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Abstract— We present a digital background technique for
correcting the time and gain mismatches in a time-interleaved
analog-to-digital converter (ADC) system. The proposed ap-
proach is applicable to any number of time-interleaved ADCs
and requires only modest oversampling. While the algorithm is
mainly designed for blind calibration, it can as well be operated in
non-blind mode. Theoretical analysis and numerical simulations
show fast convergence and good estimation performance of
the proposed algorithm. For instance, for an 8-ADC system,
numerical experiments demonstrate that the resulting signal to
noise ratio (SNR) of the output signal after mismatch detection
and interpolation, is higher than the SNR of the input signal.

Index Terms— Analog-digital converter, Time-interleaved, Cal-
ibration, Nonlinear estimation, Signal sampling, Least square
method.

I. INTRODUCTION

Due to ever-increasing demand for higher data rate and
larger bandwidth, modern digital communication systems de-
pend on analog-to-digital converters (ADCs) operating at
faster speed and providing higher resolution. However it is dif-
ficult to scale ADCs to satisfy these performance requirements
while maintaining low production costs. Time-interleaving
multiple ADCs is a well known approach to increase the
sampling rate [1], [2] while keeping hardware costs at bay.

Time-interleaved ADCs increase the sampling rate of a
system by sending the analog input signal simultaneously
to multiple ADCs, which have the same sampling rate but
different phases [1], as depicted in Fig. 1. In this way, a
system with sampling rate % can be realized from r individual
ADCs, each operating with a sampling rate # This idea
has been proposed for various applications such as ultra
wideband communications [3], [4]. However, interleaving of
multiple ADCs is sensitive to the time errors and gain mis-
matches between different interleaved ADCs, which degrades
the performance of ADCs significantly if the errors remain
uncorrected [5]. A considerable amount of research has been
done on calibration to correct the timing errors and gain
mismatches. Hardware methods for compensation have been
proposed in [6], [7], however the analog components involved
make such approaches often difficult to use in practice. Some
methods employ training signals methods [8], [9], which
is also known as foreground- or nonblind calibration. This
approach however may cause problems since it requires to
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Fig. 1. Block diagram of the time-interleaved ADCs.

inject the training signal periodically during operation of the
ADC. In [10], [11], [12], [13] blind estimation methods are
proposed with some appealing features, such as the calibration
can be done in the normal operation and the mismatch changes
are easy to track.

Once the mismatch errors are estimated, we have two ways
to eliminate the error effects. One way is to adjust the sampling
clock for each ADC [14], which may increase the random jitter
of each controlled clock. Another way is to do the interpolation
to achieve the correct values at the ideal times [15]. The
second approach is attractive because it can be done with
the required accuracy using digital signal-processing circuits,
which are portable and will benefit from evolving scaled
CMOS technologies [9]. There are a number of algorithms
in the literature to perform this step. A method that is both
numerically efficient and requires only short filters to achieve
high accuracy has been proposed in [16].

As pointed out in [17], existing estimation methods are “ei-
ther imprecise, limited in the number of channels, or have an
enormous computational complexity”. Our goal in this paper
is to develop a method that overcomes these limitations. We
formulate the timing and gain estimation problem as separable
nonlinear least squares problem and propose a Gauss-Newton
type iteration method for its solution. The proposed method
can be applied in both blind calibration and non-blind calibra-
tion mode and requires only a modest amount of oversampling.
Unlike some other methods, it is computationally efficient and



works for any number of interlaced ADCs. Theoretical result
and numerical simulations show that the method exhibits fast
convergence.

Our method is tested in blind calibration mode for an 8-
ADC system with 40% oversampling. An interpolation method
is applied at the output and the resulting SNR of output signal
is shown to be higher than the SNR of the input signal, which
we call error-free ADC system. When applied in non-blind
mode, we find that even for 64 or 256 time-interleaved ADCs
the algorithm provides an error-free ADC.

