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Abstract

Let H be the general, reduced Heisenberg group. Our main result estab-
lishes the inverse-closedness of a class of integral operators acting on Lp(H),
given by the off-diagonal decay of the kernel. As a consequence of this result,
we show that if α1I +Sf , where Sf is the operator given by convolution with
f , f ∈ L1

v(H), is invertible in B(Lp(H)), then (α1I + Sf )−1 = α2I + Sg, and
g ∈ L1

v(H). We prove analogous results for twisted convolution on a locally
compact abelian group and its dual group. We apply the latter results to
a class of Weyl pseudodifferential operators, and briefly discuss relevance to
mobile communications.

1 Introduction

We consider a class of integral operators defined for the general reduced Heisenberg
group H. We show that if the kernel of the integral operator N1 has L1

v-integrable
off-diagonal decay (here v is a weight) and the operator α1I+N1 is invertible, then
its inverse also has the form α2I+N2, and the off-diagonal decay is preserved in the
kernel of N2. As a consequence of this result, we establish the inverse-closedness
of a Banach algebra of convolution operators on the general reduced Heisenberg
group. Namely, we consider the operator Sf given by convolution with f and show
that if α1I+Sf , f ∈ L1

v(H), is invertible in B(Lp(H)), then (α1I+Sf )
−1 = α2I+Sg,

where g ∈ L1
v(H). While this result relies on other recent results, it has its roots in

Wiener’s lemma.
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Wiener’s lemma states that if a periodic function f has an absolutely summable
Fourier series

f(t) =
∑
n∈Z

ane
2πint (1)

and is nowhere zero, then 1/f also has an absolutely convergent Fourier series [29].
We call this inverse-closed property the spectral algebra property. That is, let A
and B, B ⊂ A, be Banach algebras. B has the spectral algebra property if whenever
b ∈ B is invertible in A, b−1 ∈ B. We equivalently say that B is inverse-closed
in A. In Wiener’s lemma and in many of its descendants, the space B is given by
some form of l1 decay, for example summability of Fourier coefficients. Another
perspective on inverse-closedness for a Banach algebra views the elements of the
algebra as operators and considers to what degree the operator maps subspaces to
other subspaces or to what degree it leaves subspaces invariant. This perspective
becomes fruitful when we consider subspaces derived from the structure of the
underlying group, rather than from a basis.

To view a periodic function with summable Fourier series a = {an}n∈Z as an
operator, we consider the algebra of bi-infinite Toeplitz matrices with summable
antidiagonals, and we let Ta be the Toeplitz matrix given by the sequence a as an-
tidiagonal. To frame the Toeplitz case in the subspace perspective, we reformulate
the summable antidiagonal property as∑

n∈Z

sup
i−j=n

|〈Taei, ej〉| =
∑
n∈Z

|〈Taen, e0〉| <∞, (2)

where {ei}i∈Z is the standard basis for l2(Z). In this case, the subspace perspective
simply states that for the subspaces Ei and Ej given by ei and ej, ‖Ta : Ei →
Ej‖ → 0 as |i− j| → ∞ with decay given by (2).

Bochner and Phillips contributed the first essential step towards a general op-
erator version of the spectral algebra property [6]. They showed that the an in
(1) may belong to a–possibly noncommutative–Banach algebra. This key result
enabled Gohberg, Kaashoek and Woerdeman [11] and Baskakov [3] to establish an
operator version of the spectral algebra property. They considered subspaces Xi of
the space X, indexed by a discrete abelian group I, satisfying Xi ∩ Xj = {0} for
i 6= j and X = span{Xi}i∈I, and set Pi to be the projection onto Xi. For the linear
operator T : X → X they set

an =
∑

i−j=n

PiTPj,

and consider the operator-valued Fourier series

f(t) =
∑
n∈I

ane
2πint. (3)

They then use Bochner and Phillips’s work to establish that operators of the form
(3) satisfying

∑
n∈Z ‖an‖ =

∑
n∈Z supi−j=n ‖PiTPj‖ < ∞ form an inverse-closed

Banach algebra in B(X) [11, 3, 4].
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In the commutative setting, Gelfand, Raikov and Shilov [10] addressed the
important question: what rates of decay of an element are preserved in its inverse?
They answered this question by determining conditions on a weight function v such
that series finite in the following weighted norm form an inverse-closed Banach
algebra in l11(Z):

‖a‖l1v(Z) =
∑
n∈Z

‖an‖v(n) <∞.

These three conditions on v are given later; the key condition is called the GRS
condition, and a function satisfying all three is called admissible. Baskakov incorpo-
rated the GRS condition and proved the following operator version of the spectral
algebra property[4, 5]1: let v be an admissible weight; if the linear operator T
satisfies ∑

n∈Z

sup
i−j=n

‖PiTPj‖v(n) <∞

and is invertible, then ∑
n∈Z

sup
i−j=n

‖PiT
−1Pj‖v(n) <∞.

Kurbatov considered a class of operators satisfying

(Tf)(t) ≤
∫
β(t− s)|f(s)|ds (4)

for some β ∈ L1. He showed, using results very similar to Baskakov’s (but derived
independently), that if α1I + T1 is invertible and T1 satisfies (4) for β1 ∈ L1, then
(α1I+T1)

−1 = α2I+T2 and T2 satisfies (4) for β2 ∈ L1 [20]. This theorem, as stated
for integral operators in [19], is the point of departure for the research presented
in this paper.

