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Abstract— Tight frames, also known as general Welch-Bound- tight frame to a given ensemble of structured vectors; then
Equality sequences, generalize orthonormal systems. Numer-jt finds the ensemble of structured vectors nearest to the
ous applications—including communications, coding and sparse tight frame; and it repeats the procead infinitum This

approximation—require finite-dimensional tight frames that pos- techni - | to th thod of ecti
sess additional structural properties. This paper proposes a echnique 1s analogous to the method of projection on convex

versatile alternating projection method that is flexible enough to  S€ts (POCS) [4], [5], except that the class of tight frames is
solve a huge class of inverse eigenvalue problems, which includesnon-convex, which complicates the analysis significantly. Nev-
the frame design problem. To apply this method, one only needs ertheless, our alternating projection algorithm affords simple
to solve a matrix neamess problem that arises naturally from ;51ementations, and it provides a quick route to solve difficult
the design specifications. Therefore, it is fast and easy to develop . . . . .
versions of the algorithm that target new design problems. frame design problems. This article offers exten_swe numerical
Alternating projection is likely to succeed even when algebraic €vidence that our method succeeds for several important cases.
constructions are unavailable. We argue that similar techniques apply to a huge class of
To demonstrate that alternating projection is an effective tool jnverse eigenvalue problems.
for frame design, the article studies some important structural  There js a major conceptual difference between the use
properties in detail. First, it addresses the most basic de- . . . - o
sign problem—constructing tight frames with prescribed vector O,f f'n'te models in the numencal. calculat-|o.n OT |nf|n!te-
norms. Then, it discusses equiangular tight frames, which are dimensional frames and the design of finite-dimensional
natural dictionaries for sparse approximation. Last, it examines frames. In the former case, the finite model plays only an
tight frames whose individual vectors have low peak-to-average- auxiliary role in the approximate computation of an infinite-
power ratio (PAR), which is a valuable property for COMA appli-  gimensional tight frame [1]. In the latter case, the problem

cations. Numerical experiments show that the proposed algorithm d ideration is alreadv finite-di . | thus it d
succeeds in each of these three cases. The appendices thoroughlk’n er consideraton I1s already nnite-dimensional, thus It does

investigate the convergence properties of the a|gorithm_ not inVOlVe discretization iSSUeS. In th|S paper, we Consider

Index Terms—Tight frames, general Welch-Bound-Equality OnII:y flnlte;jdlmenglonal tlgh.t {Irames'l brai bl It boil
sequences, alternating projection, inverse eigenvalue problems, Frame design is essentially an algebraic problem. It boils

DS-CDMA, signature sequences, equiangular lines, Grassman-down to producing a structured matrix with certapectral

nian packing, peak-to-average-power ratio, point-to-set maps properties, which may require elaborate discrete and combina-
torial mathematics. Alternating projection is powerful because
it reduces this fiendish algebra to a simple analytic question:

id | lizati ‘ How does one find an ensemble of structured vectors nearest
T IGHT FRAMES provide a natural generalization o Mo a given tight frame? This minimization problem can usually

thonormal systems, and they ari§e in numerous praqtitbég dispatched with standard tools, such as differential calculus
and theoretical contexts [1]. There is no shortage of tlgm. Karush—Kuhn—Tucker theory.

frames, and applications will generally require that the Vectors |, the past, most design methods have employed algebraic

comprising the frame have some kind of additional Strucmrﬁechniques. To appreciate the breadth of this literature, one

For example, it might be necessary for the vectors to haﬁ‘ﬁght peruse Sarwate’s recent survey paper about tight frames

specific Euclidean norms, or perhaps the vectors should hav@ '\ \nit-norm vectors [6]. The last few years have also seen

small mutual |n':1er products. Th“ﬁ’ ?rlses’)a design problegy e essentially algebraic algorithms that can construct tight
How do you build a structured tight frame frames with non-constant vector norms [7]-[9].

To address the quest|on,_ this ar_t|clg proposes a numericayypap, algebraic methods work, they work brilliantly. A
metlrgo_d based O”h alt?rna_tlrr:g pTOJeCt'OT tha(tj b“r'llds On OHfimerical approach like alternating projection can hardly hope
work in [2], [3]. The algorithm alternately finds the nearesf, compete with the most profound insights of engineers and
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to frame design. It appears that most of the current & Frames

gorithms can be traced to the discovery by Rupf-Massey|et o and 3 be positive constants. Ainite frame for
[10] and Viswanath—Anantharam [7] that tight frames witly, complek Hilbert spaceC¢ is a sequence oN vectors

prescribed column norms are the optimal sequences for direcl: N~ drawn fromC¢ that satisfies a generalized Parseval
spread, synchronous code-division multiple access systegasdition:

(DS-CDMA). The DS-CDMA application prompted a long N

series of papers, including [11]-[15], that describe iterative o] < Z (v, 2> < 8 |lv]?> forallveCd (1)
methods for constructing tight frames with prescribed column 2= = = 2

norms. These techniques are founded on an oblique char-

acterization of tight frames as the minimizers of a quantiﬁ\?/e denote the Euclidean inner product wjth), and we write

called total squared correlation(TSC). It is not clear how t.H2I for the 3ssoc:|atfed norrt?. Tr:jeTnhumberabndﬁ fare cf[alleq
one could generalize these methods to solve different types %Gr’ ower andupper frame boundsihe number of vectors in
e frame may be no smaller than the dimension of the space

frame design problems. Moreover, the alternating projecti(Slﬁ
approach that we propose significantly outperforms at Ieék?‘ N = d). . .

one of the TSC-minimization algorithms. Two of the algebraic Ifit 'S possible to takax = 3, then we have aght f“"“T‘eor
methods that we mentioned above, [7] and [9], were add a-tight frame When the frame vectqrs all have unit norm,
designed with the DS-CDMA application in mind, while thd € ”%”2 = 1, the system is called anit-norm frame Umt?
third algebraic method [8] comes from tls®i-disantframe norm tight frames are also known afelch-Bound-Equality

community. We are not aware of any other numerical methog§duences1 7], [25]. Tight frames with non-constant vector
for frame design. norms have also been callegneral Welch-Bound-Equality

Finite- and infinite-dimensional tight frames are phenomggquence{ﬂ].
nally useful. Finite tight frames have applications in coding
theory [16], in communications [17] and in sparse approxB. Associated Matrices
mation [18]-{20]. These applications motivated many of the Form ad x N matrix with the frame vectors as its columns:
design criteria considered in this paper. Tight Gabor frames,
which are infinite-dimensional, can be used to analyze pseudo- X=[z1 x @ ... an].

differential operators [21] and to design filter banks and trangpis matrix is referred to as tHeame synthesis operatobut

mission pulses for wireless communications [22], [23]. Shiftye shall usually identify the synthesis operator with the frame
invariant tight frames, which are also infinite-dimensionaligg|s.

arise in sampling theory and signal reconstruction [24]. Two other matrices arise naturally in connection with the
frame. We first define th€ram matrixas G = X*X. (The
A. Outline symbol * indicates conjugate transposition of matrices and

vectors.) The diagonal entries of the Gram matrix equal the

Section Il continues with a short introduction to tightquared norms of the frame vectors, and the off-diagonal
frames. Then, in Section Ill, we state two formal fram@pries of the Gram matrix equal the inner products between
design problems. Connections among frame design problefgjgtinct frame vectors. The Gram matrix is always Hermitian
inverse eigenvalue problems and matrix nearness problems gig positive semi-definite.
established. This provides a natural segue to the alternatingpe positive-definite matrixX* is usually called thérame
projection algorithm. Afterward, we apply the basic algorithrgperam[ Since
to design three different types of structured frames, in order
of increasing implementation difficulty. Section IV discusses . . al 2
tight frames with prescribed column norms; Section V covers V(XX v = Z (v, )|
equiangular tight frames; and Section VI constructs tight ) =t
frames whose individual vectors have low peak-to-averag¥€ can rewrite (1) as
power ratio. Each of these sections contains numerical exper- v*(XX*)v

iments. The body of the paper concludes with Section VI, S P <pB. )

which discusses the method, its limitations and its extensio%at is, any Rayleigh quotient a¢X* must lie between: and
The back matter contains the bulk of the analysis. Appendix it follows from the Courant—Fischer Theorem [26] that each

| offers a tutorial on point-to-set maps, and Appendix Iigenvalue of the frame operator lies in the interialg].
applies this theory to obtain a rigorous characterization of\yhen the frame isv-tight, Condition (2) is equivalent to

the algorithm’s convergence behavior. The first appendix algQs statement thatt — o l,. Three other characterizations of
contains a brief survey of the alternating projection literaturg, a-tight frame follow immediately.
Proposition 1: A d x N frame X is a-tight if and only if
[I. TIGHT FRAMES it satisfies one (hence all) of the following conditions.

This section offers a terse introduction to the properties of 1) All d non-zero singular values of equal Vo

tight frames that are essential for our method. For more detailSuye work with complex vectors for complete generality. The adaptations
see [1]. for real vectors are transparent.



2) All d non-zero eigenvalues of the Gram matix X predetermined, and one can apply similar ideas to construct
equala. frames with prescribed upper and lower frame bounds, viz.
3) The rows ofa—1/2 X form an orthonormal set. the parameters and 8 in (1). It is worth noting thatZ, is
These properties undergird our method for constructing tighssentially the Stiefel manifold, which consists of all sets of
frames. It is now clear that the being a tight frame &pactral d orthonormal vectors itV [29].

requirement on the matrixX. Let .7 denote a closéedcollection of d x N matrices
that possess some structural property. In the sequel, we shall
C. Norms of Frame Vectors explore several different structural constraints that have arisen

in_electrical engineering contexts. Section IV considers tight
S : o :

Hames with specified column norms, and Section VI shows

how to construct tight frames whose individual vectors have

cn & Hwan- a low peak-to-average-power ratio. Many other structural

Th . intimate relationshio bet the tiaht properties are possible.
ere IS an inimate relationship between e ightness parame .y ¢onstraint sew” raises a basic question.

eter of ana-tight frame and the norms of its columns. The
computation is straightforward: Problem 1: Find a matrix in. that is minimally distant
N from 2, with respect to a given norm.

