
Numerical Analysis of the Non-uniformSampling ProblemThomas Strohmer�AbstractWe give an overview of recent developments in the problem of reconstructinga band-limited signal from non-uniform sampling from a numerical analysis viewpoint. It is shown that the appropriate design of the �nite-dimensional model playsa key role in the numerical solution of the non-uniform sampling problem. In the oneapproach (often proposed in the literature) the �nite-dimensional model leads to anill-posed problem even in very simple situations. The other approach that we con-sider leads to a well-posed problem that preserves important structural propertiesof the original in�nite-dimensional problem and gives rise to e�cient numerical al-gorithms. Furthermore a fast multilevel algorithm is presented that can reconstructsignals of unknown bandwidth from noisy non-uniformly spaced samples. We alsodiscuss the design of e�cient regularization methods for ill-conditioned reconstruc-tion problems. Numerical examples from spectroscopy and exploration geophysicsdemonstrate the performance of the proposed methods.Subject Classi�cation: 65T40, 65F22, 42A10, 94A12Key words: non-uniform sampling, band-limited functions, frames, regularization, signalreconstruction, multi-level method.1 IntroductionThe problem of reconstructing a signal f from non-uniformly spaced measurements f(tj)arises in areas as diverse as geophysics, medical imaging, communication engineering,and astronomy. A successful reconstruction of f from its samples f(tj) requires a priori�Department of Mathematics, University of California, Davis, CA-95616; strohmer@math.ucdavis.edu.The author was supported by NSF DMS grant 9973373.1



information about the signal, otherwise the reconstruction problem is ill-posed. This apriori information can often be obtained from physical properties of the process generatingthe signal. In many of the aforementioned applications the signal can be assumed to be(essentially) band-limited.Recall that a signal (function) is band-limited with bandwidth 
 if it belongs to thespace B
, given by B
 = nf 2 L2(R) : f̂(!) = 0 for j!j > 
o ; (1)where f̂ is the Fourier transform of f de�ned byf̂(!) = +1Z�1 f(t)e�2�i!t dt :For convenience and without loss of generality we restrict our attention to the case 
 = 12 ,since any other bandwidth can be reduced to this case by a simple dilation. Therefore wewill henceforth use the symbol B for the space of band-limited signals.It is now more than 50 years ago that Shannon published his celebrated samplingtheorem [35]. His theorem implies that any signal f 2 B can be reconstructed from itsregularly spaced samples ff(n)gn2Z byf(t) =Xn2Zf(n)sin�(t� n)�(t� n) : (2)In practice however we seldom enjoy the luxury of equally spaced samples. The solu-tion of the nonuniform sampling problem poses much more di�culties, the crucial ques-tions being:� Under which conditions is a signal f 2 B uniquely de�ned by its samples ff(tj)gj2Z?� How can f be stably reconstructed from its samples f(tj)?These questions have led to a vast literature on nonuniform sampling theory with deepmathematical contributions see [11, 25, 3, 6, 15] to mention only a few. There is also nolack of methods claiming to e�ciently reconstruct a function from its samples [42, 41, 1,14, 40, 26, 15]. These numerical methods naturally have to operate in a �nite-dimensionalmodel, whereas theoretical results are usually derived for the in�nite-dimensional spaceB. From a numerical point of view the \reconstruction" of a bandlimited signal f from2



a �nite number of samples ff(tj)grj=1 amounts to computing an approximation to f (orf̂) at su�ciently dense (regularly) spaced grid points in an interval (t1; tr).Hence in order to obtain a \complete" solution of the sampling problem followingquestions have to be answered:� Does the approximation computed within the �nite-dimensional model actually con-verge to the original signal f , when the dimension of the model approaches in�nity?� Does the �nite-dimensional model give rise to fast and stable numerical algorithms?These are the questions that we have in mind, when presenting an overview on recentadvances and new results in the nonuniform sampling problem from a numerical analysisview point.In Section 2 it is demonstrated that the celebrated frame approach does only lead tofast and stable numerical methods when the �nite-dimensional model is carefully designed.The approach usually proposed in the literature leads to an ill-posed problem even in verysimple situations. We discuss several methods to stabilize the reconstruction algorithmin this case. In Section 3 we derive an alternative �nite-dimensional model, based ontrigonometric polynomials. This approach leads to a well-posed problem that preservesimportant structural properties of the original in�nite-dimensional problem and gives riseto e�cient numerical algorithms. Section 4 describes how this approach can be modi�ed inorder to reconstruct band-limited signals for the in practice very important case when thebandwidth of the signal is not known. Furthermore we present regularization techniquesfor ill-conditioned sampling problems. Finally Section 5 contains numerical experimentsfrom spectroscopy and geophysics.Before we proceed we introduce some notation that will be used throughout the paper.If not otherwise mentioned khk always denotes the L2(R)-norm (`2(Z)-norm) of a function(vector). For operators (matrices) kTk is the standard operator (matrix) norm. Thecondition number of an invertible operator T is de�ned by �(A) = kAkkA�1k and thespectrum of T is �(T ). I denotes the identity operator.1.1 Nonuniform sampling, frames, and numerical algorithmsThe concept of frames is an excellent tool to study nonuniform sampling problems [13, 2,1, 24, 15, 44]. The frame approach has the advantage that it gives rise to deep theoreticalresults and also to the construction of e�cient numerical algorithms { if (and this pointis often ignored in the literature) the �nite-dimensional model is properly designed.3