We have two motivations for the work presented here: on the one hand a
question of abstract harmonic analysis and on the other hand research on the
propagation channel of a mobile communication system. The abstract harmonic
analysis question is: for what nonabelian groups does the spectral algebra property
hold? One recent result in this direction is by Gröchenig and Leinert [13, 14].
They established the spectral algebra property for (l1v(Z2d × Z2d), \θ), where \θ is
the following form of twisted convolution:

(a\θb)(m,n) =
∑

k,l∈Zd

aklbm−k,n−le
2πiθ(m−k)·l,

and they use this result to prove the spectral algebra property for convergent sums
of time-frequency shifts

∑
λ∈Λ cλTxλ

Mωλ
,
∑

λ∈Λ |cλ|v(λ) < ∞. (Tx and Mω are

1The version presented here is slightly different from the theorems in [4, 5], but it can be easily
extracted from the proof of Theorem 2 in [4].
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defined below.) Balan recently generalized this result by relaxing the lattice re-
quirement to solely a discrete subset of R2d. He showed that if

∑
λ∈Λ cλTxλ

Mωλ
,∑

λ∈Λ |cλ|v(λ) <∞, is invertible, then (
∑

λ∈Λ cλTxλ
Mωλ

)−1 =
∑

σ∈Σ cσTxσMωσ and∑
σ∈Σ |cσ|v(σ) <∞, where Λ, Σ ⊂ R2d, and |Λ|, |Σ| <∞, but Λ 6= Σ (in general)

[1].
Many of the other recent results of this nature are for integral operators, where

the spectral algebra property is manifested in the kernel. This is true for the seminal
paper by Sjöstrand in pseudodifferential operator theory [26]. In that paper he
proves the matrix version of Baskakov’s result, and uses this to prove the spectral
algebra property for pseudodifferential operators with symbols in M∞,1

v (R2d). (Let
g ∈ S(R2d) be a compactly supported, C∞ function satisfying

∑
k∈Z g(t−k) = 1 for

all t ∈ R2d. Then the symbol σ ∈ S ′(R2d) belongs to M∞,1
v (R2d) if

∫
R2d supk∈Z2d |(σ ·

g(. − k))∧(ζ)|dζ < ∞.) Sjöstrand proved the matrix Baskakov result and his
pseudodifferential operator result using techniques from “hard analysis”. Gröchenig
later also achieved this same result using techniques solely from harmonic analysis
[12]. In fact, he proved more. He showed that a pseudodifferential operator Lσ

has Weyl symbol σ ∈ M∞,1
v (R2d) if and only if the matrix given by Mm,n,m′,n′ =

〈Lσψm,n, ψm′,n′〉, for a proper Gabor frame {ψk,l}k,l∈Z [16], is in the Baskakov matrix
algebra given by

∑
(k,l)∈Z2 sup(m−m′,n−n′)=(k,l) |Am,n,m′,n′|v(k, l) <∞ [12]. Gröchenig

and one of us recently extended this result to pseudodifferential operators with
symbols defined on G× Ĝ, where G is any locally compact abelian group and Ĝ is
its dual group [15]. Locally compact abelian groups, their dual groups and twisted
convolution are standard features throughout the work just discussed; therefore,
it is very natural to look directly at the general reduced Heisenberg group for a
fundamental theorem.

In mobile communications a transmitted signal travels through a channel that is
modeled by a pseudodifferential operator. When a single source transmits a signal
it is reflected by objects in its environment, which results in different paths from
transmitter to receiver, each with its own travel time. In the case of mobile commu-
nications, a moving transmitter and/or receiver gives rise to the Doppler effect [23],
which results in a frequency shift. Thus, denoting time shift by Txf(t) = f(t− x)
and modulation or frequency shift by Mωf(t) = e2πiωtf(t), the received signal
can be represented as the following collection of weighted, delayed and modulated
copies of the transmitted signal:

frec(t) =

∫
R

∫
R+

σ̂(ω, x)TxMωftrans(t)dxdω.

We, therefore, consider Weyl pseudodifferential operators:

Lσf(t) =

∫
G

∫
Ĝ
σ̂(ω, x)e−πiω·xT−xMωf(t)dωdx.

In particular, we posed the question, if α1I + Lσ is invertible and σ̂ ∈ L1
v(Ĝ×G),

does (α1I + Lσ)−1 = α2I + Lτ , where τ̂ ∈ L1
v(Ĝ×G)?
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Throughout this paper, Ã will denote the Banach algebra A with adjoined

identity. In Section 2 we prove the spectral algebra property for Ñ 1
v (H), where

N 1
v (H) is the space of integral operators with kernels having L1

v(H)-integrable off-
diagonal decay. The basis for our proof is establishing an operator class for which
we can apply Baskakov’s theorem, and using a dense, two-sided, proper ideal within
that class. We use this result to prove the spectral algebra property for convolution

operators on L1
v(H). In Section 3 we prove the spectral algebra property for (L̃1

v(G×
Ĝ), \), where \ is twisted convolution. This result is in the same spirit as work of
Gröchenig and Leinert on (L1

v(Zd × Zd), \θ) [13, 14], but more general, in that
it holds for arbitrary locally compact abelian groups. We apply these results to
the class of pseudodifferential operator with symbols σ satisfying σ̂ ∈ L1

v(G × Ĝ).
Lastly, we discuss the consequences of these theorems for mobile communication
channels.

