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Abstract

In order to reduce the inter-carrier interference (ICI) produced by frequency offset in OFDM systems, we set
up an optimization problem to find the transmission pulse which maximizes the signal-to-average-ICI power ratio.
Furthermore, by solving a constrained optimization problem, our pulses can satisfy various decay requirements,
for instance with respect to a prescribed spectral mask. The latter is an important feature in order to comply
with industry standard specifications. Simulation results show that our pulses outperform many currently known
transmission pulses with respect to the ICI criterion.

Keywords Frequency offset, inter-carrier interference (ICI), pulse-shaping, Orthogonal Frequency
Division Multiplexing (OFDM), Optimal pulse.

I. INTRODUCTION

OFDM has attracted considerable attention in recent years due to its desirable properties such as its
high data rate transmission capability, as well as its robustness to multipath delay spread. On the other
hand, OFDM is sensitive to carrier frequency offset, caused by misalignment in carrier frequencies or
Doppler shift. This can produce ICI and thus can degrade the overall performance [1].

Many OFDM pulses were designed recently to reduce the ICI effect. Generalized raised-cosine (RC)
pulses were proposed in [2]. In [3], the so-called “better than raised cosine” (BTRC) pulse was presented
which outperforms the raised-cosine pulse in terms of sensitivity to timing errors. In [4], a family
of intersymbol-interference-free polynomial pulses (POLY) was designed, whose Fourier transform can
provide an asymptotic decay rate (ADR) of the order ω−k for any integer k, and which show smaller ICI
when compared with the aforementioned pulses [5]. A different approach to OFDM pulse shape design,
based on time-frequency analysis, can be found in [6], [7], [8].

Our goal in this paper is twofold. Firstly, we want to design OFDM pulses that improve upon existing
OFDM pulses with respect to ICI robustness. Secondly, we want to design the pulses such that they also
satisfy prescribed spectral decay requirements such as dictated by, e.g., IEEE 802-standard specifications.
This additional aspect is very important in practice. Hence, unlike the aforementioned methods which
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construct “nice” time-limited pulses directly, in this paper we propose a pulse design method which
maximizes the total signal-to-average-ICI power ratio (SIR) with respect to user-defined spectral decay
conditions by solving a constrained convex optimization problem. By doing so we obtain an OFDM
pulse that achieves the largest SIR – which in turn leads to the smallest ICI effect – under the given
spectral decay requirements. We also provide some details concerning the numerical implementation of
our method.

II. PROBLEM DESCRIPTION

We assume that the reader is familiar with the basics of OFDM (cf. e.g. [1]) and present only those
details necessary to clarify notation and to formulate the problem under consideration. We follow mainly
the setup and notation in [3].

The OFDM transmission signal at time t is given by

x(t) = ei2πfct

N−1
∑

k=0

akp(t)e
i2πfkt, (1)

where i =
√
−1, fc is the carrier frequency, N is the number of subcarriers, ak is an OFDM constellation

point, fk is the subcarrier frequency of the k-th subcarrier and p(t) is the time limited pulse which we
need to design. Furthermore, we assume that ak is an i.i.d. random variable with mean zero and variance
N0

2
. We also have

fk − fm =
k −m

T
(2)

to ensure subcarrier orthogonality, which is
∫ ∞

−∞

p(t)ei2π(fk−fm)tdt =

{

1 k = m
0 k 6= m,

(3)

for k,m = 0, 1, . . . , N − 1, where 1
T

is the subcarrier frequency space, and T is the symbol period. In the
presence of frequency offset ∆f between receiver and transmitter, after multiplication by e−i2π(fc−∆f)t,
the received signal is

r(t) = ei2π∆ft

N−1
∑

k=o

akp(t)e
i2πfkt. (4)

We obtain the decision variable for the m-th subcarrier

âm = amP (−∆f) +

N−1
∑

k=0,k 6=m

akP
(m− k

T
− ∆f

)

, (5)

where P (w) is the Fourier Transform of p(t) and the second term in the right hand side is ICI produced
by frequency offset. After taking expectation, we get the average ICI power for the m-th symbol