The rest of this paper is organized as follows. In section II,
the details of the calibration problem for an r-ADC system are
described. Our Gauss-Newton method is proposed in section
III, followed by the analysis of its convergence in section
IV. In section V, some technical details for this method is
discussed. In section VI, we discuss the application of our
method for non-blind calibration. The interpolation method at
the output is discussed in section VII. The simulation results
of our calibration methods are shown in section VIII. Section
IX concludes this paper.

II. PROBLEM DESCRIPTION

We model the converter input signal x(t) as a stationary
bandlimited zero-mean Gaussian random process with band-
width B, whose continuous-time Fourier Transform

oo
X(w) = / a(t)e 2Tt gy )
t=—o0
is zero when |w| > B, where i = y/—1. Without loss of
generality, we consider B = % in this paper. It is well-known
that z(t) can be expressed as

o0

Z z(nT) sinc(n(t — nT)), (2)
n=—oo
provided that T' < 1, cf. [18].

As explained in the introduction, instead of sending x
through one single ADC operating at rate %, we apply r
parallel ADCs with the same sampling rate %Tv but with
different phases, in order to achieve an overall sampling rate
of %, cf. also Fig. 1. However, due to the existence of time
errors and gain mismatches, for each of the k-th ADCs we
receive a sequence of uniform samples

yr(n) = (L+gp)z(mrT + (k= 1+ 6;)T) ©)

for k =1,2,...,r n € Z, where 2(t) = z(t) + v(t), v(¢)
is assumed to be Additive White Gaussian Noise (AWGN).
Combining all these individual uniform sampling sets into
one set results no longer in a sequence of uniformly spaced
samples, but in a sequence of periodic nonuniform samples of
the signal z(%).

In order to obtain a better approximation of the output
{z(nT)}nez. estimating the time error §; and gain mismatch
gr is necessary. Our goal is to develop estimation methods
that are highly accurate, robust, and numerically efficient.

Since we only study the dynamic performance of the r-
ADC system, it is not important whether for instance the gain
for the k-th channel is (1 + g;) or B(1 + g;) as long as j is

z(t) =

constant for all ADCs. In other words, we only care about the
relative difference of gain mismatches and time errors between
different ADCs. Therefore, without lost of generality, we set
07 =0 and gF = 0, 6;T denotes the timing error between the
k-th sampling sequence and the first sampling sequence and
gy, is the gain mismatch for the k-th ADC.

III. MISMATCH DETECTION VIA SEPARABLE NONLINEAR
LEAST SQUARES

We start by considering the problem of how to approximate
a bandlimited signal well by using known samples. It is well-
known that if we reduce the time interval 7' with which
we sample z then the Fourier domain periodization of z is
increased to % Hence, if T' < 1, i.e., if we oversample the
signal, we can use a filter ¢(¢) with fast decay instead of the
slowly decaying sinc-function to recover z, cf. [19]. In this

case we arrive at the following expression for x
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z(t) =

where T € [T, 1] is the corresponding time spacing which
depends on the particular choice for ¢. For instance, when
the Fourier transform of ) (t) is the raised cosine we have

Tsin(ZL) cos(Zgt)
¢(t)= ﬂ.tT 1_(2%321&)2;

(&)

where « is the roll-off factor.

Now let yi(n) be the samples we get for n € Z and
k = 1,2,...,r, concerning the time errors and gain
mismatches, we arrive at the following nonlinear least squares
problem:

{6,9,6} = argmin{&,g,c} Z Z |Z/k (’I’L) - \I’k(n) 27 (6)

k=1n=—o0

where U (n) = (14+gx) Yoo Em®((nr + 0, +k—1)T —
mf’) and the vectors 6 and g of length r—1 are the estimations
for the time errors and gain mismatches, (k) = Jpt1,
g(k) = gg41, for k =1,...7 — 1 since we already assumed
that 6; = 0 and g1 = 0, and ¢(m) = ¢,. In practice it is of
course not feasible to first collect all samples of  and then
estimate the parameters § and g, not to mention that it would
be also impossible to numerically solve an infinite-dimensional
optimization problem. Therefore we need to truncate (6) to a
finite dimensional problem.