Following Du�n and Schae�er [11], a family ffjgj2Z in a separable Hilbert spaceH issaid to be a frame for H, if there exist constants (the frame bounds) A;B > 0 such thatAkfk2 �Xj jhf; fjij2 � Bkfk2 ; 8f 2H: (3)We de�ne the analysis operator T byT : f 2H ! Ff = fhf; fjigj2Z; (4)and the synthesis operator, which is just the adjoint operator of T , byT � : c 2 `2(Z)! T �c =Xj cjfj : (5)The frame operator S is de�ned by S = T �T , hence Sf =Pjhf; fjifj. S is bounded byAI � S � BI and hence invertible on H.We will also make use of the operator TT � in form of its Gram matrix representationR : `2(Z)! `2(Z) with entries Rj;l = hfj; fli. On R(T ) = R(R) the matrix R is boundedby AI � R � BI and invertible. On `2(Z) this inverse extends to the Moore-Penroseinverse or pseudo-inverse R+ (cf. [12]).Given a frame ffjgj2Z for H, any f 2H can be expressed asf =Xj2Zhf; fji
j =Xj2Zhf; 
jifj ; (6)where the elements 
j := S�1fj form the so-called dual frame and the frame operatorinduced by 
j coincides with S�1. Hence if a set ffjgj2Z establishes a frame for H, wecan reconstruct any function f 2H from its moments hf; fji.One possibility to connect sampling theory to frame theory is by means of the sinc-function sinc(t) = sin �t�t : (7)Its translates give rise to a reproducing kernel for B viaf(t) = hf; sinc(� � t)i 8t; f 2 B : (8)Combining (8) with formulas (3) and (6) we obtain following well-known result [13, 2].4



Theorem 1.1 If the set fsinc(� � tj)gj2Z is a frame for B, then the function f 2 B isuniquely de�ned by the sampling set ff(tj)gj2Z. In this case we can recover f from itssamples by f(t) =Xj2Zf(tj)
j ; where 
j = S�1sinc(� � tj) ; (9)or equivalently by f(t) =Xj2Z cjsinc(t� tj) ; where Rc = b ; (10)with R being the frame Gram matrix with entries Rj;l = sinc(tj � tl) and b = fbjg =ff(tj)g.The challenge is now to �nd easy-to-verify conditions for the sampling points tj suchthat fsinc(� � tj)gj2Z (or equivalently the exponential system fe2�itj!gj2Z) is a frame forB. This is a well-traversed area (at least for one-dimensional signals), and the readershould consult [1, 15, 24] for further details and references. If not otherwise mentionedfrom now on we will assume that fsinc(� � tj)gj2Z is a frame for B.Of course, neither of the formulas (9) and (10) can be actually implemented on acomputer, because both involve the solution of an in�nite-dimensional operator equation,whereas in practice we can only compute a �nite-dimensional approximation. Althoughthe design of a valid �nite-dimensional model poses severe mathematical challenges, thisstep is often neglected in theoretical but also in numerical treatments of the nonuniformsampling problem. We will see in the sequel that the way we design our �nite-dimensionalmodel is crucial for the stability and e�ciency of the resulting numerical reconstructionalgorithms.In the next two sections we describe two di�erent approaches for obtaining �nite-dimensional approximations to the formulas (9) and (10). The �rst and more traditionalapproach, discussed in Section 2, applies a �nite section method to equation (10). Thisapproach leads to an ill-posed problem involving the solution of a large unstructured linearsystem of equations. The second approach, outlined in Section 3, constructs a �nite modelfor the operator equation in (9) by means of trigonometric polynomials. This techniqueleads to a well-posed problem that is tied to e�cient numerical algorithms.2 Truncated frames lead to ill-posed problemsAccording to equation (10) we can reconstruct f from its sampling values f(tj) via f(t) =Pj2Zcj sinc(t� tj), where c = R+b with bj = f(tj); j 2 Z. In order to compute a �nite-5



dimensional approximation to c = fcjgj2Z we use the �nite section method [17]. Forx 2 `2(Z) and n 2 N we de�ne the orthogonal projection Pn byPnx = (: : : ; 0; 0; x�n; x�n+1; : : : ; xn�1; xn; 0; 0; : : : ) (11)and identify the image of Pn with the space C 2n+1 . Setting Rn = PnRPn and b(n) = Pnb,we obtain the n-th approximation c(n) to c by solvingRnc(n) = b(n) : (12)It is clear that using the truncated frame fsinc(�� tj)gnj=�n in (10) for an approximatereconstruction of f leads to the same system of equations.If fsinc(� � tj)gj2Z is an exact frame (i.e., a Riesz basis) for B then we have followingwell-known result.Lemma 2.1 Let fsinc(� � tj)gj2Z be an exact frame for B with frame bounds A;B andRc = b and Rnc(n) = b(n) as de�ned above. Then R�1n converges strongly to R�1 and hencec(n) ! c for n!1.Since the proof of this result given in [9] is somewhat lengthy we include a rather shortproof here.Proof: Note that R is invertible on `2(Z) and A � R � B. Let x 2 C 2n+1 with kxk = 1,then hRnx; xi = hPnRPnx; xi = hRx; xi � A. In the same way we get kRnk � B, hencethe matrices Rn are invertible and uniformly bounded by A � Rn � B and1B � R�1n � 1A for all n 2 N :The Lemma of Kantorovich [32] yields that R�1n ! R�1 strongly.If fsinc(� � tj)gj2Z is a non-exact frame for B the situation is more delicate. Let usconsider following situation.Example 1: Let f 2 B and let the sampling points be given by tj = jm ; j 2 Z; 1 < m 2 N ,i.e., the signal is regularly oversampled at m times the Nyquist rate. In this case thereconstruction of f is trivial, since the set fsinc(� � tj)gj2Z is a tight frame with framebounds A = B = m. Shannon's Sampling Theorem implies that f can be expressed asf(t) =Pj2Zcj sinc(t� tj) where cj = f(tj )m and the numerical approximation is obtainedby truncating the summation, i.e.,fn(t) = nXj=�n f(tj)m sinc(t� tj) :6