δ̄m
ICI =

N−1
∑

k=0,k 6=m

|P (
k −m

T
+ ∆f)|2 (6)



3

as (13) in [3]. Furthermore, we take the same definition in [3] as the average signal power to average ICI
power ratio (SIR) for the m-th symbol

SIRm =
|P (∆f)|2
δ̄m
ICI

. (7)

Since the definitions in (6) and (7) depend on the index m, we define the total average ICI power (TICI)
for a pulse in an N -subcarrier OFDM system as

TICI =
N−1
∑

m=0

δ̄m
ICI =

N−1
∑

k=−(N−1),k 6=0

(N − |k|)|P (
k

T
+ ∆f)|2, (8)

and the total average signal power to average ICI power (TSIR) for a pulse in an N-subcarrier OFDM
system as

TSIR =
N |P (∆f)|2
∑N−1

m=0 δ̄
m
ICI

, (9)

which are independent of index m. For a OFDM system with N subcarriers, δ̄m
ICI changes with index m

while TICI is fixed, which can reflect the ICI power of the whole OFDM symbol rather than symbol by
symbol. We know that large TICI (or small TSIR respectively) implies high distortion in OFDM systems.
Thus in the next section, we will minimize TICI to achieve an optimal time limited pulse which satisfies
(3).

III. OFDM PULSE DESIGN VIA CONSTRAINED OPTIMIZATION

Consider a time limited pulse p which satisfies (3) with p(t) = 0 when |t| ≥ T (1+α)
2

. Since it is a L2

function in the domain [−T (1+α)
2

, T (1+α)
2

], from Fourier analysis [9], such a function can be expressed as

p(t) =

{

∑∞
−∞

cj

(1+α)T
e

2πitj

(1+α)T t ∈ [ (−1−α)T
2

, (1+α)T
2

]

0 t /∈ [ (−1−α)T
2

, (1+α)T
2

].
(10)

Thus the Fourier Transform of p is given by

P (w) =
∞

∑

j=−∞

cj
sin(πT (1 + α)(w − j

(1+α)T
))

(1 + α)Tπw − πj
. (11)

We note that a time-limited pulse (intersymbol-interference-free or not) can at best have an ADR in the
Fourier domain of the order e−|ω|α with α < 1, this follows from [10].

Without loss of generality we let T = 1 in the rest of the paper. Using Taylor expansion, we have

P (k + ∆f) = P (k) + P
′

(k)∆f + O(|∆f |2) = P
′

(k)∆f + O(|∆f |2),
thus

TICI =
N−1
∑

k=−(N−1),k 6=0

(N − |k|)|P (k + ∆f)|2 =
N−1
∑

k=−(N−1),k 6=0

(N − |k|)|P ′

(k)|2|∆f |2 + O(|∆f |3). (12)
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For small |∆f | the dominant part of TICI is the first term. Hence instead of maximizing TICI directly,
we try to maximize the dominant term, which leads to minimize

∑N−1
k=−(N−1),k 6=0(N − |k|)|P ′

(k)|2.
We now proceed by setting up the optimization problem with respect to the dominant TICI term. We

let the 2N − 1 vector b have components b(0) = 1 and b(k) = 0 for k ∈ {−(N − 1), . . . , N − 1}, and

define the function g(w, j) =
sin(π(1+α)(w− j

1+α
))

(1+α)πw−πj
. Then from (11) we have

N−1
∑

k=−(N−1),k 6=0

(N − |k|)|P ′

(k)|2 = ‖DBc‖2
2 (13)

where we have introduced the vector c(j) = cj for j ∈ �
, the matrix B(k, j) = g

′

(k, j), k ∈ {−(N −
1), . . . , N − 1}, j ∈ �

and the 2N − 1 by 2N − 1 diagonal matrix D with D(k, k) =
√

N − |k| for
k ∈ {−(N − 1), . . . , N − 1}. Denoting the matrix A(k, j) = g(k, j), we can represent the optimization
problem as follows:

{c} = argmin ‖DBc‖2
2 s.t. Ac = b. (14)

Here ‖.‖2 denotes, as usual, the Euclidean norm. In applications the spectrum of the OFDM signal
typically has to satisfy some specific decay requirements (a spectral mask) in order to avoid interference
with other users operating in adjacent frequency bands. Often these decay requirements are enforced by an
appropriate filtering of the continuous-time OFDM signal before transmission. Unfortunately this filtering
can cause a loss of orthogonality of the subcarriers and thus lead to ICI. To avoid this unpleasant effect
we can a priori design the OFDM pulse such that it satisfies a prescribed spectral mask.

We can write these frequency decay requirements for the pulse P (w) as |P (w)| ≤ S(w), where S is a
non-negative unimodal function representing some spectral mask. Taking into account this spectral decay
constraint we arrive at the following constrained optimization problem:

{c} = argmin ‖DBc‖2
2 s.t. Ac = b, |P (w)| ≤ S(w) (15)

It is straightforward to see that ψ(c) = ‖DBc‖2
2 is a convex function [11] and that the domain {c|Ac =

b, |P � (w)| ≤ S(w)} is a convex set. For the latter claim, we let Γ = {c|Ac = b, |P � (w)| ≤ S(w)}, and
c1, c2 ∈ Γ. For any δ ∈ (0, 1), we consider vector c3 = δc1 +(1− δ)c2. It is clear that Ac3 = δAc1 +(1−
δ)Ac2 = b. Further P � 3(w) = δP � 1(w)+(1−δ)P � 2(w), so |P � 3(w)| ≤ δ|P � 1(w)|+(1−δ)|P � 2(w)| ≤ S(w).
Thus we have c3 ∈ Γ, which shows the claim. Therefore we can find the global minimum by solving this
convex optimization problem (15).

Since (15) describes an infinite dimensional optimization problem, it is not directly accessible to a
numerical solution. Hence in the next section we will propose an approach how to solve (15) numerically.

IV. NUMERICAL SOLUTION OF PULSE OPTIMIZATION PROBLEM

In order to solve (15) numerically, we need to deal with a finite model. Therefore we first truncate our
pulse as Pn(w) with expression

Pn(w) =
n

∑

j=−n

cj
sin(πT (1 + α)(w − j

(1+α)T
))

(1 + α)Tπw − πj
. (16)
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Furthermore, we introduce the corresponding vector c(n), the 2N − 1 by 2n + 1 matrices B(n) and
A(n), where c(n)(j) = cj , B(n)(k, j) = g

′

(k, j) and A(n)(k, j) = g(k, j) for j = −n, . . . n and k =
−(N − 1), . . . , N − 1. Hence the optimization problem becomes:

{copt} = argmin ‖DB(n)c(n)‖2
2 s.t. A(n)c(n) = b, |Pn(w)| ≤ S(w). (17)

It is easy to see that a necessary condition to satisfy A(n)c(n) = b is that n > N −1. In fact, we may have
to let n be quite larger than N − 1 in order to satisfy both A(n)c(n) = b and |Pn(w)| ≤ S(w), which can
increase the computational costs dramatically. On the other hand, considering (11) and the constraint in
(17) we know |cj| ≤ S( j

1+α
) which goes to zeros very fast especially for pulses whose Fourier transform

decays fast. This observation suggests that a smaller n might suffice to achieve an accurate result.
Suppose the pulse H(w) satisfies |H(w)| ≤ S(w) but does not satisfy (3). In this case we can make a

re-correction process and let

H1(w) := H(w) +

N−1
∑

k=−(N−1)

(b(k) −H(k))Q(w − k), (18)

where the function Q satisfies

Q(k) =

{

1 k = 0,
0 k 6= 0.