Assume N, M are even numbers, for given samples
{yr(n)};—, where n = %, ey % — 1, we approximate the
signal z(t) in t € [=2L 2T by the truncated series
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ze(t) = chp(t —mT), @)

where # < % < # + T. Note that for ¥ = sinc

this series may diverge in presence of noise when N — oo.
Even if it does converge, the rate of convergence will be
annoyingly slow. From [20] we know that, unlike (2), for



properly chosen (¢) in (7) the truncated sum will always
converge. Furthermore, the truncation error ||sz—‘z|| decays
very fast with respect to the number of samples (here, ||.||
denotes the usual Euclidean norm). Thus, assuming we choose
a proper ¢ we are concerned with the finite-dimensional

optimization problem

T %_1
{8,9,¢} = argmings 0y > D [ys(n) = Tx(n) [*. ®)

F=ln==t

Where ¥4(n) = (1+ g0) X7y cnth((G + nr + k —

1)T—mT). Problem (8) is a separable nonlinear least squares
problem which was analyzed in [21], [22], [23]. Our approach
for solving (8) is a Gauss-Newton type method, which is
introduced in the following.

Define the 7N x (M + 1) matrix A by A(i,j) = (1 +
9)%((i +6; — T — (j — 4)T), where g1 = 0, g; = gi—»
whenz >r;0,=0,0; =0;_, wheni>r;i=1,2...,rN

and j = 1,,...,M + 1. We reorganize the rN samples
{yr(n)};_, by the real sampling time from —2¥L to 5L,
then put them into vector y of length rN. Now problem (8)

becomes

{6797 C} = a‘rgmin{d,g,c} ||AC - y”2 C)

We solve (8) by using an iterative method. We use initial
values 6(® (k) = 0 and g(®(k) = 0, k = 1,2,...r — 1.
From (9), we can get the initial value ¢(®) by solving a linear
least squares problem.

{c©} = argming, [|A@c -y

where A©) (i, j) = ¢((i — ZN)T — (j — 5)T).

We collate the solutions §,g,c of (9) in the vector v =
(67,g™,eT)T and introduce the rN x 1-vector-valued func-
tion F(v) := Ac. The linearization of the nonlinear function
F at the exact solution 4*) is given by

(10)

F(v) # FY™) + I (v™) (v = +™), (1)
with the Jacobian J(7)s; := 92, @ = 1,2,...rN; j =

1,2,... M + 2r — 2. Thus in each lteration step we solve the
linear least squares problem

{y™} = argmin, || F(y™ ) +7 (v D) (y—" 1) -
12)
with starting value v(9) = ((§(°)T, (g(@)T, (c(@)T)T,
Algorithm 3.1: Given the optimization problem (9), and
the corresponding vector function F(v) and matrix J(v),
starting at ¥(®) = ((§O) T (g(®)T, (c(®)T)T, we solve this
problem by the following algorithm:
1) At the m-th step, we solve linear least square problem
(12). to find (™).
2) Let m:=m + 1.
3) Stop if m is greater than n;, otherwise go to the next
step.
It is well known that the Gauss-Newton method has guaran-
teed convergence, provided that {|||F(v) —y|| < ||F(v©®)—
y||} is bounded and the Jacobian J(y) has full rank [24].

—y|? components Al(z Jj) =

Moreover, if the truncation error is small and the SNR is high,
this method has superlinear convergence [24].

To achieve an even better estimation of {6*,g*}, we may
solve problem (8) multiple times by using K consecutively
disjoint sampling blocks of size rN. One natural way is to
average all these solutions, which gives the following estimates

KZ"’

Here g' and 8! are the solution of (8) for the I-th data block.

Instead of using (13), we use another method which exhibits
even better performance. We simultaneously consider K data
blocks as before, but now we set up the following optimization
problem:

KZ&’ and §* (13)

=1

w\z

argmings g e cx} Z Z Z yikn — (1 + gk)‘i’lk(")|2

=1 k=1 p==N
(14)
where Yk, is the n-th sampling value of the k-th ADC in the

[-th data block, and

ami (0 +nr+ k- 1T — mT),
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Ui (n) = (14 gk)
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usually if ;3 and {;.n are the ideal time positions of first
and the last points in the I-th data block, we define ¢;(t) =
Y(t — tth=n) vector ¢; with components ¢;(m) = ¢pm for
l=1,...,K and m = M, ,%.