Using the truncated frame approach one �nds that R is a Toeplitz matrix with entriesRj;l = sin �m(j � l)�m(j � l) ; j; l 2 Z ;in other words, Rn coincides with the prolate matrix [36, 39]. The unpleasant numericalproperties of the prolate matrix are well-documented. In particular we know that the sin-gular values �n of Rn cluster around 0 and 1 with logn singular values in the transition re-gion. Since the singular values of Rn decay exponentially to zero the �nite-dimensional re-construction problem has become severely ill-posed [12], although the in�nite-dimensionalproblem is \perfectly posed" since the frame operator satis�es S = mI, where I is theidentity operator.Of course the situation does not improve when we consider non-uniformly spacedsamples. In this case it follows from standard linear algebra that �(R) � f0[ [A;B]g, orexpressed in words, the singular values of R are bounded away from zero. However forthe truncated matrices Rn we have �(Rn) � f(0; B]gand the smallest of the singular values of Rn will go to zero for n!1, see [23].Let A = U�V � be the singular value decomposition of a matrixA with � = diag(f�kg).Then the Moore-Penrose inverse of A is A+ = V�+U�, where (e.g., see [18])�+ = diag(f�+k g) ; �+k = (1=�k if �k 6= 0;0 otherwise. (13)For Rn = Un�nVn this means that the singular values close to zero will give rise toextremely large coe�cients in R+n . In fact kR+n k! 1 for n!1 and consequently c(n)does not converge to c.Practically kR+n k is always bounded due to �nite precision arithmetics, but it is clearthat it will lead to meaningless results for large n. If the sampling values are perturbed dueto round-o� error or data error, then those error components which correspond to smallsingular values �k are ampli�ed by the (then large) factors 1=�k. Although for a givenRn these ampli�cations are theoretically bounded, they may be practically unacceptablelarge.Such phenomena are well-known in regularization theory [12]. A standard techniqueto compute a stable solution for an ill-conditioned system is to use a truncated singular7



value decomposition (TSVD) [12]. This means in our case we compute a regularizedpseudo-inverse R+;�n = Vn�+;�n U�n where�+;� = diag(fd+k g) ; d+k = (1=�k if �k � �;0 otherwise. (14)In [23] it is shown that for each n we can choose an appropriate truncation level � suchthat the regularized inverses R+;�n converge strongly to R+ for n!1 and consequentlylimn!1kf � f (n)k = 0, where f (n)(t) = nXj=�n c(n;�)j sinc(t� tj)with c(n;�) = R+;�n b(n) :The optimal truncation level � depends on the dimension n, the sampling geometry, andthe noise level. Thus it is not known a priori and has in principle to be determined foreach n independently.Since � is of vital importance for the quality of the reconstruction, but no theoreticalexplanations for the choice of � are given in the sampling literature, we brie
y discussthis issue. For this purpose we need some results from regularization theory.2.1 Estimation of regularization parameterLet Ax = y� be given where A is ill-conditioned or singular and y� is a perturbed right-hand side with ky� y�k � �kyk. Since in our sampling problem the matrix under consid-eration is symmetric, we assume for convenience that A is symmetric. From a numericalpoint of view ill-conditioned systems behave like singular systems and additional infor-mation is needed to obtain a satisfactory solution to Ax = y. This information is usuallystated in terms of \smoothness" of the solution x. A standard approach to qualitativelydescribe smoothness of x is to require that x can be represented in the form x = Sz withsome vector z of reasonable norm, and a \smoothing" matrix S, cf. [12, 29]. Often it isuseful to construct S directly from A by settingS = Ap ; p 2 N0 : (15)8



Usually, p is assumed to be �xed, typically at p = 1 or p = 2.We compute a regularized solution to Ax = y� via a truncated SVD and want todetermine the optimal regularization parameter (i.e., truncation level) � .Under the assumption thatx = Sz ; kAx� y�k � �kzk (16)it follows from Theorem 4.1 in [29] that the optimal regularization parameter � for theTSVD is �̂ = �
1�
2p� 1p+1 ; (17)where 
1 = 
2 = 1 (see Section 6 in [29]).However z and � are in general not known. Using kAx�y�k � �kyk and kyk = kAxk =kASzk = kAp+1zk we obtain kyk � kAkp+1kzk. Furthermore, setting �kyk = �kzkimplies � � �kAkp+1 : (18)Hence combining (17) and (18) we get�̂ � ��kAkp+1p � 1p+1 = kAk��p� 1p+1 : (19)Applying these results to solving Rnc(n) = b(n) via TSVD as described in the previoussection, we get �̂ � kRnk��p� 1p+1 � kRk��p� 1p+1 = B ��p� 1p+1 ; (20)where B is the upper frame bound. Fortunately estimates for the upper frame bound aremuch easier to obtain than estimates for the lower frame bound.Thus using the standard setting p = 1 or p = 2 a good choice for the regularizationparameter � is � � [B(�=2)1=3; B(�)1=2] : (21)Extensive numerical simulations con�rm this choice, see also Section 5.9