2 The Convolution Algebra on the General, Re-

duced Heisenberg Group

Our construction of the general, reduced Heisenberg group begins with the locally
compact abelian group G and its dual group Ĝ, which is also locally compact and
abelian [9]. We assume that G is second countable and metrizable. Throughout
this paper, arbitrary groups will be denoted G, and locally compact abelian groups
will be denoted G. While H is not abelian, it will still be written in the same font
as G. Elements of G will be written in Latin letters and elements of Ĝ in Greek

letters. By Pontrjagin’s duality theorem,
ˆ̂G ∼= G [24]. For convenience, we will set

e2πix·ω = 〈x, ω〉, where 〈x, ω〉 denotes the action of ω ∈ Ĝ on x ∈ G.
Here we approach the Heisenberg group from the perspective of pseudodifferen-

tial operators and time-frequency analysis, and thus motivate it from the operators
translation and modulation. Translation is right addition by the inverse of an ele-
ment in G: Txf(y) = f(y − x); modulation is multiplication by the evaluation of
a character in Ĝ: Mωf(y) = 〈ω, y〉f(y). However the set of operators TxMω is not
closed, as (TxMω)(Tx′Mω′) = e2πix′·ωTx+x′Mω+ω′ , and therefore this set of operators
is not parameterizable by G × Ĝ, but by G × Ĝ × T. The extension of G × Ĝ to
G× Ĝ×T is called the general, reduced Heisenberg group H = G× Ĝ×T [8, 16].
Elements of H will be written in bold, and elements of G, Ĝ and T will be written in
the normal font. The group operation for H is written as multiplication, while the
operations for G and Ĝ are written additively and for T is written multiplicatively:

hh′ = (x, ω, e2πiτ )(x′, ω′, e2πiτ ′) = (x+ x′, ω + ω′, e2πi(τ+τ ′)eπi(x′·ω−x·ω′)).

The identity on H is e = (0, 0, 1). The measure on H is dh = dxdωdτ , where
dx, dω and dτ correspond to the invariant measures on G, Ĝ and T respectively,
normalized so that the measures of UG, UĜ and UT, to be defined shortly, are each
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1. Since G, Ĝ and T are commutative, the invariant measure is both left and right
invariant. The space L1

v(H) consists of those functions satisfying

‖f‖L1
v(H) =

∫
H
|f(h)|v(h)dh,

where v is an admissible weight, as defined below. We use ? to denote the convo-
lution of two functions defined on H as follows

(F1 ? F2)(h0) =

∫
H
F1(h)F2(h

−1h0)dh.

We now address three preliminaries: partitions, weight functions and the amalgam
spaces.

Definition 2.1 Let G be a group. (I, U) is a partition of G if I is a discrete set,
U is subset of a locally compact group, (iU)

⋂
(i′U) = ∅ for i 6= i′, and

⋃
i∈I(iU)

covers G. For simplicity we assume that U contains the identity.

Lemma 2.2 The general reduced Heisenberg group H possesses a partition.

Proof We call on the structure theorem, which states that for any locally, compact,
abelian group G, G ∼= Rd×G0, where the locally compact abelian group G0 contains
a compact, open subgroup K [18]. D = G0/K is a discrete group and G0 =⋃

d∈D(dK), G =
⋃

(i,d)∈Zd×D((i, d)([0, 1) × K)), and different blocks are disjoint. If

the group G0 contains the compact open subgroup K, then Ĝ0 contains the compact
open subgroup K⊥ [24]; thus a partition of Ĝ exists that is analogous to the partition
used for G. While the structure theorem does not apply in general to nonabelian
groups, we can still partition H into blocks by the following construction. Set
D = (G0 × Ĝ0)/(K × K⊥), I = Z2d × D × {0}, and U = [0, 1)2d × K × K⊥ × T.
Then

⋃
i∈I(iU) covers H and (I, U) is a partition for H. Note that I is not closed,

and hence is not a group.

Definition 2.3 Let G be a group. A weight function v defined on G is admissible
if it satisfies the following three conditions:

1. v is continuous, symmetric, i.e. v(x) = v(x−1), and normalized so that
v(0) = 1.

2. v is submultiplicative, i.e. v(xy) ≤ v(x)v(y) for all x, y ∈ G.

3. v satisfies the Gelfand-Raikov-Shilov (GRS) [10] condition:

lim
n→∞

v(nx)1/n = 1 for all x ∈ G.

Note: Throughout this paper the weight v will be assumed to be admissible.
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Definition 2.4 Let G be a locally compact group and v an admissible weight func-
tion. The amalgam space W (Lp(G), lqv) is the space of functions finite in the local
Lp norm and the global lqv norm as follows:

‖f‖W (Lp(G),lqv) =

(∑
i∈I

‖f‖q
Lp(iU)v(i)

q

)1/q

,

for a partition (I, U) of G.

