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Abstract— Tight frames, also known as general Welch-Bound-
Equality sequences, generalize orthonormal systems. Numer-
ous applications—including communications, coding and sparse
approximation—require finite-dimensional tight frames that pos-
sess additional structural properties. This paper proposes a
versatile alternating projection method that is flexible enough to
solve a huge class of inverse eigenvalue problems, which includes
the frame design problem. To apply this method, one only needs
to solve a matrix nearness problem that arises naturally from
the design specifications. Therefore, it is fast and easy to develop
versions of the algorithm that target new design problems.
Alternating projection is likely to succeed even when algebraic
constructions are unavailable.

To demonstrate that alternating projection is an effective tool
for frame design, the article studies some important structural
properties in detail. First, it addresses the most basic de-
sign problem—constructing tight frames with prescribed vector
norms. Then, it discusses equiangular tight frames, which are
natural dictionaries for sparse approximation. Last, it examines
tight frames whose individual vectors have low peak-to-average-
power ratio (PAR), which is a valuable property for CDMA appli-
cations. Numerical experiments show that the proposed algorithm
succeeds in each of these three cases. The appendices thoroughly
investigate the convergence properties of the algorithm.

Index Terms— Tight frames, general Welch-Bound-Equality
sequences, alternating projection, inverse eigenvalue problems,
DS-CDMA, signature sequences, equiangular lines, Grassman-
nian packing, peak-to-average-power ratio, point-to-set maps

I. I NTRODUCTION

T IGHT FRAMES provide a natural generalization of or-
thonormal systems, and they arise in numerous practical

and theoretical contexts [1]. There is no shortage of tight
frames, and applications will generally require that the vectors
comprising the frame have some kind of additional structure.
For example, it might be necessary for the vectors to have
specific Euclidean norms, or perhaps the vectors should have
small mutual inner products. Thus arises a design problem:
How do you build a structured tight frame?

To address the question, this article proposes a numerical
method based on alternating projection that builds on our
work in [2], [3]. The algorithm alternately finds the nearest
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tight frame to a given ensemble of structured vectors; then
it finds the ensemble of structured vectors nearest to the
tight frame; and it repeats the processad infinitum. This
technique is analogous to the method of projection on convex
sets (POCS) [4], [5], except that the class of tight frames is
non-convex, which complicates the analysis significantly. Nev-
ertheless, our alternating projection algorithm affords simple
implementations, and it provides a quick route to solve difficult
frame design problems. This article offers extensive numerical
evidence that our method succeeds for several important cases.
We argue that similar techniques apply to a huge class of
inverse eigenvalue problems.

There is a major conceptual difference between the use
of finite models in the numerical calculation of infinite-
dimensional frames and the design of finite-dimensional
frames. In the former case, the finite model plays only an
auxiliary role in the approximate computation of an infinite-
dimensional tight frame [1]. In the latter case, the problem
under consideration is already finite-dimensional, thus it does
not involve discretization issues. In this paper, we consider
only finite-dimensional tight frames.

Frame design is essentially an algebraic problem. It boils
down to producing a structured matrix with certainspectral
properties, which may require elaborate discrete and combina-
torial mathematics. Alternating projection is powerful because
it reduces this fiendish algebra to a simple analytic question:
How does one find an ensemble of structured vectors nearest
to a given tight frame? This minimization problem can usually
be dispatched with standard tools, such as differential calculus
or Karush–Kuhn–Tucker theory.

In the past, most design methods have employed algebraic
techniques. To appreciate the breadth of this literature, one
might peruse Sarwate’s recent survey paper about tight frames
with unit-norm vectors [6]. The last few years have also seen
some essentially algebraic algorithms that can construct tight
frames with non-constant vector norms [7]–[9].

When algebraic methods work, they work brilliantly. A
numerical approach like alternating projection can hardly hope
to compete with the most profound insights of engineers and
mathematicians. On the other hand, algebraic and combina-
toric tools are not always effective. For example, we might
require a structured tight frame for a vector space whose
dimension is not a prime-power. Even in these situations,
alternating projection will usually succeed. Moreover, it can
help researchers develop the insight necessary for completing
an algebraic construction.

The literature does not offer many numerical approaches
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to frame design. It appears that most of the current al-
gorithms can be traced to the discovery by Rupf–Massey
[10] and Viswanath–Anantharam [7] that tight frames with
prescribed column norms are the optimal sequences for direct-
spread, synchronous code-division multiple access systems
(DS-CDMA). The DS-CDMA application prompted a long
series of papers, including [11]–[15], that describe iterative
methods for constructing tight frames with prescribed column
norms. These techniques are founded on an oblique char-
acterization of tight frames as the minimizers of a quantity
called total squared correlation(TSC). It is not clear how
one could generalize these methods to solve different types of
frame design problems. Moreover, the alternating projection
approach that we propose significantly outperforms at least
one of the TSC-minimization algorithms. Two of the algebraic
methods that we mentioned above, [7] and [9], were also
designed with the DS-CDMA application in mind, while the
third algebraic method [8] comes from thesoi-disant frame
community. We are not aware of any other numerical methods
for frame design.

Finite- and infinite-dimensional tight frames are phenome-
nally useful. Finite tight frames have applications in coding
theory [16], in communications [17] and in sparse approxi-
mation [18]–[20]. These applications motivated many of the
design criteria considered in this paper. Tight Gabor frames,
which are infinite-dimensional, can be used to analyze pseudo-
differential operators [21] and to design filter banks and trans-
mission pulses for wireless communications [22], [23]. Shift-
invariant tight frames, which are also infinite-dimensional,
arise in sampling theory and signal reconstruction [24].

A. Outline

Section II continues with a short introduction to tight
frames. Then, in Section III, we state two formal frame
design problems. Connections among frame design problems,
inverse eigenvalue problems and matrix nearness problems are
established. This provides a natural segue to the alternating
projection algorithm. Afterward, we apply the basic algorithm
to design three different types of structured frames, in order
of increasing implementation difficulty. Section IV discusses
tight frames with prescribed column norms; Section V covers
equiangular tight frames; and Section VI constructs tight
frames whose individual vectors have low peak-to-average-
power ratio. Each of these sections contains numerical exper-
iments. The body of the paper concludes with Section VII,
which discusses the method, its limitations and its extensions.

The back matter contains the bulk of the analysis. Appendix
I offers a tutorial on point-to-set maps, and Appendix II
applies this theory to obtain a rigorous characterization of
the algorithm’s convergence behavior. The first appendix also
contains a brief survey of the alternating projection literature.

II. T IGHT FRAMES

This section offers a terse introduction to the properties of
tight frames that are essential for our method. For more details,
see [1].

A. Frames

Let α and β be positive constants. Afinite frame for
the complex1 Hilbert spaceCd is a sequence ofN vectors
{xn}N

n=1 drawn fromCd that satisfies a generalized Parseval
condition:

α ‖v‖2
2 ≤

N∑
n=1

|〈v,xn〉|2 ≤ β ‖v‖2
2 for all v ∈ Cd. (1)

We denote the Euclidean inner product with〈·, ·〉, and we write
‖·‖2 for the associated norm. The numbersα andβ are called
the lower andupper frame bounds. The number of vectors in
the frame may be no smaller than the dimension of the space
(i.e. N ≥ d).

If it is possible to takeα = β, then we have atight frameor
an α-tight frame. When the frame vectors all have unit norm,
i.e. ‖xn‖2 ≡ 1, the system is called aunit-norm frame. Unit-
norm tight frames are also known asWelch-Bound-Equality
sequences[17], [25]. Tight frames with non-constant vector
norms have also been calledgeneral Welch-Bound-Equality
sequences[7].

B. Associated Matrices

Form ad×N matrix with the frame vectors as its columns:

X =
[
x1 x2 x3 . . . xN

]
.

This matrix is referred to as theframe synthesis operator, but
we shall usually identify the synthesis operator with the frame
itself.

Two other matrices arise naturally in connection with the
frame. We first define theGram matrixas G

def= X ∗X . (The
symbol ∗ indicates conjugate transposition of matrices and
vectors.) The diagonal entries of the Gram matrix equal the
squared norms of the frame vectors, and the off-diagonal
entries of the Gram matrix equal the inner products between
distinct frame vectors. The Gram matrix is always Hermitian
and positive semi-definite.

The positive-definite matrixXX ∗ is usually called theframe
operator. Since

v∗(XX ∗) v =
N∑

n=1

|〈v,xn〉|2

we can rewrite (1) as

α ≤ v∗(XX ∗) v

v∗v
≤ β. (2)

That is, any Rayleigh quotient ofXX ∗ must lie betweenα and
β. It follows from the Courant–Fischer Theorem [26] that each
eigenvalue of the frame operator lies in the interval[α, β].

When the frame isα-tight, Condition (2) is equivalent to
the statement thatA = α Id. Three other characterizations of
an α-tight frame follow immediately.

Proposition 1: A d × N frameX is α-tight if and only if
it satisfies one (hence all) of the following conditions.

1) All d non-zero singular values ofX equal
√

α.

1We work with complex vectors for complete generality. The adaptations
for real vectors are transparent.
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2) All d non-zero eigenvalues of the Gram matrixX ∗X
equalα.

3) The rows ofα−1/2 X form an orthonormal set.
These properties undergird our method for constructing tight

frames. It is now clear that the being a tight frame is aspectral
requirement on the matrixX .

C. Norms of Frame Vectors

Throughout this article, we shall denote the squared norms
of the frame vectors as

cn
def= ‖xn‖2

2 .

There is an intimate relationship between the tightness param-
eter of anα-tight frame and the norms of its columns. The
computation is straightforward:

α d = Tr XX ∗ = Tr X ∗X =
N∑

n=1

‖xn‖2
2 =

N∑
n=1

cn. (3)

The notationTr (·) represents the matrix trace operator, which
sums the diagonal entries of its argument.

A related point is that one cannot construct a tight frame
with an arbitrary set of column norms. According to the Schur–
Horn Theorem, a Hermitian matrix can exist if and only if its
eigenvalues majorize2 its diagonal entries [26], [27]. IfX is
a d ×N tight frame, thed non-zero eigenvalues of its Gram
matrix all equal

∑
n cn/d. Meanwhile, the diagonal entries of

the Gram matrix arec1, . . . , cN . In this case, the majorization
condition is equivalent to the system of inequalities

0 ≤ ck ≤
1
d

N∑
n=1

cn for eachk = 1, . . . , N. (4)

It follows that a tight frame with squared column norms
c1, . . . , cN exists if and only if (4) holds. For an arbitrary
set of column norms, the frames that are “closest” to being
tight have been characterized in [7], [28].

III. D ESIGN VIA ALTERNATING PROJECTIONS

This section begins with formal statements of two frame
design problems. Next we establish a connection with inverse
eigenvalue problems. It becomes clear that an alternating
projection algorithm offers a simple and natural approach to
general inverse eigenvalue problems, including both design
problems. We then solve the basic matrix nearness problems
that arise when implementing the proposed algorithm. The
section concludes with a discussion of the algorithm’s con-
vergence properties.

A. Structured Tight Frames

Define the collection ofd×N α-tight frames:

Xα
def= {X ∈ Cd×N : XX ∗ = α Id}. (5)

We fix the tightness parameterα for simplicity. It is easy to
extend our methods to situations where the tightness is not

2The literature equivocates about the direction of the majorization relation.
The sense indicated here seems more standard.

predetermined, and one can apply similar ideas to construct
frames with prescribed upper and lower frame bounds, viz.
the parametersα andβ in (1). It is worth noting thatXα is
essentially the Stiefel manifold, which consists of all sets of
d orthonormal vectors inCN [29].