Throughout this article, we shall denote the squared nor
of the frame vectors as

N
_ * Yy 2 _
ad=TrXX" =Tr X"X = Z [0y = ZC"' ) i the two sets intersect, any solution to this problem is
n=1 n=1 . .
. _ _a structured tight frame. Otherwise, the problem requests a
The notatioriIr (-) represents the matrix trace operator, whicktructured matrix that is “most nearly tight” A symmetric

sums the diagonal entries of its argument. problem is to find a tight frame that is “most nearly structured.”
A related point is that one cannot construct a tight frame

with an arbitrary set of column norms. According to the Schur— .
Horn Theorem, a Hermitian matrix can exist if and only if it Structured Gram Matrices

eigenvalues majoriZeits diagonal entries [26], [27]. IX is  If the structural constraints restrict the inner products be-
ad x N tight frame, thed non-zero eigenvalues of its Gramiween frame vectors, it may be more natural to work with

matrix all equal}_, c,/d. Meanwhile, the diagonal entries ofGram matrices. Define a collection that contains the Gram
the Gram matrix are;, ..., cy. In this case, the majorization matrices of alld x N a-tight frames:

condition is equivalent to the system of inequalities
LN 4, = {GeCV*N.G=G"and
0<ex < > e, foreachk=1,...,N. (4) G has eigenvaluegn, . . ., a,0,...,0)}. (6)
n=1 Hd,—/

It follows that a tight frame with squared column normsh . v th . ifold th
c1,...,cn exists if and only if (4) holds. For an arbitraryT e setd, is essentially the Grassmannian manifold that

set of column norms, the frames that are “closest” to beirft nsi_sts oﬂ-dime_nsion_al subspaces ©f" [30]. One may also
tight have been characterized in [7], [28] identify the matrices ¢, as rankd orthogonal projectors,

’ ' scaled bya. (An orthogonal projector can be defined as an
idempotent, Hermitian matrix. The rank of a projector equals

, . i ] the dimension of its range.)
This section begins with formal statements of two frame | ¢t s# pe a closed collection oV x N Hermitian ma-

dgsign problems. Next we establish a connection with invefﬁﬁ:es that possess some structural property. In Section V,
eigenvalue problems. It becomes clear that an alternating example, we shall consider equiangular tight frames. The
projection algorithm offers a simple and natural approach ¥ram matrices of these frames have off-diagonal entries with

general inverse eigenvalue problems, including both desigjyntical moduli, and it is an important challenge to construct
problems. We then solve the basic matrix nearness problefyg .

that.arise when imp!ement?ng th(_a proposed algc_>rithm. Thegnce again, a fundamental question arises.

section concludes with a discussion of the algorithm’s con-

vergence properties. Problem 2: Find a matrix in¥,, that is minimally distant
from s with respect to a given norm.

IIl. DESIGN VIA ALTERNATING PROJECTIONS

A. Structured Tight Frames If the two sets intersect, any solution to this problem will lie
Define the collection ofl x N «a-tight frames: in the intersection. Otherwise, the problem requests a tight
o frame whose Gram matrix is “most nearly structured.” We do
def dxN *
Za ={X€C P XXT = ala}. ) not mention the problem of producing a matrix.# that is
We fix the tightness parameter for simplicity. It is easy to nearest ta4, because it is not generally possible to factor a
extend our methods to situations where the tightness is moatrix in #” to obtain a frame with dimensiongx N.

2The literature equivocates about the direction of the majorization relation.3We equipC¢*~ andCN >N with the topology induced by the Frobenius
The sense indicated here seems more standard. norm, which is identical with every other norm topology [26].



C. Inverse Eigenvalue Problems compact.

We view Problems 1 and 2 asverse eigenvalue problems Algorithm 1 (Alternating Projection):
(IEPs). As Chu explains in [31], an IEP is an inquiry aboutNPUT:
structured matrices with prescribed spectral properties. These An (arbitrary) initial matrix Yo with appropriate dimen-
spectral properties may include restrictions on eigenvalues, sions
eigenvectors, singular values or singular vectors. Accordinge The number of iterations/
to Proposition 1, the defining characteristic of a tight frame GuTpPuT:
its spectrum, so frame design is an IEP. e A matrix Y in  and a matrixZ in &
In the study of IEPs, the two fundamental questions ar S CEDURE
solvability and computability The former problem is to find o
necessary or sufficient conditions under which a given IEPY) Initialize j =0.
has a solution. The latter problem is how to produce a matrixz) Find a matrixZ; in 2 such that
that has given spectral properties and simultaneously satisfies Zj € argmin ||Z — Y|, -
a structural constraint. The solvability and computability of =3
some classical IEPs have been studied extensively by the We use||-||;. to indicate the Frobenius norm.
matrix analysis community, although many open problems still 3) Find a matrixY;.; in % such that
remain. The articles [31], [32] survey this literature. )
Although specific IEPs may require carefully tailored nu- Yjt1 € arg min 1Y = Zillg -
merical methods, there are a few general tools available. One .
. . : 4) Increment; by one.
scheme is the coordinate-free Newton method, which has beelg) Repeat Steps 2—4 unil=J
explored in [33]-[35]. Newton-type algorithms do not apply - = '
to most problems, and they only converge locally. Another 6) Let.Y: Yo andz,:_ZJfl' ) )
general method is the projected gradient approach developef Solution to the optimization problem in Step 2 is called
by Chu and Driessel in [36]. This technique involves numeric& Projectionof Y; onto 2” on analogy with the case where
integration of a matrix differential equation, which relies orn? IS @ linear subspace. Step 3 computes the projectiaf); of
advanced software that may not be readily available. AnotHd#t0 ¢ In a Hilbert space, it can be shown geometrically
problem with Newton methods and projected gradient methoi@t @ given point has a unique projection onto each closed,
is that they may not handle repeated singular values well. TIFRNVex set. Projections onto general sets may not be uniquely
shortcoming makes them a poor candidate for constructiH termined, which fiercely complicates the analysis of Algo-
tight frames, which have only two distinct singular values. "thm 1. . , _ ,
This article concentrates on alternating projection, which YOn Neumann, in 1933, was the first to consider alternating
has occasionally been used to solve inverse eigenvalue prfiection methods. He showed that# and 2 are closed,
lems (in [37] and [38], for example). But alternating projectioHnear subspaces of a_Hlll_Jert space, then alternating projection
has not been recognized as a potential method for solvifgVerges to the point i’ N 2 nearest Y, [40]. In
any type of inverse eigenvalue problem. The most gener% 59, _Cheney and Goldstein demonstrated that aIternat|ng
treatment of alternating projection in the IEP literature iBroiéction between two compact, convex subsets of a Hilbert

probably [39], but the authors do not offer a serious analysi@ace always yields a point of minimal distance between the
of their algorithm’s behavior. sets [4]. These two results inspire the application of Algorithm
Here is the basic idea behind alternating projection. We© the inverse eigenvalue problems, Problems 1 and 2. Of
seek a point of intersection between the set of matrices tifQUr'se; the constraint sets that we consider are generally
satisfy a structural constraint and the set of matrices tHRNVEX: For a more extensive discussion of the literature on
satisfy a spectral constraint. An alternating projection begifd€rnating projection, turn to Appendix I-G.
at a matrix in the first set, from which it computes a matrix To implement t_hl_? a_lternatmg projection algorithm, one must
of minimal distance in the second set. Then the algorithffiSt solve the minimization problems in Steps 2 and 3. For

reverses the roles of the two sets and repeats the prades@PVious reasons, these optimizations are called riterix
infinitumAlternating projection is easy to apply, and it id'€@rmness problemassociated with?” and 2. Already there
usually globally convergent in a weak sense, as we show laf&ra" extensive literature on the nearness.problems associated
with many spectral and structural constraints. See, for exam-
) o ple, the articles [41]-[43], the survey [44] and many sections
D. Alternating Projections of the book [26]. In practice, it will only be necessary to solve
Let us continue with a formal presentation of the genertbe minimization problem induced by the structural constraint,
alternating projection method for solving inverse eigenvalughich often reduces to an exercise in differential calculus. This
problems. Suppose that we have two collectio#s, and is one of the great advantages of Algorithm 1. In this article,
%, of matrices with identical dimensions. Of course, weve shall always measure the distance between matrices using
are imagining that one collection of matrices incorporatestae Frobenius nornj|-||. because it facilitates the solution
spectral constraint while the other collection incorporatescd matrix nearness problems. Of course, one could develop
structural constraint. To ensure that the algorithm is wel& formally identical algorithm using other norms, metrics or
posed, assume that one collection is closed and the othediigergences.



Since the constraint sets are generally non-convex, alternat- Proof: We must minimize||Z — o G||p over all rank-
ing projection may not converge as well as one might wisH. orthogonal projectorss. Square and expand this objective
This explains why we have chosen to halt the algorithm afté&mction:

a fixed number of steps instead of waiting foY; — Y 1] 9 9 9 9 .

to decline past a certain threshold. Indeed, it is theoretically 1Z = a6l =[1Z][ +a” |G]p —2a ReTr G*Z.

possible that the sequence of iterates will not converge jhe squared Frobenius norm of an orthogonal projector equals
norm. In practice, it appears that norm convergence always rank, so we only need to maximize the (negation of) the
occurs. Section lI-G provides a skeletal discussion of thgst term.

theoretical convergence of alternating projection. We do notgyery rankd orthogonal projectorG can be written as
flesh out the analysis until Appendices | and Il because @ — v\/* where theN x d matrix V satisfiesV*V = 1.
proper treatment requires some uncommon mathematics. Meanwhile, we may factaZ into its eigenvalue decomposition
UAU*, where U is unitary andA is a diagonal matrix with
non-increasing, real entries. Using the properties of the trace

] .. operator, we calculate that
To solve Problem 1, we propose an alternating projection

E. Application to Problems 1 and 2

between the structural constraint sef and the spectral ReTr G*Z = Re Tr VV* UAU*
constraint set?,,. Two matrix nearness problems arise. In the — ReTr U*VV*UA

next subsection, we demonstrate how to find a tight frame in N

Z,, nearest to an arbitrary matrix. Sections IV and VI contain — Re Z(U* VWA U)o An.

detailed treatments of two different structural constraints.

To solve Problem 2, we alternate between the spectral
constraint¥,, and the structural constrain¥’. In the next
subsection, we show how to produce a matrix4n that is

n=1

Observe thatU*VV*U is a positive semi-definite matrix
whose eigenvalues do not exceed one. Therefore, the diagonal
entries of U*VV*U are real numbers that lie between zero

nearest to an arbitrary matrix. In Section V, we analyze a . . . .
o . . and one inclusive. Moreover, these diagonal entries must sum
specific structural constraint”’. After performing the alter- to d because

nating projection, it may still be necessary to extract a frame

X from the output Gram matrix. This is easily accomplished Tr U*W*U = |[U* V|5 = |V|} = d.
with a rank-revealing QR factorization or with an eigenvalue

decomposition. Refer to [45] for details. It follows that

d
* < )
mgx ReTr G*Z < Z An

n=1

Standard tools of numerical linear algebra can be usedfis bound is met whenever the diagonal5f/\/* U contains
produce am-tight frame that is closest to an arbitrary matrix; ones followed by(N — d) zeroes. A sufficient condition for

F. Nearest Tight Frames

in Frobenius norm. attainment is thus
Theorem 2:Let N > d, and suppose that thex N matrix S
Z has singular value decompositidZV/*. With respect to Uwil = lg © Oy—a.

the Frobenius norm, a nearesttight frame toZ is given Furthermore, if\g > A1,
by « UV*. Note that UV* is the unitary part of a polar
factorization ofZ.