The definition of W (Lp
v(G), lqv) is independent of the partition, as different parti-

tions result in equivalent norms; see [27, 17]. Note that L1
v(G) = W (L1(G), l1v).

Kurbatov uses the amalgam spaces to prove the inverse-closedness of a class of in-
tegral operators given by the off-diagonal decay of the kernel. He considers integral
operators N of the form

(Nf)(t) =

∫
s∈G

n(t, s)f(s)ds,

where G is a locally compact abelian group. We introduce some notation and define
three spaces: N1

v(G) is the space of kernels n for which there exists β ∈ L1
v(G) s.t.

|n(t, s)| ≤ β(ts−1) for all t, s ∈ G. N 1
v (G) is the space of integral operators with

kernel n ∈ N1
v(G). An operator satisfying this property is said to be majorized by

β. For H we define Qi,d = (i, d, 0)([0, 1)2d×K×K⊥×T), where (i, d) ∈ Z2d×D, as in
Lemma 2.2. To make notation easier, µ, ν and γ will be elements of Z2d×D. Define
Pµ to be the projection of W (Lp(H), lqv) onto {f |f ∈ W (Lp(H), lqv), supp(f) ⊂ Qµ}.
For N ∈ B(W (Lp(H), lqv)), we set Nµ,ν = PµNPν , and Nγ =

∑
µν−1=γ Nµ,ν . N∞

v (G)
is the class of operators (not necessarily integral operators) satisfying∑

γ∈Z2d×D

sup
µν−1=γ

‖Nµ,ν : L1(Qν) → L∞(Qµ)‖v(γ) <∞.

The following is a slightly restricted version of Kurbatov’s theorem as it applies
to the work in this paper:

Theorem 2.5 Kurbatov, Theorem 5.4.7 [19]. Let G be a non-discrete, locally

compact abelian group. Ñ 1
1 (G) is an inverse-closed subalgebra of B(W (Lp(G), lqv))

for 1 ≤ p, q ≤ ∞.

Remark : If G is discrete it is not necessary to adjoin the identity operator to
N 1

1 (G). The corresponding version of Theorem 2.5 for a discrete group G is a
special case of Baskakov’s more general and very significant Theorem 1 in [5].

We show that Kurbatov’s result, Theorem 2.5 above, holds with admissible
weight functions for the nonabelian group H.
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Theorem 2.6 Let N 1
v (H) denote those bounded integral operators N on W (Lp

v(H), lq),
1 ≤ p, q ≤ ∞, of the form

(Nf)(h0) =

∫
H
n(h0,h)f(h)dh,

for which there exists β ∈ L1
v(H) satisfying

|n(h0,h)| ≤ β(h−1
0 h)

for all h0,h ∈ H. Then Ñ 1
v (H) is an inverse-closed Banach algebra in B(W (Lp

v(H), lq)).

Before we prove Theorem 2.6 we need some preparation. Kurbatov’s proof of
Theorem 2.5 can be adapted to the nonabelian group H, Theorem 2.6, once two
essential pieces are established. First, an appropriate partition must be developed
for L1

v(H) that allows us to apply Baskakov’s result. Second, one must establish
that N∞

v (H) is a two-sided ideal in N 1
v (H). The proofs below of the intermediate

results, Propositions 2.10 and 2.11 and Theorem 2.5 follow very closely Kurbatov’s
proofs of the analogous results for the abelian case, cf. Sections 5.3 and 5.4 of [19].

Lemma 2.7 The identity operator I is not an element of N∞
v (H).

Proof Let (I, U) be a partition for H. Consider the indicator function χE, where
E ⊂ iU for some i ∈ I, and the measure of E is µ(E) = ε > 0. Then ‖I : L1(iU) →
L∞(iU)‖ ≥ 1/ε.

Lemma 2.8 Kurbatov, Proposition 1.4.2 [19]. Let A be a Banach algebra, and
let A,B ∈ A. If the element A is invertible and ‖B‖‖A−1‖ < 1, then A − B is
invertible and (A−B)−1 = A−1 + A−1BA−1 + A−1BA−1BA−1 + ....

Lemma 2.9 Kurbatov, Lemma 5.3.3 [19]. Let Q and Q be locally compact topo-
logical spaces with measures λ and λ, respectively. For any N ∈ B(L1(Q), L∞(Q))
there exists a function n ∈ L∞(Q×Q) such that for all f ∈ L1(Q) one has

(Nf)(t) =

∫
n(t, s)x(s)dλ(s).

Proposition 2.10 The operator N is an integral operator majorized by W (L∞(H), l1v)
if and only if

∑
γ supµν−1=γ ‖Nµ,ν : L1(Qν) → L∞(Qν)‖v(γ) < ∞. That is,

N∞
v (H) is the class of integral operators with kernels majorized by functions in

W (L∞(H), l1v).