Let S denote a closed3 collection of d × N matrices
that possess some structural property. In the sequel, we shall
explore several different structural constraints that have arisen
in electrical engineering contexts. Section IV considers tight
frames with specified column norms, and Section VI shows
how to construct tight frames whose individual vectors have
a low peak-to-average-power ratio. Many other structural
properties are possible.

Each constraint setS raises a basic question.

Problem 1: Find a matrix inS that is minimally distant
from Xα with respect to a given norm.

If the two sets intersect, any solution to this problem is
a structured tight frame. Otherwise, the problem requests a
structured matrix that is “most nearly tight.” A symmetric
problem is to find a tight frame that is “most nearly structured.”

B. Structured Gram Matrices

If the structural constraints restrict the inner products be-
tween frame vectors, it may be more natural to work with
Gram matrices. Define a collection that contains the Gram
matrices of alld×N α-tight frames:

Gα
def= {G ∈ CN×N : G = G∗ and

G has eigenvalues(α, . . . , α︸ ︷︷ ︸
d

, 0, . . . , 0)}. (6)

The set Gα is essentially the Grassmannian manifold that
consists ofd-dimensional subspaces ofCN [30]. One may also
identify the matrices inGα as rank-d orthogonal projectors,
scaled byα. (An orthogonal projector can be defined as an
idempotent, Hermitian matrix. The rank of a projector equals
the dimension of its range.)

Let H be a closed collection ofN × N Hermitian ma-
trices that possess some structural property. In Section V,
for example, we shall consider equiangular tight frames. The
Gram matrices of these frames have off-diagonal entries with
identical moduli, and it is an important challenge to construct
them.

Once again, a fundamental question arises.

Problem 2: Find a matrix inGα that is minimally distant
from H with respect to a given norm.

If the two sets intersect, any solution to this problem will lie
in the intersection. Otherwise, the problem requests a tight
frame whose Gram matrix is “most nearly structured.” We do
not mention the problem of producing a matrix inH that is
nearest toGα because it is not generally possible to factor a
matrix in H to obtain a frame with dimensionsd×N .

3We equipCd×N andCN×N with the topology induced by the Frobenius
norm, which is identical with every other norm topology [26].



4

C. Inverse Eigenvalue Problems

We view Problems 1 and 2 asinverse eigenvalue problems
(IEPs). As Chu explains in [31], an IEP is an inquiry about
structured matrices with prescribed spectral properties. These
spectral properties may include restrictions on eigenvalues,
eigenvectors, singular values or singular vectors. According
to Proposition 1, the defining characteristic of a tight frame is
its spectrum, so frame design is an IEP.

In the study of IEPs, the two fundamental questions are
solvability and computability. The former problem is to find
necessary or sufficient conditions under which a given IEP
has a solution. The latter problem is how to produce a matrix
that has given spectral properties and simultaneously satisfies
a structural constraint. The solvability and computability of
some classical IEPs have been studied extensively by the
matrix analysis community, although many open problems still
remain. The articles [31], [32] survey this literature.

Although specific IEPs may require carefully tailored nu-
merical methods, there are a few general tools available. One
scheme is the coordinate-free Newton method, which has been
explored in [33]–[35]. Newton-type algorithms do not apply
to most problems, and they only converge locally. Another
general method is the projected gradient approach developed
by Chu and Driessel in [36]. This technique involves numerical
integration of a matrix differential equation, which relies on
advanced software that may not be readily available. Another
problem with Newton methods and projected gradient methods
is that they may not handle repeated singular values well. This
shortcoming makes them a poor candidate for constructing
tight frames, which have only two distinct singular values.

This article concentrates on alternating projection, which
has occasionally been used to solve inverse eigenvalue prob-
lems (in [37] and [38], for example). But alternating projection
has not been recognized as a potential method for solving
any type of inverse eigenvalue problem. The most general
treatment of alternating projection in the IEP literature is
probably [39], but the authors do not offer a serious analysis
of their algorithm’s behavior.

Here is the basic idea behind alternating projection. We
seek a point of intersection between the set of matrices that
satisfy a structural constraint and the set of matrices that
satisfy a spectral constraint. An alternating projection begins
at a matrix in the first set, from which it computes a matrix
of minimal distance in the second set. Then the algorithm
reverses the roles of the two sets and repeats the processad
infinitum. Alternating projection is easy to apply, and it is
usually globally convergent in a weak sense, as we show later.

D. Alternating Projections

Let us continue with a formal presentation of the generic
alternating projection method for solving inverse eigenvalue
problems. Suppose that we have two collections,Y and
Z , of matrices with identical dimensions. Of course, we
are imagining that one collection of matrices incorporates a
spectral constraint while the other collection incorporates a
structural constraint. To ensure that the algorithm is well-
posed, assume that one collection is closed and the other is

compact.
Algorithm 1 (Alternating Projection):

INPUT:

• An (arbitrary) initial matrixY0 with appropriate dimen-
sions

• The number of iterations,J

OUTPUT:

• A matrix Y in Y and a matrixZ in Z

PROCEDURE:

1) Initialize j = 0.
2) Find a matrixZj in Z such that

Zj ∈ arg min
Z∈Z

‖Z − Yj‖F .

We use‖·‖F to indicate the Frobenius norm.
3) Find a matrixYj+1 in Y such that

Yj+1 ∈ arg min
Y∈Y

‖Y − Zj‖F .

4) Incrementj by one.
5) Repeat Steps 2–4 untilj = J .
6) Let Y = YJ andZ = ZJ−1.

A solution to the optimization problem in Step 2 is called
a projection of Yj onto Z on analogy with the case where
Z is a linear subspace. Step 3 computes the projection ofZj

onto Y . In a Hilbert space, it can be shown geometrically
that a given point has a unique projection onto each closed,
convex set. Projections onto general sets may not be uniquely
determined, which fiercely complicates the analysis of Algo-
rithm 1.

von Neumann, in 1933, was the first to consider alternating
projection methods. He showed that ifY andZ are closed,
linear subspaces of a Hilbert space, then alternating projection
converges to the point inY ∩ Z nearest toY0 [40]. In
1959, Cheney and Goldstein demonstrated that alternating
projection between two compact, convex subsets of a Hilbert
space always yields a point of minimal distance between the
sets [4]. These two results inspire the application of Algorithm
1 to the inverse eigenvalue problems, Problems 1 and 2. Of
course, the constraint sets that we consider are generallynot
convex. For a more extensive discussion of the literature on
alternating projection, turn to Appendix I-G.

To implement the alternating projection algorithm, one must
first solve the minimization problems in Steps 2 and 3. For
obvious reasons, these optimizations are called thematrix
nearness problemsassociated withY and Z . Already there
is an extensive literature on the nearness problems associated
with many spectral and structural constraints. See, for exam-
ple, the articles [41]–[43], the survey [44] and many sections
of the book [26]. In practice, it will only be necessary to solve
the minimization problem induced by the structural constraint,
which often reduces to an exercise in differential calculus. This
is one of the great advantages of Algorithm 1. In this article,
we shall always measure the distance between matrices using
the Frobenius norm‖·‖F because it facilitates the solution
of matrix nearness problems. Of course, one could develop
a formally identical algorithm using other norms, metrics or
divergences.
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Since the constraint sets are generally non-convex, alternat-
ing projection may not converge as well as one might wish.
This explains why we have chosen to halt the algorithm after
a fixed number of steps instead of waiting for‖Yj − Yj+1‖F
to decline past a certain threshold. Indeed, it is theoretically
possible that the sequence of iterates will not converge in
norm. In practice, it appears that norm convergence always
occurs. Section III-G provides a skeletal discussion of the
theoretical convergence of alternating projection. We do not
flesh out the analysis until Appendices I and II because a
proper treatment requires some uncommon mathematics.

E. Application to Problems 1 and 2

To solve Problem 1, we propose an alternating projection
between the structural constraint setS and the spectral
constraint setXα. Two matrix nearness problems arise. In the
next subsection, we demonstrate how to find a tight frame in
Xα nearest to an arbitrary matrix. Sections IV and VI contain
detailed treatments of two different structural constraints.

To solve Problem 2, we alternate between the spectral
constraintGα and the structural constraintH . In the next
subsection, we show how to produce a matrix inGα that is
nearest to an arbitrary matrix. In Section V, we analyze a
specific structural constraintH . After performing the alter-
nating projection, it may still be necessary to extract a frame
X from the output Gram matrix. This is easily accomplished
with a rank-revealing QR factorization or with an eigenvalue
decomposition. Refer to [45] for details.

F. Nearest Tight Frames

Standard tools of numerical linear algebra can be used to
produce anα-tight frame that is closest to an arbitrary matrix
in Frobenius norm.

Theorem 2:Let N ≥ d, and suppose that thed×N matrix
Z has singular value decompositionUΣV ∗. With respect to
the Frobenius norm, a nearestα-tight frame toZ is given
by α UV ∗. Note that UV ∗ is the unitary part of a polar
factorization ofZ .

Assume in addition thatZ has full row-rank. Thenα UV ∗

is the uniqueα-tight frame closest toZ . Moreover, one may
computeUV ∗ using the formula(ZZ∗)−1/2 Z .

Proof: The proof of this well-known result is similar to
that of Theorem 3, which appears below. See also pp. 431–432
of [26]. Classical references on related problems include [46],
[47]. The formula for the polar factor may be verified with a
direct calculation.

It is also straightforward to compute a matrix inGα nearest
to an arbitrary Hermitian matrix. This theorem appears to be
novel, so we provide a short demonstration.

Theorem 3:Suppose thatZ is anN ×N Hermitian matrix
with a unitary factorizationUΛU∗, where the entries ofΛ are
arranged in algebraically non-increasing order. LetUd be the
N × d matrix formed from the firstd columns ofU. Then
α UdUd

∗ is a matrix inGα that is closest toZ with respect to
the Frobenius norm. This closest matrix is unique if and only
if λd strictly exceedsλd+1.

Proof: We must minimize‖Z − α G‖F over all rank-
d orthogonal projectorsG . Square and expand this objective
function:

‖Z − α G‖2
F = ‖Z‖2

F + α2 ‖G‖2
F − 2α Re TrG∗Z .

The squared Frobenius norm of an orthogonal projector equals
its rank, so we only need to maximize the (negation of) the
last term.

Every rank-d orthogonal projectorG can be written as
G = VV ∗, where theN × d matrix V satisfiesV ∗V = Id.
Meanwhile, we may factorZ into its eigenvalue decomposition
UΛU∗, whereU is unitary andΛ is a diagonal matrix with
non-increasing, real entries. Using the properties of the trace
operator, we calculate that

Re TrG∗Z = Re TrVV ∗UΛU∗

= Re TrU∗VV ∗UΛ

= Re
N∑

n=1

(U∗VV ∗U)nn λn.

Observe thatU∗VV ∗U is a positive semi-definite matrix
whose eigenvalues do not exceed one. Therefore, the diagonal
entries ofU∗VV ∗U are real numbers that lie between zero
and one inclusive. Moreover, these diagonal entries must sum
to d because

TrU∗VV ∗U = ‖U∗V ‖2
F = ‖V ‖2

F = d.

It follows that

max
G

Re TrG∗Z ≤
d∑

n=1

λn.

This bound is met whenever the diagonal ofU∗VV ∗U contains
d ones followed by(N − d) zeroes. A sufficient condition for
attainment is thus

U∗VV ∗U = Id ⊕ 0N−d.