Assume in addition thaZ has full row-rank. Therv UV*

this condition is also necessary.
Form a matrixU,; by extracting the firsti columns ofU.
Then the sufficient condition holds whenevér= VV* =
. . . UgUg". That is, G is the orthogonal projector onto any
is the uniquea-tight frame closest th.1I>/I20reover, one May gimensional subspace spanned by eigenvectors corresponding
computeUV™ using the formula(zz*)~"/* 2. to thed algebraically largest eigenvalues Bf If Ay > Agi1,
Proof: The proof of this well-known result is similar o 45 syhspace is uniquely determined. The orthogonal projector

that of Theore_zm 3, which appears below. See also_pp. 4314375 a fixed subspace is always unique, and the unigueness
of [26]. Classical references on related problems include [46}5im follows. -

[47]. The formula for the polar factor may be verified with a It may be valuable to know that there are specialized algo-

dlre(_:t calculatpn. o rithms for performing the calculations required by Theorems
Itis also straightforward to compute a matrix4f nearest 5 504 3. For example, Higham has developed stable numerical
to an arbitrary Hermitian matrix. This theorem appears to Bfatnods for computing the polar factor of a matrix [48],

novel, so we provide a short demonstration.  [49] that are more efficient than computing a singular value
Theorem 3:Suppose thaZ is an N x N Hermitian matrix decomposition or applying the formul@z*)~1/2 Z.

with a unitary factorizatiorUAU*, where the entries ofl are

arranged in algebraically non-increasing order. Ugtbe the .

N x d matrix formed from the firsd columns of U. Then G- Basic Convergence Results

a UgUg" is a matrix in%, that is closest t&Z with respect to It should be clear that alternating projection never increases
the Frobenius norm. This closest matrix is unique if and onthe distance between successive iterates. This does not mean
if \g strictly exceeds\gy. that it will locate a point of minimal distance between the



constraint sets. It can be shown, however, that Algorithm 1 liswe fix the squared column norms &fto becy,...,cn, @

globally convergent in a weak sense. short algebraic manipulation shows that minimizing the TSC
Define the distance between a poMtand a set?” via is equivalent to solving
i - in||SS* — al
dist(M, %) = inf [|Y — M. min | algllp

Theorem 4 (Global Convergence of Algorithm Let % whe_re " Zn ?"/d' In Wmd? minimizing the TSC is
L equivalent to finding a frame with prescribed column norms
and & be closed sets, one of which is bounded. Suppo . . . .
at is closest in Frobenius norm to a tight frame [54].

that alternating projection generates a sequence of iteraie ; . I
. . . Tn comparison, alternating projection affords an elegant way
{(Y;, Z;)}. This sequence has at least one accumulation p0|{1t. . . .
. o 0'produce many tight frames with specified column norms. It
« Every accumulation point lies it x 2. focuses on the essential property of a tight frame—its singular
« Every accumulation pointY, Z) satisfies values—to solve the problem. In this special case, we provide
a complete accounting of the behavior of the alternating
projection. Moreover, experiments show that it outperforms
o some of the other iterative algorithms that were developed
» Every accumulation pointY’, Z) satisfies specifically for this problem.

[V~ 2], = 1 1Y~ Zl.

Y = Z|, = dist(Y, 2) = dist(Z, %). _
A. Constraint Sets and Nearness Problems

For a proof of Theorem 4, turn to Appendix II-A. In some 1o 460rithm will alternate between the set of matrices

special cases, it is possible to develop stronger convergeneg, fixed column norms and the set of tight frames with an
results and characterizations of the fixed points. We Sh%propriate tightness parameter

mention these results where they are relevant. The convergencg,; e positive numbers; cx denote the squared
of Algorithm 1 is geometric at best [50]-[53]. This is the Majog,ymn norms that are desired. We do not require that these

shortfall of alternating prOJecthn methods. numbers satisfy the majorization inequalities given in (4),

Note that the sequence of iterates may have many acgynough one cannot hope to find a tight frame if these
mulation points. Moreover, the last condition does not implyeqyalities fail. In that case, we would seek a matrix with the
that the accumulation pointY’, Z) is a fixed point of the prescribed column norms that is closest to being a tight frame.
alternating projection. So what are the potential accumulatig the DS-CDMA application, the column norms depend on
points of a sequence of iterates? Since the algorithm neygg \;sers’ power constraints [7], [10].

increases th(_e distgnce_ between succes_sive itera_tes, the Sﬁ,]t"ght of (3), the relation between the tightness parameter
of accumulation points includes every pair of matrices fromq the column norms. it is clear thatmust equal” ¢, /d.
% x 2 thatlie at minimal distance from each other. Thereforgy,o spectral constraini set becomes n

we say that the algorithm tries to solve Problems 1 and 2.
Lo EAX € CPN L XX* = (3, en/d) la}-

IV. PRESCRIBEDCOLUMN NORMS Given an arbitaryl x N matrix, one may compute the closest
tight frame in.2,, using Theorem 2.

As a first illustration of alternating projection, et us con- "o qrctural constraint set contains matrices with the
sider the most basic frame design problem: How does OPSirect column norms

build a tight frame with prescribed column norms?
This question has arisen in the context of constructing S E{S e CN . ||sn||§ =cn}

optimal signature sequences for direct-spread synchronous

code-division multiple-access (DS-CDMA) channels. Therb 1s straightforward to solve the matrix nearness problem

are some finite algorithms available that yield a small numb@?soc'ated with this collection.

of solutions to the problem [7], [9]. These methods exploi Proposmon 5 Let _Z be an arbnrary matnlx with collumns
the connection between frames and the Schur—Horn Theorér}- A matrix in 7" is closest taZ in Frobenius norm if and
They work by applying plane rotations to an initial tight framé)nly if it has the columns

to adjust its column norms while maintaining its tightness. | enzafllzally, 2, #0 and
Casazza and Leon have also developed a finite method that S» = {

seems different in spirit [8].

To construct larger collections of frames, some auth
have proposed iterative algorithms [11]-[15]. These techniq
attempt to minimize théotal squared correlatio{TSC) of an
initial matrix subject to constraints on its column norms. Thg o
TSC of a matrix is defined as

N
TSC(S) = [[S*S7 = [(Sm, sn)[*. IS = ZI[z =" llsn — 2all3-
n=1

m,n

Cp U, z, =0,

ophereu,, represents an arbitrary unit vector. If the columns of
u%:are all non-zero, then the solution to the nearness problem
IS unique.

Proof: We must minimize||S — Z|| over all matrices
om .. Square and rewrite this objective function:



We can minimize each summand separately. Fix an index matrix whose columns are chosen uniformly at random from

and expand thex-th term usingHang = Cp. the surface of the unit sphere, the algorithm returns
S
180 — Znll3 = ¢ + | Z0]l5 — 2 /en Re <" zn>. B 0.1519  0.4258 —0.7778 0.0160 —0.9258
HS"”2 S= 0.9840 —0.6775 0.1882 0.3355 —0.3024 | .
If z, # 0, the unique maximizer oRe (u, z,,) over all unit —0.0926  0.5998  0.5997 0.9419 —0.2269

Vectors isu = z,/ ||z, If z, = 0, then every unit vector

u maximizes the inner product. Each column norm of the displayed matrix equals one to

machine precision, and the singular values are identical in their
first eight digits. In all the numerical examples, the algorithm

B. Convergence Results was terminated on the condition thig$; 1 — S;[|, < 1075
In this setting, alternating projection converges in a fairlymplemented in Matlab, the computation took 65 iterations,
strong sense. which lasted 0.0293 seconds on a 1.6 GHz machine.

Theorem 6:Let S, have full rank and non-zero columns, Now let us construct a tight frame fdR® whose five
and suppose that the alternating projection generates a \&tors have norms 0.75, 0.75, 1, 1.25 and 1.25. With random
quence of iterate$(S;, X;)}. This sequence possesses at leaigiitialization, we obtain
one accumulation point, sais, X).

« Both S and X have full rank and non-zero columns. —0.1223  0.1753 —0.7261 0.0128 —1.0848

« The pair(S, X) is a fixed point of the alternating projec- S = 0.7045 —-0.6786  0.6373 0.0972 —0.6145 | .

tion. In other words, if we applied the algorithm foor —0.2263  0.2670  0.2581 1.2461 -—0.0894
to X every pair of iterates would equéb, X).

. Each accumulation point satisfies The column norms are correct to machine precision, and the

singular values are identical to seven digits. The computation
1S = X||p = Lm [IS; = X;llp - took 100 iterations, which lasted 0.0487 seconds.
Iee Next we examine a case where the column norms do not
« The component sequences are asymptotically regular, k@tisfy the majorization condition. Suppose that we seek a
“nearly tight” frame with column norms 0.5, 0.5, 1, 1 and
19541 = 3ille =0 and [[X;41 = Xjllp = 0. 2. Rar):dogr]n initialization yields
« Either the component sequences both converge in norm,

— - —0.1430  0.1353 —0.4351 —0.0941 —1.8005
1S =S|z —0 and [[X; - X]|[, -0, S—=| 04203 —04213 07970 —0.2453 —0.7857 |.

or the set of accumulation points forms a continuum. —0.2127 02329  0.4189  0.9649 -0.3754

Proof: See Appendix II-C. [ ]
In the present case, it is also possible to characteri
completely the fixed points of the algorithm that lie ..
Proposition 7: A full-rank matrix S from .~ is a fixed point
of the alternating projection betweeri and 2., if and only if

Ige column norms are all correct, but, as predicted, the frame

IS not tight. Nevertheless, the last vector is orthogonal to the

first four vectors, which form a tight frame for their span. This

is exactly the optimal solution to the frame design problem.

its columns are all eigenvectors 65*. That is,S5*S = SA, The calculation requirc_ad 34 itgratjons over 0.0162 seconds.

where/A € CV*¥ is diagonal and positive with no more than Of course, alternating  projection can produce' CO”.‘F"GX'

d distinct entries. v_alued_t|ght frames, as well as larger frames in h|gher-

Proof: Refer to Appendix II-D. _d|menS|0naI spaces. chh ensembles are too _Iarge to display

Many of the fixed points ins” do not lie at minimal in these columns. To give a taste of the algorithm’s general

distance from2;,, so they are not solutions to Problem 1performance, we have compared it with our implementation

Nevertheless, the fixed points still have a tremendous amo&ﬂ the Ulukus-ates algorithm [12]. To construct unit-norm

of structure. Each fixed point can be written as a union of tigHQI: ;‘Lames of varlc(j)us Ienq{ths,_;_/\r/]e |n|t|aI|z?t1tegctr;] algorithm
frames for mutually orthogonal subspacesGsf, and the set th € saTe r?n omFma ”X'l hen w?hpo c It ]? C(ér;par-l
of fixed points is identical with the set of critical points of thllIve execution imes. Fgure L Snows the resutts for rea

TSC functional subject to the column norm constraint [15§|men3|ons, and Figure 2 shows the results for 64 complex

[54]. The Ulukus-Yates algorithm, another iterative metho jmensions. Note the different scales on the time axes.

for designing tight frames with specified column norms, ha%s Eﬁh algorithms lpt?rfolrm slowly WE.G?]T IS imaltlhbeca(ljgf?e it
identical fixed points [12]. ight frames are relatively scarce, which makes them difficu

to find. Indeed, it is known that (modulo rotations) there exists
. a unique tight frame ofd+ 1) vectors ind-dimensional space
C. Numerical Examples [55]. Another reason that the alternating projection algorithm
We offer a few simple examples to illustrate that theerforms better as the problem grows is that a collection
algorithm succeeds, and we provide some comparisons wath/N uniformly random unit-vectors converges almost surely
the Ulukus-Yates algorithm. to a tight frame asV tends to infinity [56]. It is therefore
Suppose first that we wish to construct a unit-norm tighterplexing that the Ulukus-Yates algorithm performs more and
frame forR? consisting of five vectors. Initialized withaax 5 more slowly. One might attribute this behavior to the fact that



. Comparative Execution Times in Real Dimension d =64 equiangular tight frames. The underlying intuition is that these
frames will contain vectors maximally separated in space.