Proof If N is majorized by β ∈ W (L∞(H), l1v), then ‖Nµ,ν : L1(Qν) → L∞(Qµ)‖ ≤
supQµν−1

|β|, which proves the first claim. We prove the second claim. Let fµ =

Pµf , where Pµ is the projection onto Qµ, as defined following Definition 2.4. N ∈
N∞

v (H) implies (Nf)µ =
∑

ν∈Z2d×DNµνfν . In the following, r, s and t will be
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elements of R2d × K × K⊥ × T. By Lemma 2.9, there exists nµν ∈ L∞(Qµ × Qν)
such that

(Nµνfν)(t) =

∫
Qν

nµν(t, s)fν(s)dλ(s)

for t ∈ Qµ. Setting

αγ = sup
γ=µν−1

‖Nµν : L1(Qν) → L∞(Qµ)‖,

γ ∈ Z2d×D, we have |nµν(t, s)| ≤ αµν−1 for all t ∈ Qµ and s ∈ Qν . Defining n(t, s)
to equal nµν(t, s) for t ∈ Qµ, s ∈ Qν , we have

(Nf)(t) =
∑

µ∈Z2d×D

∑
ν∈Z2d×D

∫
Qν

nµν(t, s)f(s)dλ(s)

=

∫
n(t, s)f(s)dλ(s).

We now must show that n is majorized by a function β ∈ W (L∞(H), l1v).

QµQ
−1
ν = (iµi

−1
ν , dµd

−1
ν , 0)((−1, 1)2d ×K×K⊥ × T),

where µ = (iµ, dµ) and ν = (iν , dν).
For r ∈ R2d ×K× T, we define

β(r) = sup{αµ : (r) ∈ (iµ, dµ, 0)((−1, 1)2d ×K×K⊥ × T)}.

We then have |n(t, s)| ≤ αµν−1 ≤ β(ts−1) for t ∈ Qµ and s ∈ Qν . We define ∆ =
∆(r) to be the set of all grid points µ ∈ Z2d×D such that r ∈ (iµ, dµ, 0)((−1, 1)2d×
K×K⊥ ×T). Now β(r) ≤ max{αµ : µ ∈ ∆}, which implies that β(r) ≤

∑
µ∈∆ αµ.

By the definition of N∞
v (H),

∑
µ αµv(µ) <∞. ∆ has at most 22d elements for any

r. Since β is constant on each block Qµ, ‖β‖W (L∞(H),l1v) ≤ 22d
∑

µ αµv(µ) <∞.

Proposition 2.11 N∞
v (H) is dense in N 1

v (H).

Proof By Proposition 2.10 we may use thatW (L∞(H), l1v) is dense inW (L1(H), l1v),
and choose β ∈ W (L∞(H), l1v) such that ‖β − β‖W (L1(H),l1v) < ε. We may assume

that 0 ≤ β(h) ≤ β(h) for all h. Set

n(h0,h1) =

{
β(h0h

−1
1 )

β(h0h
−1
1 )

: β(h0h
−1
1 ) 6= 0

0 : β(h0h
−1
1 ) = 0

We then have n(h0,h1) ≤ β(h0h
−1
1 ) and 0 ≤ n(h0,h1) − n(h0,h1) ≤ β(h0h

−1
1 ) −

β(h0h
−1
1 ).

The following is one of the three cases covered by Baskakov’s Theorem 1 in [4].
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Theorem 2.12 Let v be an admissible weight function, I a discrete abelian group,
and {Xi}i∈I subspaces of X satisfying Xi∩Xj = {0} for i 6= j and X = span{Xi}i∈I.
Let Pi be the projection onto Xi. If T is invertible in B(X) and∑

i∈I

sup
j−k=i

‖PkTPj‖v(n) <∞

then ∑
i∈Z

sup
j−k=i

‖PjT
−1Pk‖v(n) <∞.

Theorem 2.13 If N ∈ Ñ∞
v (H) is invertible in B(W (Lp

v(H), lq)), then N−1 ∈
Ñ∞

v (H).

Proof We first define the space of operators

Mv = {T |
∑

γ∈Z2d×D

sup
µν−1=γ

‖T : Lp(Qν) → Lp(Qµ)‖v(γ) <∞ ∀p ∈ [1,∞]},

where for each p, T is understood to be identically defined on the common part
of different spaces. (Note that L∞(Qµ) is dense in each Lp(Qµ), p ∈ [0,∞].) By
Theorem 2.12, if T ∈ Mv and T is invertible in B(W (Lp(H), lqv)), then T−1 ∈ Mv.
I is clearly an element of Mv, though it is not an element of N∞

v (H) by Lemma
2.7. For N ∈ N∞

v (H) and T ∈Mv,∑
γ∈Z2d×D

sup
µν−1=γ

‖NT : L1(Qν) → L∞(Qµ)‖v(γ)

≤ sup
µ,ν

‖T : L∞(Qν) → L∞(Qµ)‖
∑

γ∈Z2d×D

sup
µν−1=γ

‖N : L1(Qν) → L∞(Qµ)‖v(γ),

and∑
γ∈Z2d×D

sup
µν−1=γ

‖TN : L1(Qν) → L∞(Qµ)‖v(γ)

≤ sup
µ,ν

‖T : L1(Qν) → L1(Qµ)‖
∑

γ∈Z2d×D

sup
µν−1=γ

‖N : L1(Qν) → L∞(Qµ)‖v(γ);

therefore, N∞
v (H) is a proper two-sided ideal in Mv. If α1I + N1 ∈ Ñ∞

v (H) and
α1I + N1 is invertible in B(Lp(H)), then Theorem 2.12 implies (α1I + N1)

−1 = T
for some T ∈ Mv. Then (α1I +N1)T = I implies T = 1

α1
I − 1

α1
N1T . By the ideal

property of N∞
v (H), T = α2I +N2 for some N2 ∈ N∞

v (H).