For instance for the reconstruction problem of Example 1 with noise-free data andmachine precision " = � = 10�16, formula (21) implies � � [10�6; 10�8]. This coincidesvery well with numerical experiments.If the noise level � is not known, it has to be estimated. This di�cult problem willnot be discussed here. The reader is referred to [29] for more details.Although we have arrived now at an implementable algorithm for the nonuniformsampling problem, the disadvantages of the approach described in the previous sectionare obvious. In general the matrix Rn does not have any particular structure, thus thecomputational costs for the singular value decomposition are O(n3) which is prohibitivelarge in many applications. It is de�nitely not a good approach to transform a well-posed in�nite-dimensional problem into an ill-posed �nite-dimensional problem for whicha stable solution can only be computed by using a \heavy regularization machinery".The methods in [42, 41, 40, 33, 2] coincide with or are essentially equivalent to thetruncated frame approach, therefore they su�er from the same instability problems andthe same numerical ine�ciency.2.2 CG and regularization of the truncated frame methodAs mentioned above one way to stabilize the solution of Rnc(n) = b(n) is a truncated sin-gular value decomposition, where the truncation level serves as regularization parameter.For large n the costs of the singular value decomposition become prohibitive for practicalpurposes.We propose the conjugate gradient method [18] to solve Rnc(n) = b(n). It is in generalmuch more e�cient than a TSVD (or Tikhonov regularization as suggested in [40]), andat the same time it can also be used as a regularization method.The standard error analysis for CG cannot be used in our case, since the matrix isill-conditioned. Rather we have to resort to the error analysis developed in [28, 22].When solving a linear system Ax = y by CG for noisy data y� following happens. Theiterates xk of CG may diverge for k !1, however the error propagation remains limitedin the beginning of the iteration. The quality of the approximation therefore depends onhow many iterative steps can be performed until the iterates turn to diverge. The ideais now to stop the iteration at about the point where divergence sets in. In other wordsthe iterations count is the regularization parameter which remains to be controlled by anappropriate stopping rule [27, 22].In our case assume kb(n;�) � b(n)k � �kb(n)k, where b(n;�)j denotes a noisy sample. We
10



terminate the CG iterations when the iterates (c(n;�))k satisfy for the �rst time [22]kb(n) � (c(n;�))kk � ��kb(n)k (22)for some �xed � > 1.It should be noted that one can construct \academic" examples where this stoppingrule does not prevent CG from diverging, see [22], \most of the time" however it givessatisfactory results. We refer the reader to [27, 22] for a detailed discussion of variousstopping criteria.There is a variety of reasons, besides the ones we have already mentioned, that makethe conjugate gradient method and the nonuniform sampling problem a \perfect couple".See Sections 3, 4.1, and 4.2 for more details.By combining the truncated frame approach with the conjugate gradient method (withappropriate stopping rule) we �nally arrive at a reconstruction method that is of somepractical relevance. However the only existing method at the moment that can handlelarge scale reconstruction problems seems to be the one proposed in the next section.3 Trigonometric polynomials and e�cient signal re-constructionIn the previous section we have seen that the naive �nite-dimensional approach via trun-cated frames is not satisfactory, it already leads to severe stability problems in the idealcase of regular oversampling. In this section we propose a di�erent �nite-dimensionalmodel, which resembles much better the structural properties of the sampling problem,as can be seen below.The idea is simple. In practice only a �nite number of samples ff(tj)grj=1 is given,where without loss of generality we assume �M � t1 < � � � < tr � M (otherwise we canalways re-normalize the data). Since no data of f are available from outside this region wefocus on a local approximation of f on [�M;M ]. We extend the sampling set periodicallyacross the boundaries, and identify this interval with the (properly normalized) torus T.To avoid technical problems at the boundaries in the sequel we will choose the intervalsomewhat larger and consider either [�M �1=2;M +1=2] or [�N;N ] with N =M + Mr�1 .For theoretical considerations the choice [�M � 1=2;M + 1=2] is more convenient.Since the dual group of the torus T is Z, periodic band-limited functions on T reduce totrigonometric polynomials (of course technically f does then no longer belong to B sinceit is no longer in L2(R)). This suggests to use trigonometric polynomials as a realistic11