Define anequiangular tight frameo be a unit-norm tight

1 frame in which each pair of columns has the sahsolutein-

ner product. Since we are considering unit-norm tight frames,

the absolute inner product between two frame vectors equals

|1 the cosine of the acute angle between the one-dimensional

subspaces spanned by the two vectors. For this reason are

the frames called equiangular. One can show that each inner

product in an equiangular tight frame has modulus

20

=
o
T

Execution Time (sec)
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def N—d
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It is a remarkable fact thatveryensemble ofV unit vectors
o . in d dimensions contains a pair whose inner product strictly
% m 00 20 0 60 180 0 exceedsy, unless the collection forms an equiangular tight
Number of Vectors (N) frame. Unfortunately, equiangular tight frames only exist for
lar, a real, equiangular

Fig. 1. Comparison of alternating projection with the Ulukus-Yates algorithrl;_fa‘re combinations af andN'. In particu

in 64 real dimensions. tight frame can exist only ifN < 1d(d + 1), while a
complex, equiangular tight frame requires that< d2 [17].
Comparative Execution Times in Complex Dimension d =64 The paper [57] contains detailed necessary conditions on real,

70 T T T T

equiangular tight frames and on equiangular tight frames over
—<— Ulukus-Yates algorithm

finite alphabets.

One can view equiangular tight frames as a special type
of Grassmannian frameln finite dimensions, Grassmannian
frames are unit-norm frames whose largest inner product is
minimal for a givend and N [17]. Their name is motivated
1 by the fact that they correspond with sphere packings in the
Grassmannian manifold of all one-dimensional subspaces in
41 a Hilbert space [30]. Grassmannian frames have applications
in coding theory and communications engineering [17], [58]—

1 [60]. They also provide a natural set of vectors to use for
sparse approximation [18]—-[20].

In general, it is torturous to design Grassmannian frames.
Not only is the optimization difficult, but there is no general
- procedure for deciding when a frame solves the optimization

60 8 o otvecoey 160 20 problem unless it meets a known lower bound. Most of the

current research has approached the design problem with
Fig. 2. Comparison of alternating projection with the Ulukus-Yates algorith@lgebraic tools. A notable triumph of this type is the con-
in 64 complex dimensions. struction of Kerdock codes ové, andZ, due to Calderbank
et al. [61]. Other explicit constructions are discussed in the
. ) ) articles [17], [59]. In the numerical realm, Sloane has used
the algorithm does not act to equalize the singular values ﬁqg Gosset software to produce and study sphere packings in
the frame. real Grassmannian spaces [62]. Sloane’s algorithms have been
extended to complex Grassmannian spaces in [63]. We are not
V. EQUIANGULAR TIGHT FRAMES aware of any other numerical methods.
In this section, we shall consider a frame design proble In this article, we shgll construct eqqiangular tight frames
that leads to a si|:nple structural constraint on the Gram matrfgr real and complex Hllber_t spaces using alternating projec-
{5n. The method can easily be extended to compute other

The goal of the alternating projection will be to design i : ; C
. . . nite Grassmannian frames and packings in higher Grassman-
suitable Gram matrix, from which the frame may be extracted P g 9

afterward. hian manifolds, but that is another paper for another day [64].
A tight frame is a generalization of an orthonormal basis ]

because they share the Parseval property. But orthonorfalConstraint Sets and Nearness Problems

bases have other characteristics that one may wish to extendlhe signal of an equiangular tight frame is that each inner

In particular, every orthonormal basis exquiangular That product between distinct vectors has the same modulus. Since

is, each pair of distinct vectors has the same inner produttte Gram matrix of a tight frame displays all of the inner

namely zero. This observation suggests that one seek praducts, it is more natural to construct the Gram matrix of an

60 ¥ 4

50~

40

30

Execution Time (sec)
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equiangular tight frame than to construct the frame synthesiss Either the component sequences both converge in norm,

matrix directly. Therefore, the algorithm will alternate between —= —

the collectior): of Hermitian m:gtrices that have the correct HGj B GHF —0 and HHj B HHF -0,

spectrum and the collection of Hermitian matrices that have or the set of accumulation points forms a continuum.

sufficiently small off-diagonal entries. Proof: See Appendix II-B. ]
Since we are working with unit-norm tight frames, the

tightness parameter must equalN/d. This leads to the C. Numerical Examples

spectral constraint set First, let us illustrate just how significant a difference there

deot NXN .~ s is between vanilla tight frames and equiangular tight frames.
Yo ={GeC +G = 6" and Here is the Gram matrix of a six-vector, unit-norm tight frame
G has eigenvalueéN/d,...,N/d,0,...,0)}. for R3:
N—————

d
1.0000 0.2414 —0.6303 0.5402 —0.3564 —0.3543

Theorem 3 shows how to find a matrix #, nearest to an 0.2414  1.0000 —0.5575 —0.4578  0.5807 —0.2902
arbitrary Hermitian matrix. —0.6303 —0.5575  1.0000  0.2947  0.3521 —0.2847

. . . 0.5402 —0.4578  0.2947  1.0000 —0.2392 —0.5954
In an equiangular tight frame, each vector has unit norm but_g 3564 05307 03521 —0.2392  1.0000 —0.5955

no two vectors have inner product larger thanTherefore, | —0.3543 -0.2902 —0.2847 —0.5954 —0.5955  1.0000

we define the structural constraint set ) ) _ _
Notice that the inner-products between vectors are quite dis-

A, {HeCVN . H = H*, parate, and thgy range in magnitude between 0.2392 and
0.6303. These inner products correspond to acute angles of

76.2° and 50.9°. In fact, this tight frame is pretty tame;

g?e largest inner products in a unit-norm tight frame can be

It may seem more natural to require that the Of-r_di":lgonarbitraril close to ot The Gram matrix of a six-vector
entries have modulus exactly equal /ip but our experience trarily clo: 3 N ) '
%gwangular tight frame foR" looks quite different:

indicates that the present formulation works better, perha
because’z;, is convex. The f(_)ll(_)wmg proposition shows hOWr | 1500 04472 —0.4472 04472 —0.4472 —0.4472
to produce the nearest matrix i#;,. 0.4472  1.0000 —0.4472 —0.4472  0.4472 —0.4472

Proposition 8: Let Z be an arbitrary matrix. With respect | —0-4472  —0.4472  1.0000 ~ 0.4472  0.4472  —0.4472
0.4472 —0.4472  0.4472  1.0000 —0.4472 —0.4472

diag H =1 and Inix [mn| < p}.

to Frobenius norm, the unique matrix i, closest toZ has | _'y475 o472 04472 —0.4472  1.0000 —0.4472
a unit diagonal and off-diagonal entries that satisfy —0.4472  —0.4472 —0.4472 —0.4472 —0.4472  1.0000
[ — { Zmn if |zmn| < p and Every pair of vectors meets at an acute anglé3fi°. The
mn — iargzmn i . : . :
we otherwise. vectors in this frame can be interpreted as the diagonals of an

icosahedron [30].

We have used alternating projection to compute equiangu-
lar tight frames, both real and complex, in dimensions two
through six. The algorithm performed poorly when initialized
B. Convergence Results with random vectors, which led us to adopt a more sophis-

The general convergence result, Theorem 4, applies to fif&@ted approach. We begin with many random vectors and
alternating projection betwee#, and .,. We also obtain Winnow this collection down by repeatedly removing whatever
a stronger guarantee when the iterates get sufficiently clo&stor has the largest inner product against another vector. It
together. is fast and easy to design starting points in this manner, yet

Theorem 9:Assume that the alternating projection betweetne results are impressive. These calculations are summarized
4, and J, generates a sequence of iterat&,, H;)}, N Tablel. o , _
and suppose that there is an iteratioh during which Alternating projection locates every real, equiangular tight

|Gy — Hyly < N/(dv/2). The sequence of iterates possessfi@me that can possjbly ex.ist.in dimensions two 'through Six;
at least one accumulation point, s&§, H). algebraic considerations eliminate all the remaining values of

N [17], [57]. Moreover, the method computes these ensembles

very efficiently. For example, the algorithm produced a six-

vector, equiangular tight frame fd&3 after a single trial. In

this case, 70 iterations lasting 0.4573 seconds were sufficient

to determine the first eight decimal places of the inner prod-

ucts.

||Z_ﬁ||F = lim ||G; — Hj|lp- In the complex case, the algorithm was able to compute
oo every equiangular tight frame that we know of. Unfortunately,

Th mponent n r mptotically regular, i.
* € component sequences are asymptotically reguiar, e4T0 see this, consider a tight frame that contains two copies of an

orthonormal basis, where one copy is rotated away from the other by an
||Gj+1 - Gj”F —0 and HHJ'+1 - HJ'”F — 0. arbitrarily small angle.

We usei to denote the imaginary unit.
Proof: The argument is straightforward. ]

« Every accumulation point lies if, x JZ,.

« The pair(G, H) is a fixed point of the alternating pro-
jection. In other words, if we applied the algorithm €
or to H, every iterate would equdlG, H).