Lemma 2.14 N∞
v (H) is a two-sided ideal in N 1

v (H).
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Proof Assume f ∈ L1
v(H) and g ∈ L∞v (H). Then

‖f ? g‖L∞v (H) = sup
h0

∣∣∣∣∫
H
f(h)g(h−1h0)dh

∣∣∣∣ v(h0)

≤
∫

H
|f(h)| sup

h0

|g(h−1h0)v(h0)|dh

≤
∫

H
|f(h)| sup

h0

|g(h0)v(h0)|v(h)dh

= ‖f‖L1
v(H)‖g‖L∞v (H).

One similarly shows that L∞v (H) ?L1
v(H) ⊂ L∞v (H). By Theorem 11.8.3 in [17] and

the discussion immediately following it concerning H, W (L∞(H), l1v) is a two-sided
ideal in W (L1(H), l1v) with respect to convolution. The lemma then follows from
the composition rule for majorized integral operators given at the start of the proof
of Theorem 2.6.

Proof of Theorem 2.6 Let N1, N2 ∈ N 1
v (H) be majorized, respectively, by β1

and β2. Using Fubini’s theorem, we have

(N1N2)f(h0) =

∫
n1(h0,h1)

∫
n2(h1,h2)f(h2)dh2dh1

=

∫∫
n1(h0,h1)n2(h1,h2)f(h2)dh1dh2

=

∫
n(h0,h2)f(h2)dh2.

Therefore, N1N2 defines an integral operator of the same form.

(N1N2)f(h0) =

∫
n1(h0,h1)

∫
n2(h1,h2)f(h2)dh2dh1

≤
∫
β1(h

−1
0 h1)

∫
β2(h

−1
1 h2)|f(h2)|dh2dh1

=

∫∫
β1(h1)β2(h

−1
1 h−1

0 h2)dh1|f(h2)|dh2

=

∫
β(h−1

0 h2)|f(h2)|dh2

for β = β1 ? β2 ∈ L1
v(H). This establishes the Banach algebra property.

Assume that the operator αI + N , N ∈ N 1
v (H), is invertible. We first show

that I /∈ N 1
v (H). If I ∈ N 1

v (H), then since N∞
v (H) is dense in N 1

v (H) (Proposition
2.11), N∞

v (H) would contain a sequence approaching I. Lemma 2.7 shows that
such an operator would be unbounded in the N∞

v (H)-norm. Therefore α 6= 0.
By Proposition 2.11 we may choose N ∈ N∞

v (H) such that ‖n−n‖W (L1(H),l1v) <

α/2. Then by Lemma 2.8, αI + (N − N) is invertible in Ñ 1
v (H). As in the proof
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of Theorem 5.4.7 in [19] we consider the operator

K = (αI + (N −N))−1(αI +N)

= (αI + (N −N))−1(αI + (N −N) +N)

= (αI + (N −N)−1(αI + (N −N)) + (αI + (N −N))−1N

= I + (αI + (N −N))−1N.

K is invertible as the product of two invertible operators in Ñ 1
v (H). By the ideal

property of N∞
v (H), Proposition 2.11, (αI + (N − N))−1N ∈ N∞

v (H); therefore

Theorem 2.13 implies that K−1 ∈ Ñ∞
v (H). The composition of K−1 ∈ Ñ∞

v (H)

and (αI + (N − N))−1 ∈ Ñ 1
v (H) is also in Ñ 1

v (H). Therefore, (αI + N)−1 =

K−1(αI + (N −N))−1 ∈ Ñ 1
v (H).

Theorem 2.6 allows us to prove the spectral algebra property for convolution
operators on the Heisenberg group.

Corollary 2.15 Let H be the general, reduced Heisenberg group, v an admissible
weight function, and Sf the operator given by convolution with f . If α1I + Sf ,
f ∈ L1

v(H), is invertible in B(Lp(H)), then (α1I + Sf )
−1 = α2I + Sg, g ∈ L1

v(H).

Remark : Barnes proves in [2] that the spectral algebra property for a convolution
operator on L1(G) is equivalent to G being amenable and symmetric. Since H is
nilpotent, it is symmetric [21]. Taking M as a mean on L∞(G × Ĝ), MH(f) =∫

TM(f(·, ·, e2πiτ ))dτ , is a shift-invariant mean on L∞(H), and consequently H is
amenable; see chapters 2 and 12 of [22]. Therefore, Corollary 2.15 also follows from
Barnes’s work in [2]. For the case when G is compactly generated, Corollary 2.15
is also a special case of Theorems 3.6 and 3.7 in [7].

Proof For F1, F2 ∈ L1
v(H), ‖F1?F2‖L1

v(H) ≤
∫

H

∫
H |F1(h)||F2(h

−1h0)|v(h0)dh0dh =∫
H |F1|(

∫
H |F2(h0)|v(h0)dh0)v(h)dh = ‖F1‖L1

v(H)‖F2‖L1
v(H). Consequently,

(α1δ + F1) ? (α2δ + F2) = α1α2δ + α1F2 + α2F1 + F1 ? F2 = α3δ + F, F ∈ L1
v(H).