�nite-dimensional model for a numerical solution of the nonuniform sampling problem.We consider the space PM of trigonometric polynomials of degree M of the formp(t) = (2M + 1)�1 MXk=�M ake2�ikt=(2M+1) : (23)The norm of p 2 PM is kpk2 = NZ�N jp(t)j2 dt = MXk=�M jakj2 :Since the distributional Fourier transform of p is p̂ = (2M + 1)�1PMk=�M ak�k=(2M+1) wehave supp p̂ � fk=(2M + 1); jkj � Mg � [�1=2; 1=2]. Hence PM is indeed a natural�nite-dimensional model for B.In general the f(tj) are not the samples of a trigonometric polynomial in PM , moreoverthe samples are usually perturbed by noise, hence we may not �nd a p 2 PM such thatp(tj) = bj = f(tj). We therefore consider the least squares problemminp2PM rXj=1 jp(tj)� bjj2wj : (24)Here the wj > 0 are user-de�ned weights, which can be chosen for instance to compensatefor irregularities in the sampling geometry [14].By increasing M so that r � 2M +1 we can certainly �nd a trigonometric polynomialthat interpolates the given data exactly. However in the presence of noise, such a solutionis usually rough and highly oscillating and may poorly resemble the original signal. Wewill discuss the question of the optimal choice ofM if the original bandwidth is not knownand in presence of noisy data in Section 4.2.The following theorem provides an e�cient numerical reconstruction algorithm. It isalso the key for the analysis of the relation between the �nite-dimensional approximationin PM and the solution of the original in�nite-dimensional sampling problem in B.Theorem 3.1 (and Algorithm) [19, 14] Given the sampling points �M � t1 < : : : ; tr �M , samples fbjgrj=1, positive weights fwjgrj=1 with 2M + 1 � r.Step 1: Compute the (2M + 1)� (2M + 1) Toeplitz matrix TM with entries(TM)k;l = 12M + 1 rXj=1 wje�2�i(k�l)tj=(2M+1) for jkj; jlj �M (25)12



and yM 2 C (2M+1) by(yM)k = 1p2M + 1 rXj=1 bjwje�2�iktj=(2M+1) for jkj �M : (26)Step 2: Solve the system TMaM = yM : (27)Step 3: Then the polynomial pM 2 PM that solves (24) is given bypM(t) = 1p2M + 1 MXk=�M(aM)ke2�ikt=(2M+1) : (28)Numerical Implementation of Theorem/Algorithm 3.1:Step 1: The entries of TM and yM of equations (25) and (26) can be computed inO(M logM + r log(1=")) operations (where " is the required accuracy) using Beylkin'sunequally spaced FFT algorithm [4].Step 2: We solve TMaM = yM by the conjugate gradient (CG) algorithm [18]. Thematrix-vector multiplication in each iteration of CG can be carried out in O(M logM)operations via FFT [8]. Thus the solution of (27) takes O(kM logM) operations, wherek is the number of iterations.Step 3: Usually the signal is reconstructed on regularly space nodes fuigNi=1. In this casepM(ui) in (28) can be computed by FFT. For non-uniformly spaced nodes ui we can againresort to Beylkin's USFFT algorithm.There exists a large number of fast algorithms for the solution of Toeplitz systems.Probably the most e�cient algorithm in our case is CG. We have already mentioned thatthe Toeplitz system (27) can be solved in O(kM logM) via CG. The number of iterationsk depends essentially on the clustering of the eigenvalues of TM , cf. [8]. It follows fromequation (31) below and perturbation theory [10] that, if the sampling points stem froma perturbed regular sampling set, the eigenvalues of TM will be clustered around �, where� is the oversampling rate. In such cases we can expect a very fast rate of convergence.The simple frame iteration [26, 1] is not able to take advantage of such a situation.For the analysis of the relation between the solution pM of Theorem 3.1 and the solutionf of the original in�nite-dimensional problem we follow Gr�ochenig [20]. Assume thatthe samples ff(tj)gj2Z of f 2 B are given. For the �nite-dimensional approximation weconsider only those samples f(tj) for which tj is contained in the interval [�M� 12 ;M+ 12 ]13



and compute the least squares approximation pM with degree M and period 2M + 1 asin Theorem 3.1. It is shown in [20] that if �(TM) � [�; �] for all M with � > 0 thenlimM!1 Z[�M;M ] jf(t)� pM(t)j2 dt = 0; (29)and also limpM(t) = f(t) uniformly on compact sets.Under the Nyquist condition sup(tj+1 � tj) := 
 < 1 and using weights wj = (tj+1 �tj�1)=2 Gr�ochenig has shown that�(TM ) � [(1� 
)2; 6] ; (30)independently of M , see [20]. These results validate the usage of trigonometric polyno-mials as �nite-dimensional model for nonuniform sampling.Example 1 { reconsidered: Recall that in Example 1 of Section 2 we have consideredthe reconstruction of a regularly oversampled signal f 2 B. What does the reconstructionmethod of Theorem 3.1 yield in this case? Let us check the entries of the matrix TM whenwe take only those samples in the interval [�n; n]. The period of the polynomial becomes2N with N = n+ nr�1 where r is the number of given samples. Then(TM)k;l = 12N rXj=1 e2�i(k�l)tj=(2N) = nmXj=�nm e2�i(k�l) j2nm+1 = m�k;l (31)for k; l = �M; : : : ;M , where �k;l is Kronecker's symbol with the usual meaning �k;l = 1 ifk = l and 0 else. Hence we get TM = mI ;where I is the identity matrix on C 2M+1 , thus TM resembles the structure of the in�nite-dimensional frame operator S in this case (including exact approximation of the framebounds). Recall that the truncated frame approach leads to an \arti�cial" ill-posed prob-lem even in such a simple situation.The advantages of the trigonometric polynomial approach compared to the truncatedframe approach are manifold. In the one case we have to deal with an ill-posed problemwhich has no speci�c structure, hence its solution is numerically very expensive. In theother case we have to solve a problem with rich mathematical structure, whose stabilitydepends only on the sampling density, a situation that resembles the original in�nite-dimensional sampling problem. 14