(19)

Literature offers many choices for Q, such as the rectangular pulse, a raised cosine pulse and other Nyquist
Pulses. Thus H1(w) is the new pulse which satisfies (3). This observation is the motivation to set up the
truncated optimization problem by pursuing a pulse with expression:

Pn(w) =
n

∑

j=−n

cj
sin(πT (1 + α)(w − j

(1+α)T
))

(1 + α)Tπw − πj
+

N−1
∑

k=−(N−1)

c̄kQ(w − k) (20)

and c̄k = b(k) − H2(k), where H2(w) =
∑n

j=−n cj
sin(πT (1+α)(w− j

(1+α)T
))

(1+α)Tπw−πj
. Hence, by construction for any

n, Pn(w) satisfies (3). Then the TICI of pulse Pn(w) is

N−1
∑

k=−(N−1),k 6=0

(N − |k|)|P ′

n(k)|2 = ‖D(Q
′

+B(n)c(n))‖2
2 (21)

where B(n)(k, j) = ∂2Pn

∂w∂cj
(k) and Q

′

(k) = ∂Q

∂w
(k). Therefore, the truncated optimization problem becomes

{c(n)} = argmin ‖D(Q
′

+B(n)c(n))‖2
2 s.t. |Pn(w)| ≤ S(w), (22)

where Pn(w) is given in (20). In problems (22) and (20) n can be any positive integer and Q(w) can be
a rectangular pulse, a raised cosine pulse and other Nyquist Pulses.

It remains to clarify the relation between the solution of the infinite-dimensional optimization prob-
lem (15) and the truncated, modified problem (22) which is accessible to numerical methods. We have
the following theoretical results.



6

Lemma 4.1: If S1(w) and S2(w) are two different constraints in (22), S1(w) ≤ S2(w) holds for all
w, then the minimum of (22) with constraint S1(w) is no less than the minimum of (22) with constraint
S2(w).

Proof: Suppose the solution for (22) with constraint S1(w) is c1 and the minimum is d1, the
corresponding pulse Pc1 satisfies |Pc1(w)| ≤ S1(w) ≤ S2(w), which means c1 is in the feasibility region
of problem (22) with constraint S2, and the minimum of (22) with constraint S2(w) is less than or equal
to d1.
The following observation is obvious.

Lemma 4.2: In the optimization problem (17), when n increases, the minimum of (17) decreases.
Lemma 4.3: If S(w) ∈ L2( � ) and optimization problem (15) has a solution, then when n goes to ∞,

the minimum of problem (17) has a limit which is bounded by the minimum of problem (15).
Proof: By Lemma 4.2, when n increase, the corresponding minimum of problem (17) is a decreasing

sequence. For any fixed n, the minimum of (17) is no less than the minimum of problem (15). Thus we
have the above result.
Based on these findings we finally arrive at the following result:

Theorem 4.4: If S(w) ∈ L2( � ) and optimization problem (15) has a solution, when n goes to ∞, the
minimum of problem (22) has a limit which is bounded by the minimum of problem (15).

Proof: When n increases, the feasibility region of problem (22) increases, thus the minimum of
problem (22) decreases. Since the pulse in problem (22) satisfies (3) and the constraint |Pn(w)| ≤ S(w),
and its inverse Fourier transform is a time limited function in domain [ (−1−α)T

2
, (1+α)T

2
], the corresponding

coefficient of pulse Pn(w) is inside the feasibility region of problem (15). Therefore the minimum of
problem (22) is no less than the minimum of problem (15), which proves the theorem.

Usually, we can get a very good result by solving (22) even when n is small. In the next section, we
will show the simulations results when Q(w) is the raised cosine pulse.

V. SIMULATIONS AND COMPARISONS

In this section, we compare our optimal pulses with the RC pulse, the BTRC pulse and the POLY
pulse. These pulses have different spectral decays. Thus in order to make the comparisons fair, we should
use different decay requirements when comparing with different pulses. To make this precise, we give the
following definitions, which will be used to characterize the spectral decay of the various OFDM pulses.