To meet the conditions of Theorem 2.6, we define the function F (h0,h) = f(h0h
−1).

Then αI plus the integral operator with kernel F is the same as Sαδ+f and satisfies
the conditions of Theorem 2.6. Assuming Sα1δ+f to be invertible in B(Lp(H)),
Theorem 2.6 states that S−1

α1δ+f = α2I+A, whereA is an integral operator majorized
by a function β ∈ L1

v(H). We use an approximate identity {ψn}n≥0 ⊂ L1
v(H). We

set θn = S−1
α1δ+fψn, and θ = limn→∞(α2I + A)ψn = α2δ + limn→∞Aψn. Since A is

majorized by β ∈ L1
v(H),

lim
n→∞

|Aψn|(h0) ≤ lim
n→∞

∫
H
ψn(h)β(h−1h0)dh

= β(h0)

12



Set g = limn→∞Aψn ∈ L1
v(H). Then θ = α2δ + g, and by the continuity of

convolution, (α1δ+f)? (α2δ+g) = δ. For any φ ∈ C0(H), the space of continuous,
compactly supported functions on H,

Sα1δ+f (Sθ − (α2I + A))φ = Sα2δ+fSα2δ+gφ− Sα1δ+fS
−1
α1δ+fφ

= (α1δ + f) ? (α2δ + g)− φ

= δ ? φ− φ

= 0

Sα1δ+f is assumed invertible in B(Lp(H)), and both Sα2δ+gφ and (α2I + A)φ are
in L1

v(H); therefore,(Sα2δ+g − (α2I + A))φ = 0 for all φ ∈ C0(H). Since the space
of continuous compactly supported functions is dense in L1

v(H), Sα2δ+g = α2I +A,
and S−1

α1δ+f = Sα2δ+g, g ∈ L1
v(H). Equivalently, if α1I+Sf , f ∈ L1

v(H), is invertible
in B(Lp(H)), then its inverse is also of the form α2I + Sg, and g ∈ L1

v(H).

3 Spectral Algebra Property for Twisted Convo-

lution and Pseudodifferential Operators

T is originally adjoined to G× Ĝ, thus creating the Heisenberg group, in order to
obtain group structure for G× Ĝ. However, functions defined only G× Ĝ are still
of special interest, particularly for pseudodifferential operators. Here we discuss
the Weyl pseudodifferential operator Lσ, given by a symbol σ ∈ S ′(G× Ĝ):

Lσf(t) =

∫
G

∫
Ĝ
σ̂(ω, x)e−πiω·xT−xMωf(t)dωdx. (5)

The map σ 7→ Lσ is called the Weyl transform, and σ and σ̂ are called the symbol
and spreading function of the operator Lσ. The composition rule for two Weyl pseu-
dodifferential operators is LσLτ = LF−1(σ̂\τ̂), where \ denotes twisted convolution[8]
and is defined by

F\G(x0, ω0) =

∫
G

∫
Ĝ
F (x, ω)G(x0 − x, ω0 − ω)eπi(xω0−ωx0)dωdx.

Since F\G(x, ω) ≤ |F | ∗ |G|(x, ω), twisted convolution is dominated by regular
convolution. Therefore, L1

v(G × Ĝ) is closed with respect to twisted convolution.
In order to prove the spectral algebra property for twisted convolution on L1

v(G×Ĝ)
we need a weighted version of Kurbatov’s Theorem 2.5.

Theorem 3.1 Let G be a locally compact abelian group. Then Ñ 1
v (G) is an inverse-

closed Banach algebra in B(Lp(G), lq), 1 ≤ p, q ≤ ∞.

Proof Kurbatov’s proof of his Theorem 5.4.7 [19] holds here. The addition of
weights is justified by Theorem 2.12.
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Corollary 3.2 Let G be a locally compact abelian group and Ĝ its dual group,
and let Tf ∈ B(Lp(G × Ĝ)) be the operator given by twisted convolution with f :

Tfφ = f\φ, φ ∈ Lp(G × Ĝ). If α1I + Tf is invertible in B(Lp(G × Ĝ)) and

f ∈ L1
v(G× Ĝ), then (α1I + Tf )

−1 = α2I + Tg and g ∈ L1
v(G× Ĝ).

Proof The proof of Corollary 2.15 carries over exactly with the sole substitution
of G× Ĝ and \ for H and ?.