Furthermore, ifλd > λd+1, this condition is also necessary.
Form a matrixUd by extracting the firstd columns ofU.

Then the sufficient condition holds wheneverG = VV ∗ =
UdUd

∗. That is, G is the orthogonal projector onto anyd-
dimensional subspace spanned by eigenvectors corresponding
to thed algebraically largest eigenvalues ofZ . If λd > λd+1,
this subspace is uniquely determined. The orthogonal projector
onto a fixed subspace is always unique, and the uniqueness
claim follows.

It may be valuable to know that there are specialized algo-
rithms for performing the calculations required by Theorems
2 and 3. For example, Higham has developed stable numerical
methods for computing the polar factor of a matrix [48],
[49] that are more efficient than computing a singular value
decomposition or applying the formula(ZZ∗)−1/2 Z .

G. Basic Convergence Results

It should be clear that alternating projection never increases
the distance between successive iterates. This does not mean
that it will locate a point of minimal distance between the
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constraint sets. It can be shown, however, that Algorithm 1 is
globally convergent in a weak sense.

Define the distance between a pointM and a setY via

dist(M,Y ) = inf
Y∈Y

‖Y −M‖F .

Theorem 4 (Global Convergence of Algorithm 1):Let Y
and Z be closed sets, one of which is bounded. Suppose
that alternating projection generates a sequence of iterates
{(Yj ,Zj)}. This sequence has at least one accumulation point.

• Every accumulation point lies inY ×Z .
• Every accumulation point(Y ,Z ) satisfies∥∥Y − Z

∥∥
F

= lim
j→∞

‖Yj − Zj‖F .

• Every accumulation point(Y ,Z ) satisfies∥∥Y − Z
∥∥

F
= dist(Y ,Z ) = dist(Z ,Y ).

For a proof of Theorem 4, turn to Appendix II-A. In some
special cases, it is possible to develop stronger convergence
results and characterizations of the fixed points. We shall
mention these results where they are relevant. The convergence
of Algorithm 1 is geometric at best [50]–[53]. This is the major
shortfall of alternating projection methods.

Note that the sequence of iterates may have many accu-
mulation points. Moreover, the last condition does not imply
that the accumulation point(Y ,Z ) is a fixed point of the
alternating projection. So what are the potential accumulation
points of a sequence of iterates? Since the algorithm never
increases the distance between successive iterates, the set
of accumulation points includes every pair of matrices from
Y ×Z that lie at minimal distance from each other. Therefore,
we say that the algorithm tries to solve Problems 1 and 2.

IV. PRESCRIBEDCOLUMN NORMS

As a first illustration of alternating projection, let us con-
sider the most basic frame design problem: How does one
build a tight frame with prescribed column norms?

This question has arisen in the context of constructing
optimal signature sequences for direct-spread synchronous
code-division multiple-access (DS-CDMA) channels. There
are some finite algorithms available that yield a small number
of solutions to the problem [7], [9]. These methods exploit
the connection between frames and the Schur–Horn Theorem.
They work by applying plane rotations to an initial tight frame
to adjust its column norms while maintaining its tightness.
Casazza and Leon have also developed a finite method that
seems different in spirit [8].

To construct larger collections of frames, some authors
have proposed iterative algorithms [11]–[15]. These techniques
attempt to minimize thetotal squared correlation(TSC) of an
initial matrix subject to constraints on its column norms. The
TSC of a matrix is defined as

TSC(S) def= ‖S∗S‖2
F =

∑
m,n

|〈sm, sn〉|2.

If we fix the squared column norms ofS to be c1, . . . , cN , a
short algebraic manipulation shows that minimizing the TSC
is equivalent to solving

min
S
‖SS∗ − α Id‖F

where α =
∑

n cn/d. In words, minimizing the TSC is
equivalent to finding a frame with prescribed column norms
that is closest in Frobenius norm to a tight frame [54].

In comparison, alternating projection affords an elegant way
to produce many tight frames with specified column norms. It
focuses on the essential property of a tight frame—its singular
values—to solve the problem. In this special case, we provide
a complete accounting of the behavior of the alternating
projection. Moreover, experiments show that it outperforms
some of the other iterative algorithms that were developed
specifically for this problem.

A. Constraint Sets and Nearness Problems

The algorithm will alternate between the set of matrices
with fixed column norms and the set of tight frames with an
appropriate tightness parameter.

Let the positive numbersc1, . . . , cN denote the squared
column norms that are desired. We do not require that these
numbers satisfy the majorization inequalities given in (4),
although one cannot hope to find a tight frame if these
inequalities fail. In that case, we would seek a matrix with the
prescribed column norms that is closest to being a tight frame.
In the DS-CDMA application, the column norms depend on
the users’ power constraints [7], [10].

In light of (3), the relation between the tightness parameter
and the column norms, it is clear thatα must equal

∑
n cn/d.

The spectral constraint set becomes

Xα
def= {X ∈ Cd×N : XX ∗ = (

∑
n cn/d) Id}.

Given an arbitaryd×N matrix, one may compute the closest
tight frame inXα using Theorem 2.

The structural constraint set contains matrices with the
correct column norms.

S
def= {S ∈ Cd×N : ‖sn‖2

2 = cn}.

It is straightforward to solve the matrix nearness problem
associated with this collection.

Proposition 5: Let Z be an arbitrary matrix with columns
{zn}. A matrix in S is closest toZ in Frobenius norm if and
only if it has the columns

sn =
{

cn zn/ ‖zn‖2 , zn 6= 0 and
cn un, zn = 0,

whereun represents an arbitrary unit vector. If the columns of
Z are all non-zero, then the solution to the nearness problem
is unique.

Proof: We must minimize‖S − Z‖F over all matrices
S from S . Square and rewrite this objective function:

‖S − Z‖2
F =

N∑
n=1

‖sn − zn‖2
2 .
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We can minimize each summand separately. Fix an indexn,
and expand then-th term using‖sn‖2

2 = cn.

‖sn − zn‖2
2 = cn + ‖zn‖2

2 − 2
√

cn Re
〈

sn

‖sn‖2

,zn

〉
.

If zn 6= 0, the unique maximizer ofRe 〈u,zn〉 over all unit
vectors isu = zn/ ‖zn‖2. If zn = 0, then every unit vector
u maximizes the inner product.

B. Convergence Results

In this setting, alternating projection converges in a fairly
strong sense.

Theorem 6:Let S0 have full rank and non-zero columns,
and suppose that the alternating projection generates a se-
quence of iterates{(Sj ,Xj)}. This sequence possesses at least
one accumulation point, say(S ,X ).
• Both S andX have full rank and non-zero columns.
• The pair(S ,X ) is a fixed point of the alternating projec-

tion. In other words, if we applied the algorithm toS or
to X every pair of iterates would equal(S ,X ).

• Each accumulation point satisfies∥∥S − X
∥∥

F
= lim

j→∞
‖Sj − Xj‖F .

• The component sequences are asymptotically regular, i.e.

‖Sj+1 − Sj‖F → 0 and ‖Xj+1 − Xj‖F → 0.

• Either the component sequences both converge in norm,∥∥Sj − S
∥∥

F
→ 0 and

∥∥Xj − X
∥∥

F
→ 0,

or the set of accumulation points forms a continuum.
Proof: See Appendix II-C.

In the present case, it is also possible to characterize
completely the fixed points of the algorithm that lie inS .

Proposition 7: A full-rank matrixS from S is a fixed point
of the alternating projection betweenS andXα if and only if
its columns are all eigenvectors ofSS∗. That is,SS∗S = SΛ,
whereΛ ∈ CN×N is diagonal and positive with no more than
d distinct entries.

Proof: Refer to Appendix II-D.
Many of the fixed points inS do not lie at minimal

distance fromXα, so they are not solutions to Problem 1.
Nevertheless, the fixed points still have a tremendous amount
of structure. Each fixed point can be written as a union of tight
frames for mutually orthogonal subspaces ofCd, and the set
of fixed points is identical with the set of critical points of the
TSC functional subject to the column norm constraint [15],
[54]. The Ulukus-Yates algorithm, another iterative method
for designing tight frames with specified column norms, has
identical fixed points [12].

C. Numerical Examples

We offer a few simple examples to illustrate that the
algorithm succeeds, and we provide some comparisons with
the Ulukus-Yates algorithm.

Suppose first that we wish to construct a unit-norm tight
frame forR3 consisting of five vectors. Initialized with a3×5

matrix whose columns are chosen uniformly at random from
the surface of the unit sphere, the algorithm returns

S =

24 0.1519 0.4258 −0.7778 0.0160 −0.9258
0.9840 −0.6775 0.1882 0.3355 −0.3024

−0.0926 0.5998 0.5997 0.9419 −0.2269

35 .

Each column norm of the displayed matrix equals one to
machine precision, and the singular values are identical in their
first eight digits. In all the numerical examples, the algorithm
was terminated on the condition that‖Sj+1 − Sj‖F < 10−8.
Implemented in Matlab, the computation took 65 iterations,
which lasted 0.0293 seconds on a 1.6 GHz machine.

Now let us construct a tight frame forR3 whose five
vectors have norms 0.75, 0.75, 1, 1.25 and 1.25. With random
initialization, we obtain

S =

24 −0.1223 0.1753 −0.7261 0.0128 −1.0848
0.7045 −0.6786 0.6373 0.0972 −0.6145

−0.2263 0.2670 0.2581 1.2461 −0.0894

35 .

The column norms are correct to machine precision, and the
singular values are identical to seven digits. The computation
took 100 iterations, which lasted 0.0487 seconds.

Next we examine a case where the column norms do not
satisfy the majorization condition. Suppose that we seek a
“nearly tight” frame with column norms 0.5, 0.5, 1, 1 and
2. Random initialization yields

S =

24 −0.1430 0.1353 −0.4351 −0.0941 −1.8005
0.4293 −0.4213 0.7970 −0.2453 −0.7857

−0.2127 0.2329 0.4189 0.9649 −0.3754

35.

The column norms are all correct, but, as predicted, the frame
is not tight. Nevertheless, the last vector is orthogonal to the
first four vectors, which form a tight frame for their span. This
is exactly the optimal solution to the frame design problem.
The calculation required 34 iterations over 0.0162 seconds.

Of course, alternating projection can produce complex-
valued tight frames, as well as larger frames in higher-
dimensional spaces. Such ensembles are too large to display
in these columns. To give a taste of the algorithm’s general
performance, we have compared it with our implementation
of the Ulukus-Yates algorithm [12]. To construct unit-norm
tight frames of various lengths, we initialized each algorithm
with the same random matrix. Then we plotted the compar-
ative execution times. Figure 1 shows the results for 64 real
dimensions, and Figure 2 shows the results for 64 complex
dimensions. Note the different scales on the time axes.

Both algorithms perform slowly whenN is small because
tight frames are relatively scarce, which makes them difficult
to find. Indeed, it is known that (modulo rotations) there exists
a unique tight frame of(d+1) vectors ind-dimensional space
[55]. Another reason that the alternating projection algorithm
performs better as the problem grows is that a collection
of N uniformly random unit-vectors converges almost surely
to a tight frame asN tends to infinity [56]. It is therefore
perplexing that the Ulukus-Yates algorithm performs more and
more slowly. One might attribute this behavior to the fact that
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Fig. 1. Comparison of alternating projection with the Ulukus-Yates algorithm
in 64 real dimensions.
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Fig. 2. Comparison of alternating projection with the Ulukus-Yates algorithm
in 64 complex dimensions.

the algorithm does not act to equalize the singular values of
the frame.