In principle the coe�cients aM = f(aM)kgMk=�M of the polynomial pM that mini-mizes (24) could also be computed by directly solving the Vandermonde type systemWV aM = Wb ; (32)where Vj;k = 1p2M+1e�2�iktj=(2M+1) for j = 1; : : : ; r; k = �M; : : : ;M and W is a diagonalmatrix with entries Wj;j = pwj, cf. [31]. Several algorithms are known for a relativelye�cient solution of Vandermonde systems [5, 31]. However this is one of the rare cases,where, instead of directly solving (32), it is advisable to explicitly establish the system ofnormal equations TMaM = yM ; (33)where T = V �W 2V and y = V �W 2b.The advantages of considering the system TMaM = yM instead of the Vandermondesystem (32) are manifold:� The matrix TM plays a key role in the analysis of the relation of the solution of (24)and the solution of the in�nite-dimensional sampling problem (9), see (29) and (30)above.� TM is of size (2M +1)� (2M +1), independently of the number of sampling points.Moreover, since (TM)k;l =Prj=1wje2�i(k�l)tj , it is of Toeplitz type. These facts giverise to fast and robust reconstruction algorithms.� The resulting reconstruction algorithms can be easily generalized to higher dimen-sions, see Section 3.1. Such a generalization to higher dimensions seems not tobe straightforward for fast solvers of Vandermonde systems such as the algorithmproposed in [31].We point out that other �nite-dimensional approaches are proposed in [16, 7]. Theseapproaches may provide interesting alternatives in the few cases where the algorithmoutlined in Section 3 does not lead to good results. These cases occur when only a fewsamples of the signal f are given in an interval [a; b] say, and at the same time we havejf(a) � f(b)j � 0 and jf 0(a) � f 0(b)j � 0, i.e., if f is \strongly non-periodic" on [a; b].However the computational complexity of the methods in [16, 7] is signi�cantly larger.3.1 Multi-dimensional nonuniform samplingThe approach presented above can be easily generalized to higher dimensions by a dili-gent book-keeping of the notation. We consider the space of d-dimensional trigonometric15



polynomials P dM as �nite-dimensional model for Bd. For given samples f(tj) of f 2 Bd,where tj 2 Rd , we compute the least squares approximation pM similar to Theorem 3.1by solving the corresponding system of equations TMaM = yM .In 2-D for instance the matrix TM becomes a block Toeplitz matrix with Toeplitzblocks [37]. For a fast computation of the entries of T we can again make use of Beylkin'sUSFFT algorithm [4]. And similar to 1-D, multiplication of a vector by TM can be carriedout by 2-D FFT.Also the relation between the �nite-dimensional approximation in P dM and the in�nite-dimensional solution in Bd is similar as in 1-D. The only mathematical di�culty is togive conditions under which the matrix TM is invertible. Since the fundamental theoremof algebra does not hold in dimensions larger than one, the condition (2M + 1)d � r isnecessary but no longer su�cient for the invertibility of TM . Su�cient conditions for theinvertibility, depending on the sampling density, are presented in [21].4 Bandwidth estimation and regularizationIn this section we discuss several numerical aspects of nonuniform sampling that are veryimportant from a practical viewpoint, however only few answers to these problems canbe found in the literature.4.1 A multilevel signal reconstruction algorithmIn almost all theoretical results and numerical algorithms for reconstructing a band-limitedsignal from nonuniform samples it is assumed that the bandwidth is known a priori. Thisinformation however is often not available in practice.A good choice of the bandwidth for the reconstruction algorithm becomes crucial incase of noisy data. It is intuitively clear that choosing a too large bandwidth leads toover-�t of the noise in the data, while a too small bandwidth yields a smooth solution butalso to under-�t of the data. And of course we want to avoid the determination of the\correct" 
 by trial-and-error methods. Hence the problem is to design a method thatcan reconstruct a signal from non-uniformly spaced, noisy samples without requiring apriori information about the bandwidth of the signal.The multilevel approach derived in [34] provides an answer to this problem. The ap-proach applies to an in�nite-dimensional as well as to a �nite-dimensional setting. Wedescribe the method directly for the trigonometric polynomial model, where the determi-nation of the bandwidth 
 translates into the determination of the polynomial degree Mof the reconstruction. The idea of the multilevel algorithm is as follows.16



Let the noisy samples fb�jgrj=1 = ff �(tj)grj=1 of f 2 B be given with Prj=1 jf(tj) �b�(tj)j2 � �2kb�k2 and let QM denote the orthogonal projection from B into PM . Westart with initial degree M = 1 and run Algorithm 3.1 until the iterates p0;k satisfy forthe �rst time the inner stopping criterionrXj=1 jp1;k(tj)� b�j j2 � 2�(�kb�k+ kQ0f � fk)kb�kfor some �xed � > 1. Denote this approximation (at iteration k�) by p1;k�. If p1;k� satis�esthe outer stopping criterion rXj=1 jp1;k(tj)� b�j j2 � 2��kb�k2 (34)we take p1;k� as �nal approximation. Otherwise we proceed to the next level M = 2 andrun Algorithm 3.1 again, using p1;k� as initial approximation by setting p2;0 = p1;k�.At level M = N the inner level-dependent stopping criterion becomesrXj=1 jpN;k(tj)� b�j j2 � 2�(�kb�k+ kQNf � fk)kb�k; (35)while the outer stopping criterion does not change since it is level-independent.Stopping rule (35) guarantees that the iterates of CG do not diverge. It also ensuresthat CG does not iterate too long at a certain level, since if M is too small furtheriterations at this level will not lead to a signi�cant improvement. Therefore we switchto the next level. The outer stopping criterion (34) controls over-�t and under-�t of thedata, since in presence of noisy data is does not make sense to ask for a solution pM thatsatis�es Prj=1 jpM(tj)� b�j j2 = 0.Since the original signal f is not known, the expression kf �QNfk in (35) cannot becomputed. In [34] the reader can �nd an approach to estimate kf �QNfk recursively.4.2 Solution of ill-conditioned sampling problemsA variety of conditions on the sampling points ftjgj2Z are known under which the setfsinc(� � tj)gj2Z is a frame for B, which in turn implies (at least theoretically) perfectreconstruction of a signal f from its samples f(tj). This does however not guaranteea stable reconstruction from a numerical viewpoint, since the ratio of the frame bounds17



