussed the problem 
of matching the prototype signal to such environments in 
a way that the corresponding discrete or continuous sig- 
nal sets achieve approximate diagonalization. In partic- 
ular it has been shown that matching the STFT/Gabor 
analysis window to an underspread process is equivalent to 
matching a signal to an underspread WSSUS channel. The 
optimization problem can be formulated in terms of the 
(magnitude squared) ambiguity function of the signal and 
the given spreading constraint for the process (channel). 
An approximate matching of the prototype signal can be 
obtained by fixing the shape and optimizing the scale. 
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