« Every accumulation point satisfies
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Nl2 3 ‘fl 5 6l N2 3 ff 5 6 sequences are typically employed on the uplink. The sum-
TR ® . _Iror capacity optimal sequences of [7], [10], [66] are tight frames,
4|CcC R R . .|l21|. . . C . which generally are not binary. Consequently their PAR may
2 S R % i gg e e be much higher than that of binary spreading sequences. If
7 c ¢ wrll2al> - = these optimal sequences are to be used in real systems, PAR
8 . C lles| . . . C . side constraints should be included in the design problem. It is
9 c . C | 26 therefore valuable to develop an alternating projection method
10 . R . |l27|. . . . . X i
1 c cllasl = T 0 for constructing tight frames whose PAR does not exceed a
2. . . . cCcll2. . . L . prescribed upper bound, which is a parameter of the design
4. . . . fs3|. . . . C
15 | 32
6. . C . RI|33]. . . . . . .
w . MNal. A. Constraint Sets and Matrix Nearness Problems
18 22 ¢ The PAR in a digital communication system is funda-
mentally related to the analog waveforms that are generated.
TABLE | From the perspective of sequence design, it usually suffices to
EQUIANGULAR TIGHT FRAMES consider the PAR defined directly from the discrete sequence.
The discrete PAR of a vectar is the quantity
The notationsR and C respectively indicate that alternating projection was
able to compute a real, or complex, equiangular tight frame. Note that every dor AKXy, ‘Zm|2
real, equiangular tight frame is automatically a complex, equiangular tight PAR(z) = =73~
frame. One period (.) means that no real, equiangular tight frame exists, and Em ‘Zm| /d

two periods (..) mean that no equiangular tight frame exists at all.
Note thatl < PAR(z) < d. The lower extreme corresponds to

a vector whose entries have identical modulus, while the upper

no one has yet developed necessary conditions on the exist?f¢d is attained only by (scaled) canonical basis vectors.
of complex, equiangular tight frames aside from the upper Suppose that we require the columns of the frame to have
bound, N < d2, and so we have been unable to rule ofiguared norms,...,cy.Inthe DS-CDMA application, these
the existence of other ensembles. Some of the computatiGi§nbers depend on the users’ power constraints [7], [10]. It
progressed quite smoothly. After 1000 iterations and 18.f@/lows from (3) thater = }_, ¢,/d. The spectral constraint
seconds, alternating projection delivered a collection of 2%t becomes

vectors in five dimensions whose inner products were identical def AN . yyr

in the first eight decimal places. On the other hand, it took Zo = {X € COT o XXT = (3, en/d) la}-

5000 iterations and 85.75 seconds to produce 21 vectorsTieorem 2 delivers the solution to the associated matrix
five dimensions whose inner products reached the same leyghrness problem.

of accuracy. Even worse, we were unable to locate the 314 et , denote the upper bound on the PAR of the frame

vector equiangular tight frame i@° until we had performed elements. Then the structural constraint set will be
two dozen random trials that lasted several minutes each. It

is some consolation that the authors of [63] indicate their - = {S € C™N : PAR(s,) < p and ||s,|[3 = c.}.

algorithm could not compute this ensemble at all. . . .
fyen an arbitrary matrixZ, we must compute the nearest

It seems clear that some equiangular tight frames are mue ment of.¥. Since the structural constraint on each column
easier to find than others. We have encountered less succ %s :

at constructing equiangular tight frames in higher dimensior2. independent and the Frobenius norm is separable, each

But we have neither performed extensive experiments nor hayg " yields an |_ndependent optimization problem. For_ each
we attempted to fine-tune the method. column z,, of the input matrix, we claim that the following

algorithm returnss,,, the corresponding column of a nearest
matrix S from 7.

VI. PEAK-TO-AVERAGE-POWER RATIO Algorithm 2 (Nearest Vector with Low PAR):

PUT:

« An input vectorz from C¢
« A positive numbere, the squared norm of the solution

Finally, let us present a situation in which the matri>1N
nearness problem is much more difficult.

One useful property for DS-CDMA signature sequences
to have is a small peak-to-average-power ratio (PAR). The vector . .
PAR of a signal measures how the largest value of the® A numperp from [1,d], which equals the maximum
signal compares with the average power. Signals with large permissible PAR
PAR require higher dynamic range on the analog-to-digit&UTPUT:
converters and the digital-to-analog converters. They may alsa A vector s from C¢ that solves
require more linear (and thus higher cost) power amplifiers. ' . )

In DS-CDMA systems, the PAR is normally of concern only ~ min||s — 2|, subj. to PAR(s) < p and |[s|, = c.
in the downlink (see e.g. [65]) because binary spreading
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PROCEDURE Therefore, Karush-Kuhn-Tucker (KKT) theory will furnish
1) Scalez to have unit norm; defind = /cp/d; and nhecessary conditions on an optimizer [67].

initialize k = 0. We form the Lagrangian function
2) Let.# index (d — k) components ok with least mag- .
nitude. If this set is not uniquely determined, increment L(s, A p,v) = = (8,2) + 3 A((s,8) = ¢)
k and repeat Step 2. — (s, )+ {(s—9d1,v).

3) If z,, =0 for eachm in .#, a solution vector is - .
The Lagrange multiplierge and v are non-negative because

. c}f}fz for m € .#, and they correspon_d _to th_e lower a_nd upper boun_d_SsoMean_-
5 el arg zm for m ¢ . Wh|le, the mult_lpllerA is gnrestrlcted because it is associated
_ with the equality constraint.
4) Otherwise, let The first-order KKT necessary condition on a regular local

c— ko2 maximums* is that
Y= -— 2" 0= VSL *))\*’ *’ *
\/ ey |l (Vs L)(s™, A", u*,v7) ®)

. . =—z+ N8 —pu+v,
5) If vz, > d for anym in .#, incrementt and return to "

Step 2. where pX > 0 only if s¥, = 0 and v}, > 0 only if
6) The unique solution vector is sx, = 0. Notice that one ofu}, or vy, must be zero because
they correspond to mutually exclusive constraints. The second-
s = { TEm form € .4, and order KKT necessary condition on a regular local maximum
J e! ArgzEm form ¢ 4. is that

When p = 1, the output of the algorithm is a unimodular T oo e e s
vector whose entries have the same phase as the corresponding 0<y (ViL)(s" A% p'v")y
entries ofz. On the other hand, when= d, the output vector =\yly
equalsz. We now prove that the algorithm is correct.

Proof: We must solve the optimization problem for every vectory in the subspace of first-order feasible

variations. This subspace is non-trivial, 50 > 0.
min||s — z|2 subjectto PAR(s) < p and |s|3 = c. Solve Equation (8) to obtain

Let us begin with some major simplifications. First, rewrite Ns*=z+p —v
the PAR constraint by enforcing the norm requirement a%heneveru,*n ~ 0, both s* = 0 and v* = 0. This

H H H Hyl m m
rearranging to obtain the equivalent condition combination is impossible becausg, > 0. Therefore, we

max |s,| < v/cp/d. may eliminatep™ to reach
m

In the rest of the argument, the symbolwill abbreviate the Nst=z-v"

quantity 1/cp/d. The PAR constraint becomgs,| < 4 for The cases\* = 0 and A* > 0 require separate consideration.

eachm =1,...,d. o _ If \* =0, it is clear thatv* = z. Sincev?, > 0 only if
Now _expanq the obje_ctlve function and enforce the norg}n — 5, we must haves’, = & wheneverz,, > 0. Suppose

constraint again to obtain that k& components ofs* equal §. The remaining(d — k)

min {C —2Re (s, 2) + ||ZH§} _ components are not uniquely Qetermined by the optimization
s problem. From the many solutions, we choose one such that

Observe that it is necessary and sufficient to minimize the 5

second term. It follows that the optimizer does not depend on 5 = 4 /€~ ko for m wherez,, = 0.

the scale of the input vecter. So take||z||, = 1 without loss " d—k

of generality. This formula ensures that* has the correct norm and that
Next observe that the PAR constraint and the norm conene of its entries exceeds

straint do not depend on the phases of the components irwhen \* > 0, the solution has the form

s. Therefore, the components of an optinsamust have the

*
same phases as the components of the input vettdn s"=[v2ls,
consequence, we may assume that betand z are non- \yhere 4 is positive and the operatof]; truncates tos
negative real vectors. components of its argument that excekedt is clear that the

We have reached a much more straightforward optimizatifygest components of are all truncated at the same time.
problem. Given a non-negative vecterwith unit norm, we e only need to determinehich components these are.
must solve To that end, observe thay — ||[yz],l, is a strictly

max (s,z) subjectto (s,s)=cand0 < s,, <4, increasing function o0, §/zmin], Where zn;, is the least

s positive component of. For at most one value of, therefore,
Observe that every point of the feasible set is a regular poidtes the vectofy z],; have norm\/c. If this norm value were
i.e. the gradients of the constraints are linearly independentt attained, them\* would equal zero. Lek be the number
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of entries ofs* that equald, and suppose tha#/ indexes the

remaining(d — k) components. Then Indeed, each of the columns has unit PAR, and the singular
— 118*12 = k62 + ~2 2 values of the matrix are identical to eight decimal places. The
c=|s™ll; = 7 z;” |2l calculation required 78 iterations lasting 0.1902 seconds.
me.

Alternating projection can also compute tight frames whose
Recall thaty is positive. Therefore, is impossible tHai” > ¢.  columns have unit PAR but do not have unit norm. For
When k6% = ¢, it follows that z,, = 0 for eachm in .Z. example, if we request the column norms 0.75, 0.75, 1, 1,
Otherwise,z,,, must be non-zero for some in .. Then the 125 and 1.25, the algorithm yields

value ofy must be

c— ko2 3054 4.3070i  .1445 + .4082i  .3583 + .4527i
Y=/ 4295 — 05491 1235 + .4150i —.5597 + .1418i
> e |7ml — 4228 — .0936i —.0484 — 4303  .0200 + .5770i

n —.4264 + 38931 4252+ 58311  .3622+ .6242i
—.5393 — .2060i —.4425 — .5701i  .7165 — .0863i |.
2585 4 .51621 —.2804 — .6611i  .1291 +.7101i

B. Convergence

For the alternating projection between the PAR constrai@ne can check that the column norms, PAR and singular
set and the set ak-tight frames, we have not proven a morealues all satisfy the design requirements to eight or more
elaborate convergence theorem than the basic result, Theodsvimal places. The computation took 84 iterations over
4, because it is not easy to guarantee that the solution to th&973 seconds.
PAR matrix nearness problem is unique. We have been ablé ess stringent constraints on the PAR pose even less trouble.
to provide a sufficient condition on the fixed points of th@&or example, we might like to construct a tight frame whose
iteration that lie in the PAR constraint set. Note that similar PAR is bounded by two and whose columns have norms 0.75,

fixed points arose in Section IV. 0.75,1,1, 1.25 and 1.25. It is

Theorem 10:A sufficient condition for a full-rank matrix
S from .7 to be a_flxed point of the alternating prolectlon be- 0617+ 13201 0184 + 27641  .4299 + 3593
tween.” and £, is that the columns of are all eigenvectors 4256 — .1031i —.0558 + .59381 —.5920 + .4974i
of SS*. That is,S5*S = SA, whereA € CV*¥N s diagonall —.5912 +.00251 —.1304 —.3363i —.0807 + .2857i
and positive. —.1382 +.25111  .6847 + .74361  .2933 + .6939i

] —.4306 — .2650i —.2095 — .3072i L7317 + .0928i
.0852 4 .80931 —.3504 — .5289i .2918 + .6048i

Proof: Refer to Appendix II-E.