Definition 5.1: For a given pulse P (w), if the function S(ω) is unimodal and satisfies |P (w)| ≤ S(w),
we say that S(ω) is an upper bound for the pulse P (w).
In this paper, we are interested in two kinds of upper bounds of a pulse, which appear most often in
practice to describe spectral masks: (i) a piecewise step function, and (ii) a piecewise log-linear function
(i.e., the logarithm of this function is a piecewise linear function).

Definition 5.2: Let P (ω) be a given pulse and let Γ = {. . . , w−2, w−1, 0, w1, w2, . . . }, denote a set of
points where wk < wk+1 and |wk| goes to ∞ as |k| goes to ∞. If the piecewise step function S(w) is
an upper bound for P (w) in the sense of the definition above on each interval [wk, wk+1], we say S(w)
is a piecewise step upper bound (PSUB) of P (w). Furthermore, if for any wk < wm, S(w) minimizes
∫ wm

wk
S(w)dw in all these PSUB functions, we say S(w) is the minimum piecewise step upper bound

(MPSUB). Similarly we can define minimum piecewise log-linear upper bound (MPLLUB).
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We know from the definitions above that for a given pulse the MPSUB (or MPLLUB) is unique,
which clearly reflects the pulse decay. Suppose Sp(w) is the MPSUB of the pulse P (w) defined on
Γ = {. . . , w−2, w−1, 0, w1, w2, . . . }. We use the function S as the constraint in optimization problem (22)
when we compare this pulse with our optimal pulse, where

S(w) =

{

1 w ∈ [−w1, w1]
Sp(w) w /∈ [−w1, w1].

(23)

Thus for the RC, BTRC and POLY pulses, we solve (22) by using the corresponding MPSUB and get our
optimal pulses which are labeled OPRC, OPBTRC, and OPPOLY respectively. The following three pictures
show the TICI performance for the above pulses for a 128-subcarrier OFDM system. We solve (22)
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Fig. 1. The TICI of different OFDM pulse shapes for a 128-subcarrier OFDM system.

by using a sequential quadratic programming (SQP) method [12] which can be implemented by the
Matlab function fminimax. We set n = 45, which means we use 91 basis functions. Fig. 1 shows
the numerical results when α = 0.5. In this case, at frequency offset 0.05, the corresponding pulses
can improve the TICI by 2.4 dB for the RC pulse, by 1.3 dB for the BTRC pulse and by 0.2 dB for
the POLY pulse. For the comparison with the POLY pulse, we use the same parameters as in [4] (i.e.,
{a2 = 39, a3 = −99, a4 = 85}). In the case of the POLY pulse we see almost no improvement, the reason
being that the POLY pulse has already been designed to be optimal with respect to the corresponding
asymptotic decay rate. For the same α, we have almost the same improvement for the TSIR criterion.

From the numerical results we find that our optimal pulses have smaller TICI and higher TICI than
the other pulses when the roll-off factor α < 0.9, independent of the frequency offset. We note from the
standards 802.16, 802.11 and IS-54 that in practice one usually chooses α ≤ 0.5. Let us nevertheless
briefly consider what happens when α ≈ 1. In this case our optimal pulses have slightly bigger TICI and
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Fig. 2. The TICI of different OFDM pulse shapes for a 128-subcarrier OFDM system.

smaller TSIR than BTRC and POLY pulse when ∆fT is large, while when ∆fT < 0.15 the TSIR of our
optimal pulses is much larger than the TICI of other pulses. When α = 1, our optimal pulses achieve the
improvement of 13.7 dB, 8.7 dB and 5.1 dB for the RC pulse, BTRC pulse and POLY pulse (using the
recommended parameters in [4]) respectively at frequency offset 0.05. The different behavior with respect
to ∆fT is not astonishing, since we initially have set up our optimization problem under the assumption
that ∆fT is small.