Let the vector y; contain all the samples in the [-th data
block. Define matrix A; by A;(4,5) = (1 + g:)wi((6; + i —
YT — (j — Y)T), where g1 = 0 and g; = g;—» when i > r,
61 = 0and §; = d;—, when i > r fori = 1,2...,7N and
i=1,2,...,M + 1, problem (14) becomes:

JCK} = argmin{&,g,cl...,cx} Z ||Alcl - yl||2'

=1 (15)

Before we proceed, we introduce some notation. In the I-th
data block, let Fy(v) = A;c;, and define the rN x (r — 1)
matrices A; and G via A(i,7) = %F’," and Gy(i,j) = %1;”
,7 — 1. Then the rN X (M + 1) matrix 4; has
BF“ forj=1,...,.M + 1.

In order to solve the noﬁhnear least squares problem (15),
we use the same hnearlzatlon as in (11) for different data
blocks, and make ¥' = (6’ ”T,E’T)T the initial value,
which is the solution from the iteration method (12) in [-th
data block. By using the approximation in (11), we arrive at

the following problem

{67g7c17"'

forj =1,.

argmingg g o, ,cx}Z”Fl )+ (3 (v =4 -yl
=1
(16)
where Ji(7Y)i; == % and v, = (67,97,cT)T. Actually
from the definitions above we have
Ji(y) = [A1, Ay, Gy (17)



In problem (16), if § and g are given, the ¢; can be deter-
mined by solving the linear least squares problem {¢;} =
argmin,, |Fi(3") +Ji(3')(v, = 4') — y||?. Since we are only
interested in the solution of § and g in (16), we formulate our
problem as:

{,9) = argmingsg, min 2 IB(F) + 4(3) (e
15 7CK
—&) + M(6-8) + Gilg - 3") — il

Let H; = [A;, Gi] — Pa,([A1, Gi]), where Py, is the orthog-
onal projection to space A;. We have

K

min (e, ent O IIFF) + A ) (e — &)
=1

+A(6 -8+ Cilg— )

K
= min || F; (4
> min )

—i‘/l”2

+ A7) (e - ~’) +A6-8)+Gilg-d") - wl?
K -
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E@&) + Paly + BGE)) -y +
. Thus problem (16) becomes

Whergl i =
Hi((6)",(gH")"

K
. )
(6,9} = argmings ,, 3 || H ( ’ ) AP as)
=1

Let H = Z{il HI'H; and f = Z{il HT f;, the solution of
problem (18) is given by (H)7!f.

As we said before the simulation results by using (18)
show better performance than by using (13). One intuitive
explanation is that in (18), the essential solution depends on
the matrix H, which reflects the condition of the resulting
matrix H; in all data blocks, while in (13), the final results
depend on the condition of the resulting matrix individually.

By solving (18) we arrive at our final estimation for the
time errors and gain mismatches.

Algorithm 3.2: Given an r-ADC system, if in each [-th
data block the resulting matrix H; has full rank, we have the
following algorithm for estimating the timing errors and gain
mismatches:

Let H be the (2r — 2) x (2r — 2) zero-matrix and f be a
zero vector of length 2r — 2.

1) For the [-th data block, we first solve (9) by using
Algorithm 3.1, then we compute the matrix H; and the
vector f; in (18).

2) Let H:=H+ Hl'H, and f:= f + H f;.

3) Finally we obtain the estimates for the timing and gain
mismatch by solving

4 -
= (H) 'f. (19)
Details of implementation are provided in Sections VII
and VIII. Here we just notice that we typically set n; =4 in
Algorithm 3.1 and the total number of data blocks K about 20.

IV. CONVERGENCE ANALYSIS

One might hope that the original problem (7) has a unique
solution and no local minimums except for one global mini-
mum. Unfortunately (7) is a nonlinear non convex problem
with potentially multiple local minima. Thus we can only
except that there is a local minimum nearby the true solution
and our algorithm can converge to it by properly choosing the
initial value «°. Theoretical analysis and simulation results
give an affirmative answer to this expectation.