C. Numerical Examples The computer worked for 0.0886 seconds, during which it

Let us demonstrate that alternating projection can indepdrformed 49 iterations. As usual, the singular values match to
produce tight frames whose columns have specified PAdght decimal places. It is interesting to observe that the frame
and specified norm. We shall produce complex tight framesceeds the design specifications. The respective PAR values
because, in the real case, PAR constraints can lead to a discégigs columns are 1.8640, 1.8971, 1.7939, 1.9867, 1.9618 and
optimization problem. The experiments all begin with the 0g97.
initial 3 x 6 matrix

VIl. DISCUSSION
.0748 + .3609i .0392 + .4558i .5648 + .36351

5861 — .0570i —.2029 + .8024i —.5240 + .4759i As advertised, we have developed an alternating projection
—. 7112+ .10761  —.2622 —.1921i —.1662 + .1416i method for solving frame design problems, and we have
—.2567 4 44631  .7064 +.6193i  .1586 + .6825i provided ample evidence that it succeeds. In this section,
—1806 —.1015i1 —.1946—.1889i  .5080 +.02261 |. we discuss some implementation issues and some of the

0202+ .8316i  .0393 — .2060i  .2819 + .4135i v : \ :
8310 ' ' limitations of the algorithm. We conclude with a collection

The respective PAR values of its columns are 1.5521, 2.05%1 related problems that one can also solve with alternating
1.5034, 2.0760, 2.6475 and 1.4730. projection.

Unimodular tight frames are probably the most interesting
example of frames with low PAR. Every entry of a unimodulap. The Starting Point

frame has an identical modulus, and so the PAR of each . L . .
. For alternating projection to succeed, it is essential to choose
column equals one. Let us apply the algorithm to calculate

a unit-norm, unimodular tight frame: a good starting point. Here are a few general strategies that
may be useful.
The simplest method is to seledf vectors uniformly at

1345+ 56151 .16724.55261 4439 +.3692i random from the surface of the unit sphereGA and form

.5410 — .20171  —.0303 4 .57661 —.5115 4 .2679i

—.5768 +.02521  —.2777 — .50621 —.2303 + .5294i them into an initial matrix. Although this technique sometimes
3358 + 46961  .4737 + .3300i .0944 + .5696i works, it is highly probable that there will be pairs of strongly
—.5432 — 19561 —.3689 — .4442i 5747 + .0554i |. correlated vectors, and it is usually preferable for the frame

1258 4 .56351  —.0088 —.5773i 4132 +.4033i to contain dissimilar vectors. Nevertheless, a collection of
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random vectors converges almost surely to a tight frame ggectral constraints that arise naturally in connection with
more vectors are added [56]. tight frames. Nevertheless, alternating projection offers a
A more practical idea is to select many vectors, 8ayV, straightforward method for addressing other inverse eigenvalue
and then use a clustering algorithm—such as Lloyd-Maxoblems. For example, one might try to construct general
[68], sphericalc-means [69] or diametrical clustering [70]—toframes with prescribed lower and upper frame bounds,
separate these vectors info clusters. The cluster centroidsand . Instead of forcing the Gram matrix to be a rask-
will usually be much more diverse than vectors chosen atthogonal projector, one might impose only a rank constraint
random. A related approach would select many random vectorsa constraint on its condition number. To implement the
and then greedily remove vectors that are highly correlatetjorithm, it would only be necessary to solve the matrix
with the remaining vectors. This method seems to furnistearness problem associated with these spectral constraints.
excellent starting points for constructing equiangular tight One can also use alternating projection to construct positive
frames. One might also build up a collection of random vectosgmi-definite (PSD) matrices that have certain structural prop-
by allowing a new vector to join only if it is weakly correlatederties. Higham, for example, has used a corrected alternating
with the current members. projection to produce the correlation matrix nearest to an input
Another technique is to start with a tight frame that hasatrix [38]. (A correlation matrixis a PSD matrix with a
been developed for another application. By rotating the fraro@it diagonal.) Since the PSD matrices form a closed, convex
at random, it is possible to obtain many different startinget, it is possible to prove much more about the behavior of
points that retain some of the qualities of the original frame. kiiternating algorithms.
particular, equiangular tight frames make excellent initializers. We have also had good success using alternating projection
It is also possible to choose a collection@fvectors from to compute sphere packings in real and complex projective
a larger frame forC<. Similarly, one might truncate somespaces. These methods can be extended to produce sphere
coordinates from a frame in a higher-dimensional space. packings in real and complex Grassmannian manifolds [64]. It
particular, one might truncate an orthonormal basisddrto seems clear that alternating projection has a promising future
retain onlyd coordinates. See [71], for example, which use€f®r a new generation of problems.
the Fourier transform matrix in this manner.
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A theoretical irritation is the lack of a proof that alternating
projection converges in norm. No general proof is possible,

as the counterexample in [72] makes clear. Nevertheless, it )
would be comforting to develop sufficient conditions that 10 understand the convergence of the algorithms, we rely

guarantee the convergence of alternating projections betw&hSome basic results from the theory of point-to-set maps.
non-convex sets. The results of [72] are the best that we kng@ngWwill's book [74] is a good basic reference with applica-
of. We would also like to develop conditions that can ensuf®NS to mathematical programming. More advanced surveys
convergence to a pair of points at minimal distance. Here, tifi¢lude [75], [76]. de Leeuw presents statistical applications
most general results are probably due to Geignd Tusady N [52]. We have drawn from all these sources here.
[73].

Another major inconvenience is that alternating projectioft. Point-to-Set Maps

converges at a linear or sublinear rate [50]-[52]. For large | ot % and # pe arbitrary sets. Thpower setof Z is the
problems, it can be painful to wait on the solution. A valuablgg|iection of all subsets of”. and it is denoted be?Z. A
topic for future research would be a method of acceleratiorboint_to_set magfrom % to % is a functionQ : & — 2%,

A more specific disappointment was the inability of altery, \vords 0 maps each point o/ to a subset ofZ.

nating projection to construct tight frames over small finite 1o are several different ways of combining point-to-set
alphabets. It is straightforward to solve the matrix Neamesfps, Take two map®,. : ¥ — 22 andQ.,, : ¥ — 27

problem associated with a finite alphabet, and it can be showp, composition of these maps carries a pgirtb a subset
that the algorithm always converges in norm to a fixed poins -/ \iia the rule

But the algorithm never once yielded a tight frame. This failure

is hardly surprising; discrete constraints are some of the most (Qwo )W) = |J Ql2).

difficult to deal with in optimization. It may be possible to use 2€Qy,: (y)

annealing to improve the performance of the algorithm. Thig,is definition can be extended in the obvious way to a longer
would be a valuable topic for future research. composition of maps. Now, suppo€e,, maps% to 2”. The
Cartesian product d,,, and{2, . is the point-to-set map from

C. Related Problems U x W 10 ¥ x ¥ given by
We have permitted a great deal of freedom in the selection

of the structural constraint set, but we only considered the (Quo X Q2 ) (u,y) = Quo(u) X Q2 (y).

APPENDIX |
POINT-TO-SET MAPS
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B. Topological Properties Suppose thatf : # — R, is a continuous, non-negative

Suppose that the underlying sets are endowed with topofHDCt'On' We say that the algorithr2 is monotonic with
gies so that we may speak of convergence. A Map” — 'eSPect tof when
2% is closedat the pointy in % whenever the statements ze€Q(y) implies  f(2) < f(y).
y; — U, z; € Q(y;) andz; — z together imply that € Q(y). -
One may interpret this definition as saying that the(¥gt) is An algorithmstrictly monotonicwith respect tof is a mono-
“pigger” than the sets in the sequenf@(y;)}. On the other tonic algorithm for which
hand, the mag? is openat y in ¢ whenever the statements .
y; — 7 and z € Q(7) together imply the existence of a z€Qy) andf(z) = f(y)  imply  z=y.
number.J and a sequence of poins; } such that:; — z and  zangwill showed that a closed, monotonic algorithm converges
zj € Q(y;) for all j > .J. More or less, this statement meang, 3 weak sense to a generalized fixed point. We present a
that the set)(y) is “smaller” than the sets in the sequencgreamlined version of his result.
{€(y;)}. A map which is both open and closed afs said  Theorem 12 (Zangwill [74]):Let (2 be a closed algorithmic
to becontinuousat y. We call2 anopen mapclosed mapr  map on a compact sé, and assume that is monotonic with
continuous mamhenever it has the corresponding propertyjaspect to a continuous, non-negative functjorBuppose that
for every point in'. the algorithm generates a sequence of iterdtgs$.

Finite Cartesian products and finite compositions of open The sequence has at least one accumulation poifi.in

maps are open. Finite Cartesian products of closed maps are Each accumulation poirit satisfiesf () — lim. ,
closed. IfQ,. : # — 2% andQ.,, : Z — 2” are closed and por 7g) = lim, 1(4;).

. C . « Each accumulation pointis a generalized fixed point of
Z is compact, then the compositidf,., o ©2,..) is closed. the algorithm.

R. R. Meyer subsequently extended Zangwill's Theorem
C. Fixed Points to provide a more satisfactory convergence result for strictly
monotonic algorithms. One version of his result follows.
For reference, a sequendg;} in a normed space is called
asymptotically regulawhen ||y, — y;|| — 0.
Theorem 13 (Meyer [72])Let ¢ be a compact subset of
normed space, and assume thais a closed algorithm on
that it is strictly monotonic with respect to the continuous,
non-negative functiorf. Suppose thaf generates a sequence
of iterates{y;}. In addition to the conclusions of Zangwill's

Suppose thaf is a point-to-set map fror# to itself. Let
y be a point of# for which Q(y) = {y}. Theny is called
a fixed pointof the map(2. In contrast, ageneralized fixed
point of Q is a point for whichy € Q(y). When we wish a
to emphasize the distinction, we may refer to a regular fixe??
point as astrongor classicalfixed point.