V. EQUIANGULAR TIGHT FRAMES

In this section, we shall consider a frame design problem
that leads to a simple structural constraint on the Gram matrix.
The goal of the alternating projection will be to design a
suitable Gram matrix, from which the frame may be extracted
afterward.

A tight frame is a generalization of an orthonormal basis
because they share the Parseval property. But orthonormal
bases have other characteristics that one may wish to extend.
In particular, every orthonormal basis isequiangular. That
is, each pair of distinct vectors has the same inner product,
namely zero. This observation suggests that one seek out

equiangular tight frames. The underlying intuition is that these
frames will contain vectors maximally separated in space.

Define anequiangular tight frameto be a unit-norm tight
frame in which each pair of columns has the sameabsolutein-
ner product. Since we are considering unit-norm tight frames,
the absolute inner product between two frame vectors equals
the cosine of the acute angle between the one-dimensional
subspaces spanned by the two vectors. For this reason are
the frames called equiangular. One can show that each inner
product in an equiangular tight frame has modulus

µ
def=

√
N − d

d (N − 1)
. (7)

It is a remarkable fact thateveryensemble ofN unit vectors
in d dimensions contains a pair whose inner product strictly
exceedsµ, unless the collection forms an equiangular tight
frame. Unfortunately, equiangular tight frames only exist for
rare combinations ofd andN . In particular, a real, equiangular
tight frame can exist only ifN ≤ 1

2 d (d + 1), while a
complex, equiangular tight frame requires thatN ≤ d2 [17].
The paper [57] contains detailed necessary conditions on real,
equiangular tight frames and on equiangular tight frames over
finite alphabets.

One can view equiangular tight frames as a special type
of Grassmannian frame. In finite dimensions, Grassmannian
frames are unit-norm frames whose largest inner product is
minimal for a givend and N [17]. Their name is motivated
by the fact that they correspond with sphere packings in the
Grassmannian manifold of all one-dimensional subspaces in
a Hilbert space [30]. Grassmannian frames have applications
in coding theory and communications engineering [17], [58]–
[60]. They also provide a natural set of vectors to use for
sparse approximation [18]–[20].

In general, it is torturous to design Grassmannian frames.
Not only is the optimization difficult, but there is no general
procedure for deciding when a frame solves the optimization
problem unless it meets a known lower bound. Most of the
current research has approached the design problem with
algebraic tools. A notable triumph of this type is the con-
struction of Kerdock codes overZ2 andZ4 due to Calderbank
et al. [61]. Other explicit constructions are discussed in the
articles [17], [59]. In the numerical realm, Sloane has used
his Gosset software to produce and study sphere packings in
real Grassmannian spaces [62]. Sloane’s algorithms have been
extended to complex Grassmannian spaces in [63]. We are not
aware of any other numerical methods.

In this article, we shall construct equiangular tight frames
for real and complex Hilbert spaces using alternating projec-
tion. The method can easily be extended to compute other
finite Grassmannian frames and packings in higher Grassman-
nian manifolds, but that is another paper for another day [64].

A. Constraint Sets and Nearness Problems

The signal of an equiangular tight frame is that each inner
product between distinct vectors has the same modulus. Since
the Gram matrix of a tight frame displays all of the inner
products, it is more natural to construct the Gram matrix of an
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equiangular tight frame than to construct the frame synthesis
matrix directly. Therefore, the algorithm will alternate between
the collection of Hermitian matrices that have the correct
spectrum and the collection of Hermitian matrices that have
sufficiently small off-diagonal entries.

Since we are working with unit-norm tight frames, the
tightness parameterα must equalN/d. This leads to the
spectral constraint set

Gα
def= {G ∈ CN×N : G = G∗ and

G has eigenvalues(N/d, . . . , N/d︸ ︷︷ ︸
d

, 0, . . . , 0)}.

Theorem 3 shows how to find a matrix inGα nearest to an
arbitrary Hermitian matrix.

In an equiangular tight frame, each vector has unit norm but
no two vectors have inner product larger thanµ. Therefore,
we define the structural constraint set

Hµ
def= {H ∈ CN×N : H = H∗,

diag H = 1 and max
m6=n

|hmn| ≤ µ}.

It may seem more natural to require that the off-diagonal
entries have modulus exactly equal toµ, but our experience
indicates that the present formulation works better, perhaps
becauseHµ is convex. The following proposition shows how
to produce the nearest matrix inHµ.

Proposition 8: Let Z be an arbitrary matrix. With respect
to Frobenius norm, the unique matrix inHµ closest toZ has
a unit diagonal and off-diagonal entries that satisfy

hmn =
{

zmn if |zmn| ≤ µ and
µ ei arg zmn otherwise.

We usei to denote the imaginary unit.
Proof: The argument is straightforward.

B. Convergence Results

The general convergence result, Theorem 4, applies to the
alternating projection betweenGα and Hµ. We also obtain
a stronger guarantee when the iterates get sufficiently close
together.

Theorem 9:Assume that the alternating projection between
Gα and Hµ generates a sequence of iterates{(Gj ,Hj)},
and suppose that there is an iterationJ during which
‖GJ − HJ‖F < N/(d

√
2). The sequence of iterates possesses

at least one accumulation point, say(G ,H).
• Every accumulation point lies inGα ×Hµ.
• The pair (G ,H) is a fixed point of the alternating pro-

jection. In other words, if we applied the algorithm toG
or to H, every iterate would equal(G ,H).

• Every accumulation point satisfies∥∥G − H
∥∥

F
= lim

j→∞
‖Gj − Hj‖F .

• The component sequences are asymptotically regular, i.e.

‖Gj+1 − Gj‖F → 0 and ‖Hj+1 − Hj‖F → 0.

• Either the component sequences both converge in norm,∥∥Gj − G
∥∥

F
→ 0 and

∥∥Hj − H
∥∥

F
→ 0,

or the set of accumulation points forms a continuum.
Proof: See Appendix II-B.

C. Numerical Examples

First, let us illustrate just how significant a difference there
is between vanilla tight frames and equiangular tight frames.
Here is the Gram matrix of a six-vector, unit-norm tight frame
for R3:

2666664
1.0000 0.2414 −0.6303 0.5402 −0.3564 −0.3543
0.2414 1.0000 −0.5575 −0.4578 0.5807 −0.2902

−0.6303 −0.5575 1.0000 0.2947 0.3521 −0.2847
0.5402 −0.4578 0.2947 1.0000 −0.2392 −0.5954

−0.3564 0.5807 0.3521 −0.2392 1.0000 −0.5955
−0.3543 −0.2902 −0.2847 −0.5954 −0.5955 1.0000

3777775.

Notice that the inner-products between vectors are quite dis-
parate, and they range in magnitude between 0.2392 and
0.6303. These inner products correspond to acute angles of
76.2◦ and 50.9◦. In fact, this tight frame is pretty tame;
the largest inner products in a unit-norm tight frame can be
arbitrarily close to one4. The Gram matrix of a six-vector,
equiangular tight frame forR3 looks quite different:

2666664
1.0000 0.4472 −0.4472 0.4472 −0.4472 −0.4472
0.4472 1.0000 −0.4472 −0.4472 0.4472 −0.4472

−0.4472 −0.4472 1.0000 0.4472 0.4472 −0.4472
0.4472 −0.4472 0.4472 1.0000 −0.4472 −0.4472

−0.4472 0.4472 0.4472 −0.4472 1.0000 −0.4472
−0.4472 −0.4472 −0.4472 −0.4472 −0.4472 1.0000

3777775.

Every pair of vectors meets at an acute angle of63.4◦. The
vectors in this frame can be interpreted as the diagonals of an
icosahedron [30].

We have used alternating projection to compute equiangu-
lar tight frames, both real and complex, in dimensions two
through six. The algorithm performed poorly when initialized
with random vectors, which led us to adopt a more sophis-
ticated approach. We begin with many random vectors and
winnow this collection down by repeatedly removing whatever
vector has the largest inner product against another vector. It
is fast and easy to design starting points in this manner, yet
the results are impressive. These calculations are summarized
in Table I.

Alternating projection locates every real, equiangular tight
frame that can possibly exist in dimensions two through six;
algebraic considerations eliminate all the remaining values of
N [17], [57]. Moreover, the method computes these ensembles
very efficiently. For example, the algorithm produced a six-
vector, equiangular tight frame forR3 after a single trial. In
this case, 70 iterations lasting 0.4573 seconds were sufficient
to determine the first eight decimal places of the inner prod-
ucts.

In the complex case, the algorithm was able to compute
every equiangular tight frame that we know of. Unfortunately,

4To see this, consider a tight frame that contains two copies of an
orthonormal basis, where one copy is rotated away from the other by an
arbitrarily small angle.
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d
N 2 3 4 5 6

3 R R .. .. ..
4 C R R .. ..
5 .. . R R ..
6 .. R . R R
7 .. C C . R
8 .. . C . .
9 .. C . . C
10 .. .. . R .
11 .. .. . C C
12 .. .. . . C
13 .. .. C . .
14 .. .. . . .
15 .. .. . . .
16 .. .. C . R
17 .. .. .. . .
18 .. .. .. . .
19 .. .. .. . .

d
N 2 3 4 5 6

20 .. .. .. . .
21 .. .. .. C .
22 .. .. .. . .
23 .. .. .. . .
24 .. .. .. . .
25 .. .. .. C .
26 .. .. .. .. .
27 .. .. .. .. .
28 .. .. .. .. .
29 .. .. .. .. .
30 .. .. .. .. .
31 .. .. .. .. C
32 .. .. .. .. .
33 .. .. .. .. .
34 .. .. .. .. .
35 .. .. .. .. .
36 .. .. .. .. C

TABLE I

EQUIANGULAR TIGHT FRAMES

The notationsR and C respectively indicate that alternating projection was
able to compute a real, or complex, equiangular tight frame. Note that every
real, equiangular tight frame is automatically a complex, equiangular tight
frame. One period (.) means that no real, equiangular tight frame exists, and
two periods (..) mean that no equiangular tight frame exists at all.

no one has yet developed necessary conditions on the existence
of complex, equiangular tight frames aside from the upper
bound, N ≤ d2, and so we have been unable to rule out
the existence of other ensembles. Some of the computations
progressed quite smoothly. After 1000 iterations and 18.75
seconds, alternating projection delivered a collection of 25
vectors in five dimensions whose inner products were identical
in the first eight decimal places. On the other hand, it took
5000 iterations and 85.75 seconds to produce 21 vectors in
five dimensions whose inner products reached the same level
of accuracy. Even worse, we were unable to locate the 31-
vector equiangular tight frame inC6 until we had performed
two dozen random trials that lasted several minutes each. It
is some consolation that the authors of [63] indicate their
algorithm could not compute this ensemble at all.

It seems clear that some equiangular tight frames are much
easier to find than others. We have encountered less success
at constructing equiangular tight frames in higher dimensions.
But we have neither performed extensive experiments nor have
we attempted to fine-tune the method.

VI. PEAK-TO-AVERAGE-POWER RATIO

Finally, let us present a situation in which the matrix
nearness problem is much more difficult.

One useful property for DS-CDMA signature sequences
to have is a small peak-to-average-power ratio (PAR). The
PAR of a signal measures how the largest value of the
signal compares with the average power. Signals with large
PAR require higher dynamic range on the analog-to-digital
converters and the digital-to-analog converters. They may also
require more linear (and thus higher cost) power amplifiers.
In DS-CDMA systems, the PAR is normally of concern only
in the downlink (see e.g. [65]) because binary spreading

sequences are typically employed on the uplink. The sum-
capacity optimal sequences of [7], [10], [66] are tight frames,
which generally are not binary. Consequently their PAR may
be much higher than that of binary spreading sequences. If
these optimal sequences are to be used in real systems, PAR
side constraints should be included in the design problem. It is
therefore valuable to develop an alternating projection method
for constructing tight frames whose PAR does not exceed a
prescribed upper bound, which is a parameter of the design
problem.