B=A can still be extremely large and therefore the frame operator S can be ill-conditioned.This may happen for instance if 
 in (30) goes to 1, in which case cond(T ) may becomelarge. The sampling problem may also become numerically unstable or even ill-posed,if the sampling set has large gaps, which is very common in astronomy and geophysics.Note that in this case the instability of the system TMaM = yM does not result from aninadequate discretization of the in�nite-dimensional problem.There exists a large number of (circulant) Toeplitz preconditioners that could be ap-plied to the system TMaM = yM , however it turns out that they do not improve thestability of the problem in this case. The reason lies in the distribution of the eigenvaluesof TM , as we will see below.Following [38], we call two sequences of real numbers f�(n)gnk=1 and f�(n)gnk=1 equallydistributed, if limn!11n nXk=1[F (�(n)k )� F (�(n)k )] = 0 (36)for any continuous function F with compact support1.Let C be a (n � n) circulant matrix with �rst column (c0; : : : ; cn�1), we write C =circ(c0; : : : ; cn�1). The eigenvalues of C are distributed as �k = 1pnPn�1l=0 cle2�ikl=n. Ob-serve that the Toeplitz matrix An with �rst column (a0; a1; : : : ; an) can be embedded inthe circulant matrix Cn = circ(a0; a1; : : : ; an; �an; : : : ; �a1) : (37)Thms 4.1 and 4.2 in [38] state that the eigenvalues of An and Cn are equally distributedas f(x) where f(x) = 1Xk=�1ake2�ikx : (38)The partial sum of the series (38) isfn(x) = nXk=�n ake2�ikx : (39)To understand the clustering behavior of the eigenvalues of TM in case of samplingsets with large gaps, we consider a sampling set in [�M;M), that consists of one large1In H.Weyl's de�nition �(n)k and �(n)k are required to belong to a common interval.18



block of samples and one large gap, i.e., tj = jLm for j = �mM; : : :mM for m;L 2 N .(Recall that we identify the interval with the torus). Then the entries zk of the Toeplitzmatrix TM of (25) (with wj = 1) arezk = 12M + 1 mMXj=�mM e�2�ik jLm =(2M+1); k = 0; : : : ; 2M :To investigate the clustering behavior of the eigenvalues of TM for M!1, we embed TMin a circulant matrix CM as in (37). Then (39) becomesfmM (x) = 1Lm(2M + 1) mMXl=�mM mMXj=�mM e2�il[k=(4M+1)�j=((2M+1)mL)] (40)whence fmM ! 1[�1=(2L);1=(2L)] for M!1, where 1[�a;a](x) = 1, if �a < x < a and 0 else.Thus the eigenvalues of TM are asymptotically clustered around zero and one. Forgeneral nonuniform sampling sets with large gaps the clustering at 1 will disappear, but ofcourse the spectral cluster at 0 will remain. In this case it is known that the preconditionedproblem will still have a spectral cluster at the origin [43] and preconditioning will not bee�cient.Fortunately there are other possibilities to obtain a stabilized solution of TMaM = yM .The condition number of TM essentially depends on the ratio of the maximal gap inthe sampling set to the Nyquist rate, which in turn depends on the bandwidth of thesignal. We can improve the stability of the system by adapting the degree M of theapproximation accordingly. Thus the parameter M serves as a regularization parameterthat balances stability and accuracy of the solution. This technique can be seen as aspeci�c realization of regularization by projection, see Chapter 3 in [12]. In addition, asdescribed in Section 4.2, we can utilize CG as regularization method for the solution ofthe Toeplitz system in order to balance approximation error and propagated error. Themultilevel method introduced in Section 4.1 combines both features. By optimizing thelevel (bandwidth) and the number of iterations in each level it provides an e�cient androbust regularization technique for ill-conditioned sampling problems. See Section 5 fornumerical examples.5 ApplicationsWe present two numerical examples to demonstrate the performance of the describedmethods. The �rst one concerns a 1-D reconstruction problem arising in spectroscopy. Inthe second example we approximate the Earth's magnetic �eld from noisy scattered data.19