D. Infimal Maps Theorem, the following statements hold.

Minimizing functions leads to a special type of point-to-set * Each accumulation point of the sequence is a (strong)
map. Suppose that: # x 2 — R, is a real-valued function fixed point of the algorithm. _
of two variables, and e be a point-to-set map fror# to « The sequence of iterates is asymptotically regular. In
% . Associated withf and( is aninfimal mapdefined by cor_lsequence, It_ has a continuum of accumulation points,

or it converges in norm [78].
M*(y) < arg min f(y, 2). « In case that the fixed points @2 on each isocontour
2€02(y) of f form a discrete set, then the sequence of iterates

If f(y,-) attains no minimal value of¥(y), then M= (y) = 0, converges in norm.

the empty set. Under mild conditions, infimal maps are closed.
Theorem 11 (Dantzig-Folkman-Shapiro [77])f €2 is con- £ Alternating Projection

tinuous aty and f(7,-) is continuous orf)(%), then M~* is ) L . .
closed atgy 1) ) An alternating projection can be interpreted as a kind of

In particular, the constant map : y — % is continuous Menotonic algorithm. Suppose that: & x 2° — R, is a
wheneverZ is closed. So minimizing a continuous functiorPONtiNUous function. Theyi induces two natural infimal maps,

over a fixed, closed set always yields a closed infimal map. M, (z) % arg min f(y, 2) and
yeW ’

2 def .
E. lterative Algorithms M*(y) = arg ?enslz}ﬂf(y’z)'

Zangwill was apparently the first to recognize that many % and.2 are closed, then Theorem 11 shows that the maps
procedures in mathematical programming find their mogt, and/* are both closed.
natural expression in the language of point-to-set maps [74].We interpret alternating projection as an algorithm on the
An algorithmic mapor algorithm is simply a function : product space? x 2 equipped with the usual product topol-
% — 2. Given an initial pointy, of %, an algorithmic map ogy. Given an initial iteratey, from #, alternating projection
generates a sequence of iterates according to the rule  generates a sequence of iterafég;, z;)} via the rules

Yj+1 € Q(y]) zj € J\/.[Z(yj) and Yj+1 € My(Zj)
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for eachj > 0. Formally, this algorithm can be written as According to Deutsch [80], alternating projection first ap-
the composition of two sub-algorithm®,, and Qy,,, that are peared in a set of mimeographed lecture notes, written by John
defined as von Neumann in 1933. von Neumann proved that the alter-
. nating projection between two closed subspaces of a Hilbert
Qo : (y,2) — {y} x M*(y)  and g proj Weer P .
space converges pointwise to the orthogonal projector onto
Qpro : (y,2) > My(2) x {2z} their intersection [40]. Apparently, this theorem was not very
It follows thatQ % 4, 0. is a closed algorithm wheneverWell advertised, because many other authors have discovered

2% andZ are compact. Both sub-algorithms decrease the Valﬁéndependently, including Aronszajn [50] and Wiener [82]. It
of £, so it should also be clear thtis monotonic with respect WaS Shown by Aronszajn [50] and Kayalar-Weinert [51] that

to f. Zangwill's Theorem tenders a basic convergence reSLﬁ’t‘.)th sequences of iteratgs converge geometrical!y V.Vith a rate
Corollary 14: Let % and % be compact. Suppose that th qual to the squared cosine of the (Friedrichs) principal angle

alternating projection betwee# and.2” generates a sequenc etween the two subspaces. . N
of iterates{(y;, z;)}. It is natural to extend the alternating projection between

. . two subspaces by cyclically projecting onto several subspaces.
« The sequence has at least one accumulation point. : . . .
. . . Halperin demonstrated that, in a Hilbert space, the cyclic pro-
« Each accumulation point of the sequence liegink 2. . " -
. L . . . ction among a finite number of closed subspaces converges
« Each accumulation point is a generalized fixed point A . o .
. pointwise to the orthogonal projector onto their intersection
the algorithm. : : .
. NV - _ [83]. The convergence is geometric [84]. Optimal bounds on
« Each accumulation point(y,z) satisfies f(g,z) = ) .
lim, £(y;, 2;) the rate of convergence can be computed with techniques of
JARII I Xu and Zikatonov [85]. Bauschket al. study methods for

If the infimal maps)M, and M~ are single-valued, we canaccelerating cyclic projection in the recently minted paper
achieve a much more satisfactory result. [86].

Corollary 15: Let % and 2 be compact subsets of a It will come as no surprise that researchers have also
normed space, and assume that the infimal ma&fjsand studied alternating projection between subspaces of a Banach
M?# are single-valued. Suppose that the alternating projectispace. Unaware of von Neumann’s work, Diliberto and Straus
between? and 2 generates a sequence of iterafésg;, z;)}. introduced an alternating method for computing the best sup-
In addition to the conclusions of Corollary 14, we have theorm approximation of a bivariate continuous function as the

following. sum of two univariate continuous functions, and they proved
« Each accumulation point is a classical fixed point of th&ome weak convergence results [87]. The norm convergence
alternating projection. of the sequence of iterates remained open until the work

« The sequence of iterates is asymptotically regular. ~ 0f Aumann [88]. M. Golomb extended the Diliberto-Straus
« The sequence of iterates either converges in norm ordjgorithm to other best-approximation problems [89]. For more

has a continuum of accumulation points_ information on alternating algorithms in Banach spaces, see
Proof: We just need to show that the algorithm ighe monograph of Cheney and Light [90].
strictly monotonic with respect tg. Suppose thaf (y, z) = Another fruitful generalization is to consider projection
f(Q(y, 2)). Since the infimal maps never increase the val@to convex subsets. The projector—mpximity map—onto
of f, we have the equalities a closed, convex subset of a Hilbert space is well-defined,
because each point has a unique best approximation from that
fy,2) = fly, M*(y)) set. The basic result, due to Cheney and Goldstein, is that the
= f((M, o M*)(y), M*(y)) = f(Q(y,2)).  alternating projection between two closed, convex subsets of

. ) . L o a Hilbert space will converge to a pair of points at minimal
Since M* yields the unique minimizer of f with its first  gistance from each other, so long as one set is compact [4].
argument fixed, the first equality implies that*(y) = {z}. pykstra [91], [92] and Han [93] independently developed a
Likewise, the second equality yieldsiZ, o M*)(y) = {y}. cyclic projection technique that, given a point, can compute its
That is, Q(y,2) = {(y,2)}. An application of Meyers peqt approximation from the intersection of a finite number of
Theorem completes the argument. - B (losed, convex sets in a Hilbert space. Their algorithm requires

This result is a special case of a theorem of Fiorot and ., rection to each projection. To date, the most extensive

Huard [79]. In Appendix II, we shall translate the language Qfgatment of cyclic projection methods is the survey article by
these corollaries into more familiar terms. Bauschke and Borwein [94].

) ) o Most of the work on alternating projection has involved the

G. Literature on Alternating Projection Euclidean distance, but it is possible to develop results for
Like most good ideas, alternating projection has a long biogther divergence measures. In particular, Geisnd Tusady

raphy and several aliases, includisgccessive approximation have shown that alternate minimization of the Kullback-
successive projectigmlternating minimizatiorand projection Leibler divergence can be used to find a pair of minimally
on convex setsThis section offers aésuné of the research distant points contained within two convex sets of probability
on alternating projection, but it makes no pretension to beeasures [73].
comprehensive. Deutsch has written more detailed surveysThere has been some research on alternating projection
including [53], [80], [81]. between non-convex sets, but the theoretical results so far
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are limited. Fiorot and Huard have applied the theorems of Proof: Assume without loss of generality th&t is the
Zangwill and Meyer to obtain weak convergence results faompact set, while” is merely closed. We must establish that
a class of block relaxation schemes that include alternating have all the compactness necessary to apply Corollary 14.
and cyclic projection onto non-convex sets [79]. CombettesWithout loss of generality, assume th#y € #. If § =
and Trussell have developed a technique which inflates the, — Z,||, then subsequent iterates always satisfy
non-convex sets into convex sets; they offer some qualified
convergence results [95]. Cadzow has also demonstrated em- 1Y = Zjllp <6 and
pirically that cyclic projections among non-convex sets can |Yis1 — Zjllp < 0.
effectively solve certain signal enhancement problems
More research in this direction would be valuable.

Alternating projection has found application to many differ- W ={Y € ¥ : dist(Y, %) < 5} and
ent problems, of which we offer a (small) selection. The most .
famous example from these pages must be the Blahut—Arimoto % ={Z€Z :dist(Z,%) < 6}
algorithm for Computing channel CapaCity and rate-distorti(@ince@ is Compact,@1 is Compact because it is a closed
functions [97], [98] In the field of Signal restoration anq;ubset of a Compact set. On the other haﬁ@,is Compact
recovery, we mention the work of Landau—Miranker [99], Geecause it is the intersection of the closed g&twith a
chberg [100], Youla-Webb [101], Cadzow [96] and Donohocpmpact set, namely the collection of matrices within a fixed
Stark [102]. Cetin, Gerek and Yardimci show that projectiofistance of# .
on convex sets can compute multi-dimensional equiripple\we may apply Corollary 14. Each of the conclusions
filters [103]. Xu and Zikatonov discuss how alternating progf the corollary has a straightforward analogue among the
jection can be used to solve the linear systems that arisecihclusions of the present theorem. The only question that
the discretization of partial differential equations [85]. In thgnay remain is what it means for a pair of matricgs, Z)
matrix analysis community, alternating projection has begg pe a generalized fixed point of the alternating projection.
used as a computational method for solving inverse eigenvaj@yeneralized fixed point of an algorithm is a point which
problems [37], [39] and for solving matrix nearness problems a possible successor of itself. In the present case, a pair of
[38], [104]. In statistics, one may view the Expectation MaXmatrices can succeed itself if and only if the second component
imization (EM) algorithm as an alternating projection [105]is a4 potential successor of the fiemtd the first component is
de Leeuw has discussed other statistical applications in [53.potential successor of the second. The maroban succeed

the matrixY if and only if

[96] . .
hUS, we may restrict our attention to the sets

APPENDIX I - —
CONVERGENCE ANDFIXED POINTS HZ - YHF = dist(Y, Z).
Armed with the theory of the last appendix, we are finallyikewise, Y can succeed if and only if
girded to attack the convergence of Algorithm 1. The results _ _
on point-to-set maps will allow us to dispatch this dragon IY = 2|, = dist(Z,2).
quickly. Then we shall turn our attention to the CONVergencs, i« ophservation completes the proof. -
of the algorithm in the special case that the frame vectors haveSince the collection oh-tight frames and the collection of

prescribed norms. This problem will require a longer siege, bfﬁteir Gram matrices are both compact, the theorem has two
it, too, will yield to our onslaught. The convergence results th%mediate corollaries '

we develop are all novel. Corollary 17: If 2, is the collection oh-tight frames, and
7 is a closed set of matrices, then Theorem 16 applies with
A. Basic Convergence Proof e FandZ € 2,

In this section, we establish the convergence of the basicCorollary 18: If &, contains the Gram matrices of aik
alternating projection algorithm that appears in Section 11I-0ight frames, and#” is a closed set of Hermitian matrices,
Our main burden is to translate the language of point-to-deen Theorem 16 applies with = &, and 2 < 7.
maps into more familiar terms.

Theorem 16 (Global_ Co_nvergencel)et % and 2 be B. Stronger Convergence Results
closed sets, one of which is bounded. Suppose that alternatin
projection generates a sequence of iter&fé§, Z;)}. This se-
quence possesses at least one accumulation pointYsag).