A. Constraint Sets and Matrix Nearness Problems

The PAR in a digital communication system is funda-
mentally related to the analog waveforms that are generated.
From the perspective of sequence design, it usually suffices to
consider the PAR defined directly from the discrete sequence.
The discrete PAR of a vectorz is the quantity

PAR(z) def=
maxm |zm|2∑

m |zm|2/d
.

Note that1 ≤ PAR(z) ≤ d. The lower extreme corresponds to
a vector whose entries have identical modulus, while the upper
bound is attained only by (scaled) canonical basis vectors.

Suppose that we require the columns of the frame to have
squared normsc1, . . . , cN . In the DS-CDMA application, these
numbers depend on the users’ power constraints [7], [10]. It
follows from (3) thatα =

∑
n cn/d. The spectral constraint

set becomes

Xα
def= {X ∈ Cd,N : XX ∗ = (

∑
n cn/d) Id}.

Theorem 2 delivers the solution to the associated matrix
nearness problem.

Let ρ denote the upper bound on the PAR of the frame
elements. Then the structural constraint set will be

S
def= {S ∈ Cd×N : PAR(sn) ≤ ρ and ‖sn‖2

2 = cn}.

Given an arbitrary matrixZ , we must compute the nearest
element ofS . Since the structural constraint on each column
is independent and the Frobenius norm is separable, each
column yields an independent optimization problem. For each
column zn of the input matrix, we claim that the following
algorithm returnssn, the corresponding column of a nearest
matrix S from S .

Algorithm 2 (Nearest Vector with Low PAR):
INPUT:

• An input vectorz from Cd

• A positive numberc, the squared norm of the solution
vector

• A number ρ from [1, d], which equals the maximum
permissible PAR

OUTPUT:

• A vector s from Cd that solves

min
s
‖s− z‖2 subj. to PAR(s) ≤ ρ and ‖s‖2

2 = c.
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PROCEDURE:

1) Scalez to have unit norm; defineδ =
√

c ρ/d; and
initialize k = 0.

2) Let M index (d− k) components ofz with least mag-
nitude. If this set is not uniquely determined, increment
k and repeat Step 2.

3) If zm = 0 for eachm in M , a solution vector is

s =

{ √
c−k δ2

d−k for m ∈ M , and

δ ei arg zm for m /∈ M .

4) Otherwise, let

γ =

√
c− k δ2∑
m∈M |zm|2

.

5) If γ zm > δ for anym in M , incrementk and return to
Step 2.

6) The unique solution vector is

s =
{

γ zm for m ∈ M , and
δ ei arg zm for m /∈ M .

When ρ = 1, the output of the algorithm is a unimodular
vector whose entries have the same phase as the corresponding
entries ofz. On the other hand, whenρ = d, the output vector
equalsz. We now prove that the algorithm is correct.

Proof: We must solve the optimization problem

min
s
‖s− z‖2

2 subject to PAR(s) ≤ ρ and ‖s‖2
2 = c.

Let us begin with some major simplifications. First, rewrite
the PAR constraint by enforcing the norm requirement and
rearranging to obtain the equivalent condition

max
m

|sm| ≤
√

c ρ/d.

In the rest of the argument, the symbolδ will abbreviate the
quantity

√
c ρ/d. The PAR constraint becomes|sm| ≤ δ for

eachm = 1, . . . , d.
Now expand the objective function and enforce the norm

constraint again to obtain

min
s

[
c− 2 Re 〈s,z〉+ ‖z‖2

2

]
.

Observe that it is necessary and sufficient to minimize the
second term. It follows that the optimizer does not depend on
the scale of the input vectorz. So take‖z‖2 = 1 without loss
of generality.

Next observe that the PAR constraint and the norm con-
straint do not depend on the phases of the components in
s. Therefore, the components of an optimals must have the
same phases as the components of the input vectorz. In
consequence, we may assume that boths and z are non-
negative real vectors.

We have reached a much more straightforward optimization
problem. Given a non-negative vectorz with unit norm, we
must solve

max
s

〈s,z〉 subject to 〈s, s〉 = c and0 ≤ sm ≤ δ,

Observe that every point of the feasible set is a regular point,
i.e. the gradients of the constraints are linearly independent.

Therefore, Karush-Kuhn-Tucker (KKT) theory will furnish
necessary conditions on an optimizer [67].

We form the Lagrangian function

L(s, λ,µ,ν) = −〈s,z〉+ 1
2 λ (〈s, s〉 − c)

− 〈s,µ〉+ 〈s− δ 1,ν〉 .

The Lagrange multipliersµ and ν are non-negative because
they correspond to the lower and upper bounds ons. Mean-
while, the multiplierλ is unrestricted because it is associated
with the equality constraint.

The first-order KKT necessary condition on a regular local
maximums? is that

0 = (∇s L)(s?, λ?,µ?,ν?)
= −z + λ? s? − µ? + ν?,

(8)

where µ?
m > 0 only if s?

m = 0 and ν?
m > 0 only if

s?
m = δ. Notice that one ofµ?

m or ν?
m must be zero because

they correspond to mutually exclusive constraints. The second-
order KKT necessary condition on a regular local maximum
is that

0 ≤ yT (∇2
s L)(s?, λ?,µ?,ν?) y

= λ? yT y

for every vectory in the subspace of first-order feasible
variations. This subspace is non-trivial, soλ? ≥ 0.

Solve Equation (8) to obtain

λ?s? = z + µ? − ν?.

Wheneverµ?
m > 0, both s?

m = 0 and ν?
m = 0. This

combination is impossible becausezm ≥ 0. Therefore, we
may eliminateµ? to reach

λ? s? = z − ν?.

The casesλ? = 0 andλ? > 0 require separate consideration.
If λ? = 0, it is clear thatν? = z. Sinceν?

m > 0 only if
s?

m = δ, we must haves?
m = δ wheneverzm > 0. Suppose

that k components ofs? equal δ. The remaining(d − k)
components are not uniquely determined by the optimization
problem. From the many solutions, we choose one such that

s?
m =

√
c− k δ2

d− k
for m wherezm = 0.

This formula ensures thats? has the correct norm and that
none of its entries exceedsδ.

Whenλ? > 0, the solution has the form

s? = [γ z]δ ,

where γ is positive and the operator[·]δ truncates toδ
components of its argument that exceedδ. It is clear that the
largest components ofz are all truncated at the same time.
We only need to determinewhich components these are.

To that end, observe thatγ 7→ ‖[γ z]δ‖2 is a strictly
increasing function on[0, δ/zmin], where zmin is the least
positive component ofz. For at most one value ofγ, therefore,
does the vector[γ z]δ have norm

√
c. If this norm value were

not attained, thenλ? would equal zero. Letk be the number
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of entries ofs? that equalδ, and suppose thatM indexes the
remaining(d− k) components. Then

c = ‖s?‖2
2 = k δ2 + γ2

∑
m∈M

|zm|2.

Recall thatγ is positive. Therefore, is impossible thatk δ2 > c.
When k δ2 = c, it follows that zm = 0 for eachm in M .
Otherwise,zm must be non-zero for somem in M . Then the
value ofγ must be

γ =

√
c− k δ2∑
m∈M |zm|2

.

B. Convergence

For the alternating projection between the PAR constraint
set and the set ofα-tight frames, we have not proven a more
elaborate convergence theorem than the basic result, Theorem
4, because it is not easy to guarantee that the solution to the
PAR matrix nearness problem is unique. We have been able
to provide a sufficient condition on the fixed points of the
iteration that lie in the PAR constraint setS . Note that similar
fixed points arose in Section IV.

Theorem 10:A sufficient condition for a full-rank matrix
S from S to be a fixed point of the alternating projection be-
tweenS andXα is that the columns ofS are all eigenvectors
of SS∗. That is,SS∗S = SΛ, whereΛ ∈ CN×N is diagonal
and positive.

Proof: Refer to Appendix II-E.

C. Numerical Examples

Let us demonstrate that alternating projection can indeed
produce tight frames whose columns have specified PAR
and specified norm. We shall produce complex tight frames
because, in the real case, PAR constraints can lead to a discrete
optimization problem. The experiments all begin with the
initial 3× 6 matrix

24 .0748 + .3609i .0392 + .4558i .5648 + .3635i
.5861− .0570i −.2029 + .8024i −.5240 + .4759i

−.7112 + .1076i −.2622− .1921i −.1662 + .1416i

−.2567 + .4463i .7064 + .6193i .1586 + .6825i
−.1806− .1015i −.1946− .1889i .5080 + .0226i

.0202 + .8316i .0393− .2060i .2819 + .4135i

35.

The respective PAR values of its columns are 1.5521, 2.0551,
1.5034, 2.0760, 2.6475 and 1.4730.

Unimodular tight frames are probably the most interesting
example of frames with low PAR. Every entry of a unimodular
frame has an identical modulus, and so the PAR of each
column equals one. Let us apply the algorithm to calculate
a unit-norm, unimodular tight frame:

24 .1345 + .5615i .1672 + .5526i .4439 + .3692i
.5410− .2017i −.0303 + .5766i −.5115 + .2679i

−.5768 + .0252i −.2777− .5062i −.2303 + .5294i

−.3358 + .4696i .4737 + .3300i .0944 + .5696i
−.5432− .1956i −.3689− .4442i .5747 + .0554i

.1258 + .5635i −.0088− .5773i .4132 + .4033i

35.

Indeed, each of the columns has unit PAR, and the singular
values of the matrix are identical to eight decimal places. The
calculation required 78 iterations lasting 0.1902 seconds.

Alternating projection can also compute tight frames whose
columns have unit PAR but do not have unit norm. For
example, if we request the column norms 0.75, 0.75, 1, 1,
1.25 and 1.25, the algorithm yields

24 .3054 + .3070i .1445 + .4082i .3583 + .4527i
.4295− .0549i .1235 + .4150i −.5597 + .1418i

−.4228− .0936i −.0484− .4303i .0200 + .5770i

−.4264 + .3893i .4252 + .5831i .3622 + .6242i
−.5393− .2060i −.4425− .5701i .7165− .0863i

.2585 + .5162i −.2894− .6611i .1291 + .7101i

35.

One can check that the column norms, PAR and singular
values all satisfy the design requirements to eight or more
decimal places. The computation took 84 iterations over
0.1973 seconds.

Less stringent constraints on the PAR pose even less trouble.
For example, we might like to construct a tight frame whose
PAR is bounded by two and whose columns have norms 0.75,
0.75, 1, 1, 1.25 and 1.25. It is

24 .0617 + .1320i .0184 + .2764i .4299 + .3593i
.4256− .1031i −.0558 + .5938i −.5920 + .4974i

−.5912 + .0025i −.1304− .3363i −.0807 + .2857i

−.1382 + .2511i .6847 + .7436i .2933 + .6939i
−.4306− .2650i −.2095− .3072i .7317 + .0928i

.0852 + .8093i −.3504− .5289i .2918 + .6048i

35.

The computer worked for 0.0886 seconds, during which it
performed 49 iterations. As usual, the singular values match to
eight decimal places. It is interesting to observe that the frame
exceeds the design specifications. The respective PAR values
of its columns are 1.8640, 1.8971, 1.7939, 1.9867, 1.9618 and
1.0897.