Before applying these theorems to pseudodifferential operators, we briefly dis-
cuss the importance of pseudodifferential operators in the study of time-varying
communication systems, such as wireless communications. We view f(t) as a trans-
mitted signal; then Txf(t), x > 0, corresponds to a time shift of the signal, and
Mωf(t) corresponds to a modulation or frequency shift. The received signal at time
t0 is a weighted collection of delayed, modulated copies of the transmitted signal.
Therefore the received signal may be expressed as

frec(t0) =

∫
R

∫
R
σ̂(x, ω)T−xMωftrans(t0)dxdω, (6)

where we have absorbed e−πiω·x into σ̂. The assumption that σ̂ ∈ L1
v(R2) is appro-

priate, as in practice the strength of the delayed copies of the signal decays quickly
in time. The Doppler effect or frequency shift depends on the travel speed of the
signal and the relative speeds and angles between the transmitter, any reflecting
bodies, and the receiver. Since these quantities are all bounded in practice, the
Doppler effect is also bounded. Hence if the Doppler effect is limited to [−D,D],
the support of σ̂(x, ·) is contained in [−D,D] for all x [23, 28]. In practice one must
“numerically invert” the operator in (6). Theorem 3.3 states that the inverse will
have the same off-diagonal decay as the original operator. The resulting matrix
may, therefore, be truncated to a small number of diagonals, which is essential for
fast real-world computation.

Above we showed that L̃1
v(G × Ĝ) is an inverse-closed Banach algebra with

respect to twisted convolution. Due to the composition rule, the previous theorems
easily establish the spectral algebra property for a class of Weyl pseudodifferential
operators.

Theorem 3.3 Let OP(F−1L1
v(Ĝ × G)) denote the space of pseudodifferential op-

erators with Weyl symbol σ satisfying σ̂ ∈ L1
v(Ĝ × G). Then ÕP(F−1L1

v(Ĝ × G))
is an inverse-closed subalgebra of B(Lp(G)). That is

(i) αI + Lσ is bounded on all Lp(G).

(ii) If σ̂, τ̂ ∈ L1(Ĝ × G), then (α1I + Lσ)(α2I + Lτ ) = (α3I + Lγ), where γ̂ ∈
L1(Ĝ×G).

(iii) If α1I +Lσ is invertible in B(Lp(G)), then (α1I +Lσ)−1 = (α2I +Lτ ) where
τ̂ ∈ L1(Ĝ×G).
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Proof
(i).

‖Lσf‖p
Lp ≤

∫
G

∣∣∣∣∫
Ĝ

∫
G
σ̂(ω, x)e−πiω·xT−xMωf(t)dxdω

∣∣∣∣p dt
≤

∫
G

(∫
G

∫
Ĝ
|σ̂(ω, x)||f(t+ x)|dωdx

)p

dt

=

∫
G

(∫
G
‖σ̂(·,−x)‖L1|f(t+ x)|dx

)p

dt

= ‖ ‖σ̂(·, u)‖L1 ∗ |f |(u)‖p
Lp

≤ ‖σ̂‖p
L1‖f‖p

Lp

≤ ‖σ̂‖p
L1

v
‖f‖p

Lp

Therefore, ‖(αI + Lσ)f‖Lp(G) ≤ (|α|+ ‖σ̂‖L1
v(G))‖f‖Lp(G).

(ii). By Corollary 3.2, if σ̂, τ̂ ∈ L1(Ĝ×G), (α1δ+ σ̂)\(α2δ+ τ̂) = (α3δ+ γ̂), where
γ̂ ∈ L1(Ĝ×G). Then F−1(α3δ+γ̂) = α3+γ, and (α1I+Lσ)(α2I+Lτ ) = (α3I+Lγ).
(iii). Let (α1I + Lσ)−1 = A, A ∈ B(Lp(G)). Using the Schwartz kernel theorem,
Gröchenig shows in [16], that there exists a symbol γ ∈ S ′(G), such that A = Lγ. In
order to apply Corollary 3.2 we must show that the twisted convolution operator Tγ̂

is bounded as an operator on L1(Ĝ×G). By the closed graph theorem [25], Tγ̂ is not

bounded on L1(Ĝ×G) if and only if there exists a sequence {φ̂n}n∈N ⊂ L1(Ĝ×G)
such that {φ̂n} → 0, but Tγ̂φ̂n 9 0. If Tγ̂ /∈ B(L1(Ĝ×G)), then there exists an ε > 0

and a subsequence {φ̂nk
} such that ‖Tγ̂φ̂nk

‖L1(Ĝ×G) > ε for all nk. Lγ ∈ B(Lp(G))
by assumption, and Lφnk

∈ B(Lp(G)) by (i). Therefore LγLφnk
∈ B(Lp(G)). By

(i) we have

‖LγLφnk
− LγLφnl

‖B(Lp(G)) ≤ ‖Lγ‖B(Lp(G))‖φ̂nk
− φ̂nk

‖L1(Ĝ×G).

Since {φ̂nk
} is a convergent sequence, {LγLφnk

} is a Cauchy sequence in the Banach

space B(Lp(G)). Since limk→∞{φ̂nk
} → 0, limk→∞{LγLφnk

} ≡ 0, where the latter

convergence is in operator norm. By Theorem 14.6.1 in [16], limk→∞ ‖Tγ̂φ̂nk
‖L2(Ĝ×G) =

0, which implies limk→∞ ‖Tγ̂φ̂nk
‖L1(Ĝ×G) = 0 and contradicts the assumption. Thus

Tγ̂ ∈ B(L1(Ĝ × G)). Therefore (α1I + Lσ)Lγ = I implies (α1δ + σ̂)\γ̂ = δ, and

similarly γ̂\(α1δ + σ̂) = δ. By Corollary 3.2., γ = α2δ + τ , τ̂ ∈ L1(Ĝ×G).
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