« Every accumulation point lies i’ x Z.
o Every accumulation point satisfies

%/Ieyer’s Theorem suggests that it might be possible to
provide a stronger convergence result for Algorithm 1 if we
can ensure that the matrix nearness problems have unique
solutions. In many cases, the nearness problems are uniquely
soluble whenever the iterates get sufficiently close together.

||V — 7HF = lim |Y; - Zj|p. This provides a local convergence result that is much stronger
Jee than Zangwill's Theorem allows. First, we prove a general
« Every accumulation point satisfies version of this result. Afterward, we show that it applies

to an alternating projection that involves one of the spectral

|Y = 2| = dist(Y, 2) = dist(Z,%). constraint setsZ,, or %,,.



17

Recall that the distance between a mattikxand a set?” Theorem 20 (Wielandt—Hoffman [26]Buppose tha#l and

is defined as B are N x N Hermitian matrices, and let the vectolA)
dist(M, ) % inf |M — Yl and _A(B) I|s_t the eigenvalues oA and B in algebraically
Yew non-increasing order. Then
Theorem 19:Let % and 2 be closed sets of matrices, one
e : o [ACA) = AB)l, < [|A = Bl -

of which is compact. Suppose that the alternating projection
betweer?” andZ generates a sequence of itera€%;, Z;)}, Suppose instead th#@ and B ared x N rectangular matrices
and assume that the matrix nearness problems with d < N, and leto(A) ando(B) list the largest! singular

. values of A and B in non-increasing order. Then
min [V — M|
€

win | Z - M|, lo(A) ~ a(B), < A~ Bl
Ze¥

h . \uti ¢ wikd in th ¢ Corollary 21 (Local Convergence with Constraigk,,):
ave unigue solutions for any matrid in theé Sequence ot o o pe 5 closed set offl x N matrices for which the

iterates. Then we reac.h the following conclusions. associated matrix nearness problem

« The sequence of iterates possesses at least one accumu-
lation point, say(Y, Z). min [|S — M||

« Each accumulation point lies if# x Z. e

« The pair(Y,Z) is a fixed point of the alternating projec-has a unique solution wheneveist(M,.”) < e. Imagine
tion. In other words, if we applied the algorithm ¥ or  that the alternating projection betweefi and 2., generates
to Z every iterate would equdlY, Z). a sequence of iteratggS;, X;)} in which

« Each accumulation point satisfies

o |S; — Xj||p < min{e,a} for some index/J.
IV =2l = tim ¥~ Z,ll,- . .
j—o0 The conclusions of Theorem 19 are in force.

« The component sequences are asymptotically regular, i.e. Proof: According to Theorem 2, the matrix ifi, nearest

to a matrixM is unique so long a8/ has full rank. Ad x N
matrix is rank-deficient only if itgl-th largest singular value is
« Either the component sequences both converge in noragro. Observe that the largessingular values of each matrix
— — in 2, all equala > 0. According to the Wielandt—Hoffman
H Yi— Y| —0 and HZJ' - ZHF — 0, Theorem, a?ly matrix sufficientlygclose 1%, cannot be rank-
or the set of accumulation points forms a continuum. deficient. More preciselylist(M, Z,) < « implies thatM
Proof: The argument in the proof of Theorem 16 showbas full rank, which in turn shows thd# has a unique best
that we are performing an alternating minimization betweeapproximation inz,.
two compact sets. The hypotheses of the theorem guaranteBefine the constraint sets
that each iterate is uniquely determined by the previous iterate. dof )
Corollaries 14 and 15 furnish the stated conclusions. ¥ = S Nclosure{S;:j > J}  and
The only point that may require clarification is what it takes < 2,N closure{X; : j > J}.
for a pair of matricegY’, Z) to be a classical fixed point of the _ ) ) )
alternating projection. A classical fixed point of an algorithm iSINC€ Zo IS compact,2” is also compact. We will apply
the only possible successor of itself. In the case of alternatiﬂ—d‘eqrem 19 to the tail of the sequence of iterates, beginning
projection, the matrixZ must be the unique successor of thi/Ith index.J. Forj > J, each matrxs; is close enough t&”
Y, and the matrixy’ must be the unique successordfThis and €ach matrX; is close enough t@ that we can ensure
observation completes the argument. the matrix nearness problems have unique solutions. =

Due to the peculiar structure of the spectral constraint Corollary 22 (Local Convergence with Constraiet,):
sets 2., and %,, the solutions to the associated matrik® ¢ be a closed set ofV x N matrices for which the
nearness problems are often unique. Therefore, the alternafifgociated matrix neamess problem
projection algorithms that we have considered in this paper
sometimes have better performance than the basic convergence

[Yj+1 = Yjllg =0 and [ Zj11 — Zi|lz — 0.

e

in [|H — M
fig, | I

result, Theorem 16, would predict. has a unique solution whenevdist(M,.#) < e. Imagine
We remind the reader that that the alternating projection betwe&h and.# generates
Lo X € CN . XX* = aly}, and a sequence of iteratggG;, H;)} in which
4, = {GeCNN.G=G", |G; — Hj|lp < min{e,a/v/2} for some indexJ.

The conclusions of Theorem 19 are in force.

d Proof: Theorem 3 indicates that the matrixdf, nearest
The uniqueness of the matrix nearness problems will follot®e a matrix M is unique so long as itg-th and (d + 1)-st
from the Wielandt—Hoffman Theorem, a powerful result froneigenvalues are distinct. Imagine thét is a matrix whose
matrix analysis. d-th and(d + 1)-st eigenvalues both equal Since thed-th

and G has eigenvalue&y, ..., a,0,...,0)}.
N——
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and (d + 1)-st eigenvalue of a matrix i/, are« and zero, Proof: Assume thatj > 0, and make the inductive
the Wielandt—Hoffman Theorem shows that assumption thatS; has full rank. First, we bound the top
i 9 9 9 singular value ofS; by exploiting the relationship between
dist(M,%o)" > (@ = 7)" + 77 the singular values of a matrix and its Frobenius norm. Since

. . 2
Varying 7, the minimum value of the right-hand sidedg/2. C lists the column norms of;, it follows that [|S;[|; =

Therefore, dist(M,%,) < a/v2 implies that thed-th and ||Cllz- The squared Frobenius norm also equals the sum of
(d + 1)-st eigenvalues oM are distinct. In consequenc#/ the squared singular values &f. It is immediate that the

has a unique best approximation fro#. maximum singular value of; satisfies
i i 2
As before, define the constraint sets Tmax(S;)% < ||IC|12 . (9)
def .
Y = A Nclosure{H; : j = J}  and Next we use this relation to estimate the column norm¥of
Z = 4, Nclosure{G; : j > J}. Let S; have singular value decompositidi>V*, and write

_ _ _ _ the n-th columns ofS; and X; ass,, andx,,. On account of
Since ¥, is compact,Z is also compact. We will apply the fact thatX; = (S,S;*)~*/2S;, we have

Theorem 19 to the tail of the sequence of iterates, beginning
with index.J. Forj > .J, each matrixH; is close enough t& znll, = H(Sij*)‘l/2 an2

and each matri>G; is close enough t& that we can ensure 1, 10
. . . = |Us—'U* s, (10)
the matrix nearness problems have unique solutions. = 2
2 vV Cmin/Umax(Sj)7
C. Specified Column Norms since the norm o§,, is at least,/c,,i,,. Introducing the estimate

) into (10) yields the first part of the proposition.

Now, we show that the smallest singular value $f,,
remains well away from zero. The Courant—Fischer Theorem
far singular values [26] states that one may calculateithie

This section offers a detailed analysis of the alternatin(g
projection between the set aftight frames and the collection
of matrices with specified column norms.

Letcy,...,cn be po_smv_e numbers that_denote the Squar(?argest singular value of a matrig € C<V as
column norms we desire in the frame. Without loss of gener-

. _ ; B
ality, we assume thaf", ¢,/d = 1 to streamline the proofs. o4 (B) = max min 1B z]|,

Then the structural constraint set is z 220 ||z|, ’

7= {Se QXN . ||sn||§ =cn}. where Z ranges over alk-dimensional subspaces 6f¥ and
z € Z [26]. Define T; to be the diagonal matrix that lists the
The tightness parameter of the framenust equal one, so We column norms ofX;. Therefore, the nearest matrix i#f can
define the set of 1-tight frames as be written asS;,; = X; Tj‘l C. Then put

def dxN . x o B
21 ={X e C”T XX* =g} Z = {C'T;z: x € rowspan X; }.

Suppose thab, is a full-rank matrix drawn from, and  since X; has full row-rank,Z forms ad-dimensional sub-
perform an alternating projection between the sétaind 21 space. Select a unit vector from %, and express it as
to obtain sequence$S;} and {X;}. Proposition 23 of the » — C-!T, for somez in rowspan X;. By construction,

sequel shows that the sequer{cg} lies in a compact subsetxj has orthonormal rows, so we may compute
of . whose elements have full rank, while the sequepXe}

lies in a compact subset o7 whose elements have non-  lISi+12ll, = [ X; T, C 2|,

zero columns. By an appeal to the matrix nearness results, = ||X; |,

Theorem 2 and Proposition 5, we see that each iterate is = |lz| (sincex € rowspan X;)
uniquely determined by its predecessor. We may therefore fl ’
apply Corollary 15. =|| T; CZHQ'

In this subsection, we complete the foregoing argumenhe matrixX; is a submatrix of a unitary matrix, so its column

by demonstrating that the iterates are well-behaved. In thgrms cannot exceed one. Thus every entry7'5ﬁ1 must be
next subsection, we classify the full-rank fixed points of thgt |east one. It follows that

alternating projection betwees’ and 2.

Set ¢y = min, ¢,, and define the diagonal matrig€ 15541 2lly = Vemin:
whose entries arg/cy, ..., \/en. _ Applying the Courant-Fischer Theorem yields
Proposition 23: Assume that the initial iterat§, is a full
rank matrix from.. For every positive indey, Omin(Sj+1) = v/Cmin-
1) the Euclidean norm of each column of; exceeds The second part of the proposition is complete.
VCmin/ || Cl[p; and Finally, we must make the compactness argument. We have
2) the smallest singular value 6} exceeds,/crin. shown that the squared singular values of an iteSataust lie

The matrices that satisfy these bounds form compact subsatshe closed interval,/cin, || C||¢]. The minimum squared
of 27 and.”. singular value of a matrix is a continuous function of the
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matrix entries, which follows from the Wielandt—Hoffmanmatrix in. closest toX. Therefore,Z is also a fixed point of
Theorem. Therefore, the matrices whose smallest singutbe alternating minimization betwee# and Z,,. An appeal

value lies in this interval form a closed set. We conclude thai Proposition 24 completes the proof. ]
the intersection of this set with the compact sétis compact.
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