From Lemma 4.1 we know that for a given pulse we can always find another pulse with smaller TICI,
but which has slower decay. Thus it is not surprising that the BTRC pulse and the POLY pulse have
smaller TICI than the RC pulse, but this improvement comes at the cost of having a decay rate of only
O( 1

w2 ) compared to a decay rate of O( 1
w3 ) for the RC pulse. However, as mentioned in Section III, in

practice the Fourier transform of the continuous-time OFDM signal usually has to satisfy specific decay
requirements in order to avoid interference with users operating in adjacent frequency bands. These decay
requirements are often set forth in standard regulations in terms of spectral mask conditions. The OFDM
pulses proposed in the literature—in particular those which have slower spectral decay than the raised
cosine—may give rise to OFDM signals that do not meet those requirements. It is therefore desirable
to be able to construct OFDM pulses that are guaranteed to meet decay requirements specified by some
prescribed spectral mask. The optimization problem in (15) (and its finite counterparts) includes such
constraints.

In the following, we consider some typical examples for such spectral decay conditions. For purposes
of reproducibility of research we give a detailed description of the decay requirements that we use (the
reader who is not interested in these details may skip the following lines and just look at the spectral
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Fig. 3. The TICI of different OFDM pulse shapes for a 128-subcarrier OFDM system.

masks displayed in Fig. 4 and Fig. 5). We define

S(w) =

{

1 w ∈ [−w1, w1],
βSp(w) w /∈ [−w1, w1],

(24)

where Sp(w) is the MPSUB or MPLLUB of the RC pulse.
Using the roll off factor α = 0.5 and β = 4, we first let Sp(w) be the MPSUB of the RC pulse. The

numerical results are shown in Fig. 4. In this case, at frequency offset 0.05, our pulse achieves 3.25 dB
improvement in TICI when compared with RC pulse. Then we let Sp(w) be the MPLLUB of the RC
pulse, the corresponding optimal pulse can achieve 3.7 dB improvement in TICI when compared with the
RC pulse. The numerical results are shown in Fig. 5. These significant improvements are made possible by
optimally adapting the OFDM pulse to the prescribed spectral mask, while at the same time minimizing
TICI.

In Table I, we compare the BER in the presence of time sampling errors computed according to [13].
For different roll-off factor α, the optimal pulses have smaller BER than RC and BTRC pulses. The optimal
pulses have smaller BER than POLY pulses at small time sampling errors, when the time sampling errors
are large, the optimal pulses have a little larger BER since we set up the optimization problem by assuming
the time sampling errors are small. Fig. 6 shows the figures of the time domain optimal pulses.

VI. CONCLUSION

With increasing bandwidth and mobility wireless communication systems employing OFDM becomes
increasingly sensible to Doppler effect and carrier frequency offset. It is thus important to have a flexible
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TABLE I

ISI ERROR PROBABILITY COMPARISONS FOR N = 2
9 INTERFERING SYMBOLS

α pulse t/T = ±0.05 t/T = ±0.1 t/T = ±0.15 t/T = ±0.2

0.25

RC
OPRC

BTRC
OPBTRC

POLY
OPPOLY

8.219e-8
6.497e-8
5.812e-8
5.141e-8
4.734e-8
4.566e-8

2.818e-6
1.705e-6
1.298e-6
1.069e-6
8.834e-7
8.816e-7

7.153e-5
3.810e-5
2.622e-5
2.141e-5
1.661e-5
1.748e-5

9.746e-4
5.234e-4
3.568e-4
2.916e-4
2.241e-4
2.393e-4

0.5

RC
OPRC

BTRC
OPBTRC

POLY
OPPOLY

3.972e-8
2.612e-8
2.413e-8
2.030e-8
2.057e-8
1.922e-8

5.489e-7
2.512e-7
1.858e-7
1.414e-7
1.354e-7
1.240e-7

8.174e-6
3.5560e-6
1.940e-6
1.624e-6
1.372e-6
1.400e-6

1.022e-4
4.510e-5
2.088e-5
2.021e-5
1.520e-5
1.804e-5
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Fig. 4. Raised cosine and optimized pulse for a specific spectral mask.

framework at our disposal for the design of OFDM pulse shapes which can mitigate ICI. We have
introduced a constrained optimization approach which yields OFDM pulses that outperform existing
OFDM pulses with respect to ICI, and at the same time satisfy specific spectral mask requirements.
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