VII. D ISCUSSION

As advertised, we have developed an alternating projection
method for solving frame design problems, and we have
provided ample evidence that it succeeds. In this section,
we discuss some implementation issues and some of the
limitations of the algorithm. We conclude with a collection
of related problems that one can also solve with alternating
projection.

A. The Starting Point

For alternating projection to succeed, it is essential to choose
a good starting point. Here are a few general strategies that
may be useful.

The simplest method is to selectN vectors uniformly at
random from the surface of the unit sphere inCd and form
them into an initial matrix. Although this technique sometimes
works, it is highly probable that there will be pairs of strongly
correlated vectors, and it is usually preferable for the frame
to contain dissimilar vectors. Nevertheless, a collection of
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random vectors converges almost surely to a tight frame as
more vectors are added [56].

A more practical idea is to select many vectors, say2 dN ,
and then use a clustering algorithm—such as Lloyd-Max
[68], sphericalk-means [69] or diametrical clustering [70]—to
separate these vectors intoN clusters. The cluster centroids
will usually be much more diverse than vectors chosen at
random. A related approach would select many random vectors
and then greedily remove vectors that are highly correlated
with the remaining vectors. This method seems to furnish
excellent starting points for constructing equiangular tight
frames. One might also build up a collection of random vectors
by allowing a new vector to join only if it is weakly correlated
with the current members.

Another technique is to start with a tight frame that has
been developed for another application. By rotating the frame
at random, it is possible to obtain many different starting
points that retain some of the qualities of the original frame. In
particular, equiangular tight frames make excellent initializers.

It is also possible to choose a collection ofN vectors from
a larger frame forCd. Similarly, one might truncate some
coordinates from a frame in a higher-dimensional space. In
particular, one might truncate an orthonormal basis forCN to
retain onlyd coordinates. See [71], for example, which uses
the Fourier transform matrix in this manner.

B. Limitations

Alternating projection is not a panacea that can alleviate
all the pain of frame design. While preparing this report, we
encountered several difficulties.

A theoretical irritation is the lack of a proof that alternating
projection converges in norm. No general proof is possible,
as the counterexample in [72] makes clear. Nevertheless, it
would be comforting to develop sufficient conditions that
guarantee the convergence of alternating projections between
non-convex sets. The results of [72] are the best that we know
of. We would also like to develop conditions that can ensure
convergence to a pair of points at minimal distance. Here, the
most general results are probably due to Csiszár and Tusńady
[73].

Another major inconvenience is that alternating projection
converges at a linear or sublinear rate [50]–[52]. For large
problems, it can be painful to wait on the solution. A valuable
topic for future research would be a method of acceleration.

A more specific disappointment was the inability of alter-
nating projection to construct tight frames over small finite
alphabets. It is straightforward to solve the matrix nearness
problem associated with a finite alphabet, and it can be shown
that the algorithm always converges in norm to a fixed point.
But the algorithm never once yielded a tight frame. This failure
is hardly surprising; discrete constraints are some of the most
difficult to deal with in optimization. It may be possible to use
annealing to improve the performance of the algorithm. This
would be a valuable topic for future research.

C. Related Problems

We have permitted a great deal of freedom in the selection
of the structural constraint set, but we only considered the

spectral constraints that arise naturally in connection with
tight frames. Nevertheless, alternating projection offers a
straightforward method for addressing other inverse eigenvalue
problems. For example, one might try to construct general
frames with prescribed lower and upper frame bounds,α
and β. Instead of forcing the Gram matrix to be a rank-d
orthogonal projector, one might impose only a rank constraint
or a constraint on its condition number. To implement the
algorithm, it would only be necessary to solve the matrix
nearness problem associated with these spectral constraints.

One can also use alternating projection to construct positive
semi-definite (PSD) matrices that have certain structural prop-
erties. Higham, for example, has used a corrected alternating
projection to produce the correlation matrix nearest to an input
matrix [38]. (A correlation matrix is a PSD matrix with a
unit diagonal.) Since the PSD matrices form a closed, convex
set, it is possible to prove much more about the behavior of
alternating algorithms.

We have also had good success using alternating projection
to compute sphere packings in real and complex projective
spaces. These methods can be extended to produce sphere
packings in real and complex Grassmannian manifolds [64]. It
seems clear that alternating projection has a promising future
for a new generation of problems.
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APPENDIX I
POINT-TO-SET MAPS

To understand the convergence of the algorithms, we rely
on some basic results from the theory of point-to-set maps.
Zangwill’s book [74] is a good basic reference with applica-
tions to mathematical programming. More advanced surveys
include [75], [76]. de Leeuw presents statistical applications
in [52]. We have drawn from all these sources here.

A. Point-to-Set Maps

Let Y andZ be arbitrary sets. Thepower setof Z is the
collection of all subsets ofZ , and it is denoted by2Z . A
point-to-set mapfrom Y to Z is a functionΩ : Y → 2Z .
In words,Ω maps each point ofY to a subset ofZ .

There are several different ways of combining point-to-set
maps. Take two mapsΩyz : Y → 2Z andΩzw : Z → 2W .
The composition of these maps carries a pointy to a subset
of W via the rule

(Ωzw ◦ Ωyz)(y) =
⋃

z∈Ωyz(y)

Ωzw(z).

This definition can be extended in the obvious way to a longer
composition of maps. Now, supposeΩuv mapsU to 2V . The
Cartesian product ofΩuv andΩyz is the point-to-set map from
U × Y to V ×Z given by

(Ωuv × Ωyz)(u, y) = Ωuv(u)× Ωyz(y).
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B. Topological Properties

Suppose that the underlying sets are endowed with topolo-
gies so that we may speak of convergence. A mapΩ : Y →
2Z is closed at the pointȳ in Y whenever the statements
yj → ȳ, zj ∈ Ω(yj) andzj → z̄ together imply that̄z ∈ Ω(ȳ).
One may interpret this definition as saying that the setΩ(ȳ) is
“bigger” than the sets in the sequence{Ω(yj)}. On the other
hand, the mapΩ is openat ȳ in Y whenever the statements
yj → ȳ and z̄ ∈ Ω(ȳ) together imply the existence of a
numberJ and a sequence of points{zj} such thatzj → z̄ and
zj ∈ Ω(yj) for all j ≥ J . More or less, this statement means
that the setΩ(ȳ) is “smaller” than the sets in the sequence
{Ω(yj)}. A map which is both open and closed atȳ is said
to becontinuousat ȳ. We callΩ an open map, closed mapor
continuous mapwhenever it has the corresponding property
for every point inY .

Finite Cartesian products and finite compositions of open
maps are open. Finite Cartesian products of closed maps are
closed. IfΩyz : Y → 2Z andΩzw : Z → 2W are closed and
Z is compact, then the composition(Ωzw ◦ Ωyz) is closed.

C. Fixed Points

Suppose thatΩ is a point-to-set map fromY to itself. Let
y be a point ofY for which Ω(y) = {y}. Then y is called
a fixed pointof the mapΩ. In contrast, ageneralized fixed
point of Ω is a point for whichy ∈ Ω(y). When we wish
to emphasize the distinction, we may refer to a regular fixed
point as astrongor classicalfixed point.

D. Infimal Maps

Minimizing functions leads to a special type of point-to-set
map. Suppose thatf : Y ×Z → R+ is a real-valued function
of two variables, and letΩ be a point-to-set map fromY to
Z . Associated withf andΩ is an infimal mapdefined by

Mz(y) def= arg min
z∈Ω(y)

f(y, z).

If f(y, ·) attains no minimal value onΩ(y), thenMz(y) = ∅,
the empty set. Under mild conditions, infimal maps are closed.

Theorem 11 (Dantzig-Folkman-Shapiro [77]):If Ω is con-
tinuous atȳ and f(ȳ, ·) is continuous onΩ(ȳ), then Mz is
closed atȳ.

In particular, the constant mapΩ : y 7→ Z is continuous
wheneverZ is closed. So minimizing a continuous function
over a fixed, closed set always yields a closed infimal map.

E. Iterative Algorithms

Zangwill was apparently the first to recognize that many
procedures in mathematical programming find their most
natural expression in the language of point-to-set maps [74].
An algorithmic mapor algorithm is simply a functionΩ :
Y → 2Y . Given an initial pointy0 of Y , an algorithmic map
generates a sequence of iterates according to the rule

yj+1 ∈ Ω(yj).

Suppose thatf : Y → R+ is a continuous, non-negative
function. We say that the algorithmΩ is monotonic with
respect tof when

z ∈ Ω(y) implies f(z) ≤ f(y).

An algorithmstrictly monotonicwith respect tof is a mono-
tonic algorithm for which

z ∈ Ω(y) andf(z) = f(y) imply z = y.

Zangwill showed that a closed, monotonic algorithm converges
in a weak sense to a generalized fixed point. We present a
streamlined version of his result.

Theorem 12 (Zangwill [74]):Let Ω be a closed algorithmic
map on a compact setY , and assume thatΩ is monotonic with
respect to a continuous, non-negative functionf . Suppose that
the algorithm generates a sequence of iterates{yj}.
• The sequence has at least one accumulation point inY .
• Each accumulation point̄y satisfiesf(ȳ) = limj f(yj).
• Each accumulation point̄y is a generalized fixed point of

the algorithm.
R. R. Meyer subsequently extended Zangwill’s Theorem

to provide a more satisfactory convergence result for strictly
monotonic algorithms. One version of his result follows.
For reference, a sequence{yj} in a normed space is called
asymptotically regularwhen‖yj+1 − yj‖ → 0.

Theorem 13 (Meyer [72]):Let Y be a compact subset of
a normed space, and assume thatΩ is a closed algorithm on
Y that it is strictly monotonic with respect to the continuous,
non-negative functionf . Suppose thatΩ generates a sequence
of iterates{yj}. In addition to the conclusions of Zangwill’s
Theorem, the following statements hold.

• Each accumulation point of the sequence is a (strong)
fixed point of the algorithm.

• The sequence of iterates is asymptotically regular. In
consequence, it has a continuum of accumulation points,
or it converges in norm [78].

• In case that the fixed points ofΩ on each isocontour
of f form a discrete set, then the sequence of iterates
converges in norm.

F. Alternating Projection

An alternating projection can be interpreted as a kind of
monotonic algorithm. Suppose thatf : Y × Z → R+ is a
continuous function. Thenf induces two natural infimal maps,

My(z) def= arg min
y∈Y

f(y, z) and

Mz(y) def= arg min
z∈Z

f(y, z).

If Y andZ are closed, then Theorem 11 shows that the maps
My andMz are both closed.

We interpret alternating projection as an algorithm on the
product spaceY ×Z equipped with the usual product topol-
ogy. Given an initial iteratey0 from Y , alternating projection
generates a sequence of iterates{(yj , zj)} via the rules

zj ∈ Mz(yj) and yj+1 ∈ My(zj)
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for eachj ≥ 0. Formally, this algorithm can be written as
the composition of two sub-algorithms,Ωto andΩfro, that are
defined as

Ωto : (y, z) 7→ {y} ×Mz(y) and

Ωfro : (y, z) 7→ My(z)× {z}.

It follows thatΩ def= Ωfro ◦Ωto is a closed algorithm whenever
Y andZ are compact. Both sub-algorithms decrease the value
of f , so it should also be clear thatΩ is monotonic with respect
to f . Zangwill’s Theorem tenders a basic convergence result.