5.1 An example from spectroscopyThe original spectroscopy signal f is known at 1024 regularly spaced points tj. Thisdiscrete sampling sequence will play the role of the original continuous signal. To simulatethe situation of a typical experiment in spectroscopy we consider only 107 randomly chosensampling values of the given sampling set. Furthermore we add noise to the samples withnoise level (normalized by division by P1024k=1 jf(tj)j2) of � = 0:1. Since the samples arecontaminated by noise, we cannot expect to recover the (discrete) signal f completely.The bandwidth is approximately 
 = 5 which translates into a polynomial degree ofM � 30. Note that in general 
 and (hence M) may not be available. We will alsoconsider this situation, but in the �rst experiments we assume that we know 
. Theerror between the original signal f and an approximation fn is measured by computingkf � fnk2=kfk2.First we apply the truncated frame method with regularized SVD as described inSection 2. We choose the truncation level for the SVD via formula (21). This is theoptimal truncation level in this case, providing an approximation with least squares error0:0944. Figure 1(a) shows the reconstructed signal together with the original signal andthe noisy samples. Without regularization we get a much worse \reconstruction" (whichis not displayed).We apply CG to the truncated frame method, as proposed in Section 2.2 with stop-ping criterion (22) (for � = 1). The algorithm terminates already after 3 iterations.The reconstruction error is with 0:1097 slightly higher than for truncated SVD (see alsoFigure 1(b)), but the computational e�ort is much smaller.Also Algorithm 3.1 (with M = 30) terminates after 3 iterations. The reconstructionis shown in Figure 1(c), the least squares error (0:0876) is slightly smaller than for thetruncated frame method, the computational e�ort is signi�cantly smaller.We also simulate the situation where the bandwidth is not known a priori and demon-strate the importance of a good estimate of the bandwidth. We apply Algorithm 3.1 usinga too small degree (M = 11) and a too high degree (M = 40). (We get qualitatively thesame results using the truncated frame method when using a too small or too large band-width). The approximations are shown in Figs. 1(d) and (e), The approximation errorsare 0:4648 and 0:2805, respectively. Now we apply the multilevel algorithm of Section 4.1which does not require any initial choice of the degree M . The algorithm terminates at\level" M = 22, the approximation is displayed in Fig. 1(f), the error is 0:0959, thuswithin the error bound �, as desired. Hence without requiring explicit information aboutthe bandwidth, we are able to obtain the same accuracy as for the methods above.20
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(a) Truncated frame methodwith TSVD, error=0.0944. 0 100 200 300 400 500 600 700 800 900 1000
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(b) Truncated frame methodwith CG, error=0.1097.
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(c) Algorithm 3.1 with \correct"bandwidth, error=0.0876 0 100 200 300 400 500 600 700 800 900 1000
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(d) Using a too small band-width, error=0.4645.
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(f) Multilevel algorithm, er-ror=0.0959.Figure 1: Example from spectroscopy { comparison of reconstruction methods.21



5.2 Approximation of geophysical potential �eldsExploration geophysics relies on surveys of the Earth's magnetic �eld for the detectionof anomalies which reveal underlying geological features. Geophysical potential �eld-dataare generally observed at scattered sampling points. Geoscientists, used to looking attheir measurements on maps or pro�les and aiming at further processing, therefore needa representation of the originally irregularly spaced data at a regular grid.The reconstruction of a 2-D signal from its scattered data is thus one of the �rst andcrucial steps in geophysical data analysis, and a number of practical constraints suchas measurement errors and the huge amount of data make the development of reliablereconstruction methods a di�cult task.It is known that the Fourier transform of a geophysical potential �eld f has decayjf̂(!)j = O(e�j!j). This rapid decay implies that f can be very well approximated byband-limited functions [30]. Since in general we may not know the (essential) bandwidthof f , we can use the multilevel algorithm proposed in Section 4.1 to reconstruct f .The multilevel algorithm also takes care of following problem. Geophysical samplingsets are often highly anisotropic and large gaps in the sampling geometry are very common.The large gaps in the sampling set can make the reconstruction problem ill-conditioned oreven ill-posed. As outlined in Section 4.2 the multilevel algorithm iteratively determinesthe optimal bandwidth that balances the stability and accuracy of the solution.Figure 5.2(a) shows a synthetic gravitational anomaly f . The spectrum of f decaysexponentially, thus the anomaly can be well represented by a band-limited function, usinga \cut-o�-level" of jf(!)j � 0:01 for the essential bandwidth of f .We have sampled the signal at 1000 points (uj; vj) and added 5% random noise to thesampling values f(uj; vj). The sampling geometry { shown in Figure 5.2 as black dots{ exhibits several features one encounters frequently in exploration geophysics [30]. Theessential bandwidth of f would imply to choose a polynomial degree of M = 12 (i.e.,(2M + 1)2 = 625 spectral coe�cients). With this choice of M the corresponding blockToeplitz matrix TM would become ill-conditioned, making the reconstruction problemunstable. As mentioned above, in practice we usually do not know the essential bandwidthof f . Hence we will not make use of this knowledge in order to approximate f .We apply the multilevel method to reconstruct the signal, using only the samplingpoints f(uj; vj)g, the samples ff �(uj; vj)g and the noise level � = 0:05 as a priori infor-mation. The algorithm terminates at level M = 7. The reconstruction is displayed inFigure 5.2(c), the error between the true signal and the approximation is shown in Fig-ure 5.2(d). The reconstruction error is 0:0517 (or 0:193 mGal), thus of the same order asthe data error, as desired. 22
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(a) Contour map of synthetic grav-ity anomaly, gravity is in mGal. −100 −50 0 50 100
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(b) Sampling set and syntheticgravity anomaly.
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(c) Approximation by multi-level al-gorithm −100 −50 0 50 100
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(d) Error between approximationand actual anomaly.Figure 2: Approximation of synthetic gravity anomaly from 1000 non-uniformly spacednoisy samples by the multilevel algorithm of Section 4.1. The algorithm iteratively deter-mines the optimal bandwidth (i.e. level) for the approximation.
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