Corollary 14: Let Y andZ be compact. Suppose that the
alternating projection betweenY andZ generates a sequence
of iterates{(yj , zj)}.
• The sequence has at least one accumulation point.
• Each accumulation point of the sequence lies inY ×Z .
• Each accumulation point is a generalized fixed point of

the algorithm.
• Each accumulation point(ȳ, z̄) satisfies f(ȳ, z̄) =

limj f(yj , zj).

If the infimal mapsMy andMz are single-valued, we can
achieve a much more satisfactory result.

Corollary 15: Let Y and Z be compact subsets of a
normed space, and assume that the infimal mapsMy and
Mz are single-valued. Suppose that the alternating projection
betweenY andZ generates a sequence of iterates{(yj , zj)}.
In addition to the conclusions of Corollary 14, we have the
following.
• Each accumulation point is a classical fixed point of the

alternating projection.
• The sequence of iterates is asymptotically regular.
• The sequence of iterates either converges in norm or it

has a continuum of accumulation points.
Proof: We just need to show that the algorithm is

strictly monotonic with respect tof . Suppose thatf(y, z) =
f(Ω(y, z)). Since the infimal maps never increase the value
of f , we have the equalities

f(y, z) = f(y, Mz(y))
= f((My ◦Mz)(y),Mz(y)) = f(Ω(y, z)).

Since Mz yields the unique minimizer of f with its first
argument fixed, the first equality implies thatMz(y) = {z}.
Likewise, the second equality yields(My ◦ Mz)(y) = {y}.
That is, Ω(y, z) = {(y, z)}. An application of Meyer’s
Theorem completes the argument.

This result is a special case of a theorem of Fiorot and
Huard [79]. In Appendix II, we shall translate the language of
these corollaries into more familiar terms.

G. Literature on Alternating Projection

Like most good ideas, alternating projection has a long biog-
raphy and several aliases, includingsuccessive approximation,
successive projection, alternating minimizationandprojection
on convex sets. This section offers a résuḿe of the research
on alternating projection, but it makes no pretension to be
comprehensive. Deutsch has written more detailed surveys,
including [53], [80], [81].

According to Deutsch [80], alternating projection first ap-
peared in a set of mimeographed lecture notes, written by John
von Neumann in 1933. von Neumann proved that the alter-
nating projection between two closed subspaces of a Hilbert
space converges pointwise to the orthogonal projector onto
their intersection [40]. Apparently, this theorem was not very
well advertised, because many other authors have discovered
it independently, including Aronszajn [50] and Wiener [82]. It
was shown by Aronszajn [50] and Kayalar–Weinert [51] that
both sequences of iterates converge geometrically with a rate
equal to the squared cosine of the (Friedrichs) principal angle
between the two subspaces.

It is natural to extend the alternating projection between
two subspaces by cyclically projecting onto several subspaces.
Halperin demonstrated that, in a Hilbert space, the cyclic pro-
jection among a finite number of closed subspaces converges
pointwise to the orthogonal projector onto their intersection
[83]. The convergence is geometric [84]. Optimal bounds on
the rate of convergence can be computed with techniques of
Xu and Zikatonov [85]. Bauschkeet al. study methods for
accelerating cyclic projection in the recently minted paper
[86].

It will come as no surprise that researchers have also
studied alternating projection between subspaces of a Banach
space. Unaware of von Neumann’s work, Diliberto and Straus
introduced an alternating method for computing the best sup-
norm approximation of a bivariate continuous function as the
sum of two univariate continuous functions, and they proved
some weak convergence results [87]. The norm convergence
of the sequence of iterates remained open until the work
of Aumann [88]. M. Golomb extended the Diliberto–Straus
algorithm to other best-approximation problems [89]. For more
information on alternating algorithms in Banach spaces, see
the monograph of Cheney and Light [90].

Another fruitful generalization is to consider projection
onto convex subsets. The projector—orproximity map—onto
a closed, convex subset of a Hilbert space is well-defined,
because each point has a unique best approximation from that
set. The basic result, due to Cheney and Goldstein, is that the
alternating projection between two closed, convex subsets of
a Hilbert space will converge to a pair of points at minimal
distance from each other, so long as one set is compact [4].
Dykstra [91], [92] and Han [93] independently developed a
cyclic projection technique that, given a point, can compute its
best approximation from the intersection of a finite number of
closed, convex sets in a Hilbert space. Their algorithm requires
a correction to each projection. To date, the most extensive
treatment of cyclic projection methods is the survey article by
Bauschke and Borwein [94].

Most of the work on alternating projection has involved the
Euclidean distance, but it is possible to develop results for
other divergence measures. In particular, Csiszár and Tusńady
have shown that alternate minimization of the Kullback-
Leibler divergence can be used to find a pair of minimally
distant points contained within two convex sets of probability
measures [73].

There has been some research on alternating projection
between non-convex sets, but the theoretical results so far
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are limited. Fiorot and Huard have applied the theorems of
Zangwill and Meyer to obtain weak convergence results for
a class of block relaxation schemes that include alternating
and cyclic projection onto non-convex sets [79]. Combettes
and Trussell have developed a technique which inflates the
non-convex sets into convex sets; they offer some qualified
convergence results [95]. Cadzow has also demonstrated em-
pirically that cyclic projections among non-convex sets can
effectively solve certain signal enhancement problems [96].
More research in this direction would be valuable.

Alternating projection has found application to many differ-
ent problems, of which we offer a (small) selection. The most
famous example from these pages must be the Blahut–Arimoto
algorithm for computing channel capacity and rate-distortion
functions [97], [98]. In the field of signal restoration and
recovery, we mention the work of Landau–Miranker [99], Ger-
chberg [100], Youla–Webb [101], Cadzow [96] and Donoho–
Stark [102]. Çetin, Gerek and Yardimci show that projection
on convex sets can compute multi-dimensional equiripple
filters [103]. Xu and Zikatonov discuss how alternating pro-
jection can be used to solve the linear systems that arise in
the discretization of partial differential equations [85]. In the
matrix analysis community, alternating projection has been
used as a computational method for solving inverse eigenvalue
problems [37], [39] and for solving matrix nearness problems
[38], [104]. In statistics, one may view the Expectation Max-
imization (EM) algorithm as an alternating projection [105].
de Leeuw has discussed other statistical applications in [52].

APPENDIX II
CONVERGENCE ANDFIXED POINTS

Armed with the theory of the last appendix, we are finally
girded to attack the convergence of Algorithm 1. The results
on point-to-set maps will allow us to dispatch this dragon
quickly. Then we shall turn our attention to the convergence
of the algorithm in the special case that the frame vectors have
prescribed norms. This problem will require a longer siege, but
it, too, will yield to our onslaught. The convergence results that
we develop are all novel.

A. Basic Convergence Proof

In this section, we establish the convergence of the basic
alternating projection algorithm that appears in Section III-D.
Our main burden is to translate the language of point-to-set
maps into more familiar terms.

Theorem 16 (Global Convergence):Let Y and Z be
closed sets, one of which is bounded. Suppose that alternating
projection generates a sequence of iterates{(Yj ,Zj)}. This se-
quence possesses at least one accumulation point, say(Y ,Z ).
• Every accumulation point lies inY ×Z .
• Every accumulation point satisfies∥∥Y − Z

∥∥
F

= lim
j→∞

‖Yj − Zj‖F .

• Every accumulation point satisfies∥∥Y − Z
∥∥

F
= dist(Y ,Z ) = dist(Z ,Y ).

Proof: Assume without loss of generality thatY is the
compact set, whileZ is merely closed. We must establish that
we have all the compactness necessary to apply Corollary 14.

Without loss of generality, assume thatY0 ∈ Y . If δ =
‖Y0 − Z0‖F, then subsequent iterates always satisfy

‖Yj − Zj‖F ≤ δ and

‖Yj+1 − Zj‖F ≤ δ.

Thus, we may restrict our attention to the sets

Y1 = {Y ∈ Y : dist(Y ,Z ) ≤ δ} and

Z1 = {Z ∈ Z : dist(Z ,Y ) ≤ δ}.

Since Y is compact,Y1 is compact because it is a closed
subset of a compact set. On the other hand,Z1 is compact
because it is the intersection of the closed setZ with a
compact set, namely the collection of matrices within a fixed
distance ofY .

We may apply Corollary 14. Each of the conclusions
of the corollary has a straightforward analogue among the
conclusions of the present theorem. The only question that
may remain is what it means for a pair of matrices(Y ,Z )
to be a generalized fixed point of the alternating projection.
A generalized fixed point of an algorithm is a point which
is a possible successor of itself. In the present case, a pair of
matrices can succeed itself if and only if the second component
is a potential successor of the firstand the first component is
a potential successor of the second. The matrixZ can succeed
the matrixY if and only if∥∥Z − Y

∥∥
F

= dist(Y ,Z ).

Likewise, Y can succeedZ if and only if∥∥Y − Z
∥∥

F
= dist(Z ,Y ).

This observation completes the proof.
Since the collection ofα-tight frames and the collection of

their Gram matrices are both compact, the theorem has two
immediate corollaries.

Corollary 17: If Xα is the collection ofα-tight frames, and
S is a closed set of matrices, then Theorem 16 applies with
Y

def= S andZ
def= Xα.

Corollary 18: If Gα contains the Gram matrices of allα-
tight frames, andH is a closed set of Hermitian matrices,
then Theorem 16 applies withY

def= Gα andZ
def= H .

B. Stronger Convergence Results

Meyer’s Theorem suggests that it might be possible to
provide a stronger convergence result for Algorithm 1 if we
can ensure that the matrix nearness problems have unique
solutions. In many cases, the nearness problems are uniquely
soluble whenever the iterates get sufficiently close together.
This provides a local convergence result that is much stronger
than Zangwill’s Theorem allows. First, we prove a general
version of this result. Afterward, we show that it applies
to an alternating projection that involves one of the spectral
constraint setsXα or Gα.
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Recall that the distance between a matrixM and a setY
is defined as

dist(M,Y ) def= inf
Y∈Y

‖M − Y ‖F .

Theorem 19:Let Y andZ be closed sets of matrices, one
of which is compact. Suppose that the alternating projection
betweenY andZ generates a sequence of iterates{(Yj ,Zj)},
and assume that the matrix nearness problems

min
Y∈Y

‖Y −M‖F

min
Z∈Z

‖Z −M‖F

have unique solutions for any matrixM in the sequence of
iterates. Then we reach the following conclusions.
• The sequence of iterates possesses at least one accumu-

lation point, say(Y ,Z ).
• Each accumulation point lies inY ×Z .
• The pair(Y ,Z ) is a fixed point of the alternating projec-

tion. In other words, if we applied the algorithm toY or
to Z every iterate would equal(Y ,Z ).

• Each accumulation point satisfies∥∥Y − Z
∥∥

F
= lim

j→∞
‖Yj − Zj‖F .

• The component sequences are asymptotically regular, i.e.

‖Yj+1 − Yj‖F → 0 and ‖Zj+1 − Zj‖F → 0.

• Either the component sequences both converge in norm,∥∥Yj − Y
∥∥

F
→ 0 and

∥∥Zj − Z
∥∥

F
→ 0,

or the set of accumulation points forms a continuum.
Proof: The argument in the proof of Theorem 16 shows

that we are performing an alternating minimization between
two compact sets. The hypotheses of the theorem guarantee
that each iterate is uniquely determined by the previous iterate.
Corollaries 14 and 15 furnish the stated conclusions.

The only point that may require clarification is what it takes
for a pair of matrices(Y ,Z ) to be a classical fixed point of the
alternating projection. A classical fixed point of an algorithm is
the only possible successor of itself. In the case of alternating
projection, the matrixZ must be the unique successor of the
Y , and the matrixY must be the unique successor ofZ . This
observation completes the argument.

Due to the peculiar structure of the spectral constraint
sets Xα and Gα, the solutions to the associated matrix
nearness problems are often unique. Therefore, the alternating
projection algorithms that we have considered in this paper
sometimes have better performance than the basic convergence
result, Theorem 16, would predict.

We remind the reader that

Xα
def= {X ∈ Cd×N : XX ∗ = α Id}, and

Gα
def= {G ∈ CN×N : G = G∗,

andG has eigenvalues(α, . . . , α︸ ︷︷ ︸
d

, 0, . . . , 0)}.

The uniqueness of the matrix nearness problems will follow
from the Wielandt–Hoffman Theorem, a powerful result from
matrix analysis.

Theorem 20 (Wielandt–Hoffman [26]):Suppose thatA and
B are N × N Hermitian matrices, and let the vectorsλ(A)
and λ(B) list the eigenvalues ofA and B in algebraically
non-increasing order. Then

‖λ(A)− λ(B)‖2 ≤ ‖A− B‖F .

Suppose instead thatA andB ared×N rectangular matrices
with d ≤ N , and letσ(A) andσ(B) list the largestd singular
values ofA andB in non-increasing order. Then

‖σ(A)− σ(B)‖2 ≤ ‖A− B‖F .

Corollary 21 (Local Convergence with ConstraintXα):
Let S be a closed set ofd × N matrices for which the
associated matrix nearness problem

min
S∈S

‖S −M‖F

has a unique solution wheneverdist(M,S ) < ε. Imagine
that the alternating projection betweenS and Xα generates
a sequence of iterates{(Sj ,Xj)} in which

‖Sj − Xj‖F < min{ε, α} for some indexJ.

The conclusions of Theorem 19 are in force.
Proof: According to Theorem 2, the matrix inXα nearest

to a matrixM is unique so long asM has full rank. Ad×N
matrix is rank-deficient only if itsd-th largest singular value is
zero. Observe that the largestd singular values of each matrix
in Xα all equalα > 0. According to the Wielandt–Hoffman
Theorem, any matrix sufficiently close toXα cannot be rank-
deficient. More precisely,dist(M,Xα) < α implies thatM
has full rank, which in turn shows thatM has a unique best
approximation inXα.

Define the constraint sets

Y
def= S ∩ closure{Sj : j ≥ J} and

Z
def= Xα ∩ closure{Xj : j ≥ J}.

Since Xα is compact,Z is also compact. We will apply
Theorem 19 to the tail of the sequence of iterates, beginning
with indexJ . For j ≥ J , each matrixSj is close enough toZ
and each matrixXj is close enough toY that we can ensure
the matrix nearness problems have unique solutions.

Corollary 22 (Local Convergence with ConstraintGα):
Let H be a closed set ofN × N matrices for which the
associated matrix nearness problem

min
H∈H

‖H −M‖F

has a unique solution wheneverdist(M,H ) < ε. Imagine
that the alternating projection betweenGα and H generates
a sequence of iterates{(Gj ,Hj)} in which

‖Gj − Hj‖F < min{ε, α/
√

2} for some indexJ.

The conclusions of Theorem 19 are in force.
Proof: Theorem 3 indicates that the matrix inGα nearest

to a matrix M is unique so long as itsd-th and (d + 1)-st
eigenvalues are distinct. Imagine thatM is a matrix whose
d-th and(d + 1)-st eigenvalues both equalτ . Since thed-th
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and (d + 1)-st eigenvalue of a matrix inGα are α and zero,
the Wielandt–Hoffman Theorem shows that

dist(M,Gα)2 ≥ (α− τ)2 + τ2.

Varying τ , the minimum value of the right-hand side isα2/2.
Therefore,dist(M,Gα) < α/

√
2 implies that thed-th and

(d + 1)-st eigenvalues ofM are distinct. In consequence,M
has a unique best approximation fromGα.

As before, define the constraint sets

Y
def= H ∩ closure{Hj : j ≥ J} and

Z
def= Gα ∩ closure{Gj : j ≥ J}.

Since Gα is compact,Z is also compact. We will apply
Theorem 19 to the tail of the sequence of iterates, beginning
with indexJ . For j ≥ J , each matrixHj is close enough toZ
and each matrixGj is close enough toY that we can ensure
the matrix nearness problems have unique solutions.

C. Specified Column Norms

This section offers a detailed analysis of the alternating
projection between the set ofα-tight frames and the collection
of matrices with specified column norms.

Let c1, . . . , cN be positive numbers that denote the squared
column norms we desire in the frame. Without loss of gener-
ality, we assume that

∑
n cn/d = 1 to streamline the proofs.

Then the structural constraint set is

S
def= {S ∈ Cd×N : ‖sn‖2

2 = cn}.

The tightness parameter of the frameα must equal one, so we
define the set of 1-tight frames as

X1
def= {X ∈ Cd×N : XX ∗ = Id}.

Suppose thatS0 is a full-rank matrix drawn fromS , and
perform an alternating projection between the setsS andX1

to obtain sequences{Sj} and {Xj}. Proposition 23 of the
sequel shows that the sequence{Sj} lies in a compact subset
of S whose elements have full rank, while the sequence{Xj}
lies in a compact subset ofX1 whose elements have non-
zero columns. By an appeal to the matrix nearness results,
Theorem 2 and Proposition 5, we see that each iterate is
uniquely determined by its predecessor. We may therefore
apply Corollary 15.

In this subsection, we complete the foregoing argument
by demonstrating that the iterates are well-behaved. In the
next subsection, we classify the full-rank fixed points of the
alternating projection betweenS andX1.

Set cmin = minn cn, and define the diagonal matrixC
whose entries are

√
c1, . . . ,

√
cN .

Proposition 23: Assume that the initial iterateS0 is a full
rank matrix fromS . For every positive indexj,

1) the Euclidean norm of each column ofXj exceeds√
cmin/ ‖C‖F; and

2) the smallest singular value ofSj exceeds
√

cmin.

The matrices that satisfy these bounds form compact subsets
of X1 andS .

Proof: Assume thatj ≥ 0, and make the inductive
assumption thatSj has full rank. First, we bound the top
singular value ofSj by exploiting the relationship between
the singular values of a matrix and its Frobenius norm. Since
C lists the column norms ofSj , it follows that ‖Sj‖2

F =
‖C‖2

F. The squared Frobenius norm also equals the sum of
the squared singular values ofSj . It is immediate that the
maximum singular value ofSj satisfies

σmax(Sj)2 ≤ ‖C‖2
F . (9)

Next we use this relation to estimate the column norms ofXj .
Let Sj have singular value decompositionUΣV ∗, and write
the n-th columns ofSj andXj assn andxn. On account of
the fact thatXj = (SjSj

∗)−1/2Sj , we have

‖xn‖2 =
∥∥∥(SjSj

∗)−1/2 sn

∥∥∥
2

=
∥∥UΣ−1U∗ sn

∥∥
2

≥
√

cmin/σmax(Sj),

(10)

since the norm ofsn is at least
√

cmin. Introducing the estimate
(9) into (10) yields the first part of the proposition.

Now, we show that the smallest singular value ofSj+1

remains well away from zero. The Courant–Fischer Theorem
for singular values [26] states that one may calculate thek-th
largest singular value of a matrixB ∈ Cd×N as

σk(B) = max
Z

min
z 6=0

‖B z‖2

‖z‖2

,

whereZ ranges over allk-dimensional subspaces ofCN and
z ∈ Z [26]. DefineTj to be the diagonal matrix that lists the
column norms ofXj . Therefore, the nearest matrix inS can
be written asSj+1 = Xj T−1

j C . Then put

Z
def= {C−1Tj x : x ∈ rowspanXj}.

Since Xj has full row-rank,Z forms a d-dimensional sub-
space. Select a unit vectorz from Z , and express it as
z = C−1Tj x for somex in rowspanXj . By construction,
Xj has orthonormal rows, so we may compute

‖Sj+1 z‖2 =
∥∥XjT

−1
j C z

∥∥
2

= ‖Xj x‖2

= ‖x‖2 (sincex ∈ rowspanXj)

=
∥∥T−1

j C z
∥∥

2
.

The matrixXj is a submatrix of a unitary matrix, so its column
norms cannot exceed one. Thus every entry ofT−1

j must be
at least one. It follows that

‖Sj+1 z‖2 ≥
√

cmin.

Applying the Courant-Fischer Theorem yields

σmin(Sj+1) ≥
√

cmin.

The second part of the proposition is complete.
Finally, we must make the compactness argument. We have

shown that the squared singular values of an iterateSj must lie
in the closed interval[

√
cmin, ‖C‖F]. The minimum squared

singular value of a matrix is a continuous function of the
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matrix entries, which follows from the Wielandt–Hoffman
Theorem. Therefore, the matrices whose smallest singular
value lies in this interval form a closed set. We conclude that
the intersection of this set with the compact setS is compact.
The same argument implies that the sequence{Xj} lies in a
compact subset ofX1 whose matrices have column norms
bounded away from zero.

D. Fixed Points I

It remains to characterize the fixed points of the alternating
projection between the set of matrices with fixed column
norms and the set ofα-tight frames.

Proposition 24: The full-rank stationary points of an alter-
nating projection betweenS andXα are precisely those full-
rank matricesS from S whose columns are all eigenvectors
of SS∗. That is,SS∗S = SΛ, whereΛ ∈ CN×N is diagonal
and positive with at mostd distinct values.

Proof: Define the diagonal matrixT = T (S) whose
entries are the column norms ofα (SS∗)−1/2 S .

Suppose thatS is a full-rank fixed point of the algorithm.
Thus projectingS ontoXα and projecting back toS returns
S . Symbolically,

S = (α (SS∗)−1/2 S) (T−1C ).

Define Λ = α T−1C . Then the equation becomes
(SS∗)−1/2 S = SΛ−1. Due to the joint eigenstructure of a
positive-definite matrix and its positive-definite roots [26], it
follows that (SS∗) S = SΛ2.

Conversely, suppose thatS has full rank and that(SS∗) S =
SΛ2 for some positive diagonal matrixΛ. Equivalently,
(SS∗) sn = λ2

n sn for eachn. It follows that

(SS∗)−1/2 sn = λ−1
n sn for eachn.

Multiply by α, and take norms to see thattn = α λ−1
n

√
cn.

Combine these equations into the matrix equationΛ =
α T−1C . It follows that S is a fixed point of the algorithm.

E. Fixed Points II

Proposition 24 allows us to provide a partial characterization
of the fixed points of any alternating projection between the
set ofα-tight framesXα and any structural constraint setZ
that contains matrices with fixed column norms. This result
applies even if the matrices inZ have additional properties.

Proposition 25: Suppose that the column norms of matrices
in Z are fixed. A sufficient condition for a full-rank matrixZ
in Z to be a fixed point of the alternating projection between
Z and Xα is that the columns ofZ are all eigenvectors of
ZZ∗. That is,ZZ∗Z = ZΛ, whereΛ is a positive, diagonal
matrix with no more thand distinct entries.

Proof: Let Z be a closed subset of the closed setS , a
collection of matrices with prescribed column norms. Suppose
that P (·) is a sufficient condition forS to be a fixed point of
the alternating projection betweenS and Xα. Assume that
P (Z ) for a matrix Z in Z , and letX be the matrix inXα

closest toZ . SinceP (Z ) andZ ∈ S , it follows thatZ is the

matrix in S closest toX . Therefore,Z is also a fixed point of
the alternating minimization betweenZ andXα. An appeal
to Proposition 24 completes the proof.
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