From (7) we know that in the interval [=Z¥L, L] the
truncation error x, = T — T, i

ze= Y cu(t—ml). (20)
Im|> 24
For a properly chosen filter ¢(t) the truncation error H H goes

to O rapidly as N becomes large [16]. Since we can control
the number of samples, we can make the truncation error very
small by using large N. When the truncation error is small and
the SNR is high, it is reasonable to expect that problem(8) has
a local minimum which is close to {6*,g*}. The following
theorem confirms this.

Ck=1 Z

Define the function ®(4,g,c) :=
(1490 SF_y enth(@+nr-+ k= )T —m7) [*. Atany

of its local minimum (d,9,c), it is obvious that
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Theorem 4.1: In each data block, if the matrix J has full
rank, the function ®(d,g,c) has a local minimum g1ven by

{6*,9* C*}+ (JTJ)—IJT( +xc)+0( ]|$'”||”2 + ||1'c|| )

Nz 2
A proof of this theorem and the next theorem wﬁl be given

in the Appendix.

Remark: If J does not have full rank, we do not have a
local minimum around ~*. If the condition number of .J is
too large, the second order term may not be negligible, thus,
it is not guaranteed that we have a local minimum around ~y*.

For nonlinear problems we may have more than one local
minimum. If the initial value is close to {6*,9*} we have

Proposition 4.2 ([24]): If the initial value of (8), v(©) is
close to the local minimum

2
{5*,9*76*}+(JTJ)71JT(’U+ ||’U||

llz[?

[lll”
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then the Gauss-Newton method (11) will converge to (21) with
superlinear convergence rate.
By using multiple data blocks simultaneously, we achieve a
better approximation, actually we have

Theorem 4.3: If in the [-th data block, the iteration method
converges to the local minimum

2 2
(0,7 €} + I  +a0) + O ey,
[EA] ||$e||(22)
the solution of (13) is
lol* Nzl
5*,g* 23
R P E A AT 9

with probability 1 when K — oo.

Remark: From the theoretical analysis we can see, if the
matrix J; is ill conditioned , this method converges slowly.

Theorem 4.1 tells us that if we use one data block (no
matter how many samples it has), our estimation has an error
at the order of O(]|v||). By considering multiple data blocks
simultaneously as in (13), we can make the estimation error
of the order O(||v]|?). This is the reason why we do not set
up the optimization problem by considering all the K data
blocks together as one big data block. Of course, separating
all the available samples into K data block will introduce more
truncation error, but by choosing proper filters, we can make
the truncation error negligible.

V. FILTER SELECTION STRATEGY

In this section, we discuss some practical strategies for how
to choose a set of proper filters {¢)(t—mT)}, in equation (4).
Recall that the functions 9 (t — mT) determine the entries of
the matrix appearing in the optimization problem.

We have seen in section III that by taking a very large
number of samples in each data block, we can reduce the
truncation error. But in practice the number of samples that
can be stored or processed is limited, therefore it is desirable if
a small number of samples would suffice. Since the filter 9 (t)
decays fast in equation (20), only a few terms of ¢(t —mT),
for which |m] is close to 2, contribute most to the truncation
error. This means we should use the following expression to

approximate z(t) in the interval [=2NT 2T
!
z(t)= Y. emtp(t—mD), (24)
M
m=—g —r1

where r is a small number. Since adding more basis functions
leads to an ill-conditioned matrix J and thus enhances noise
effects, in practice we usually choose r; < 4.

It is a well-known fact that oversampling in equation (4)
leads to a reduction of the noise energy by a factor of % On
the other hand, while larger T means better noise reduction, a
larger T also implies that the decay of the filter 1 (t) becomes
slower, which in turn will introduce more truncation error. To
balance this trade-off, for given SNR and sampling rate T', we
choose T by solving the following optimization problem:

{T} = argming_z, Ell2(t) —z(t)|*), (29

where £ denotes expectation, z. is given by (24). For ¢ (t) we
can choose the raised cosine filter given in (5). This problem
is independent of the input signal and our original problem
(9), and can be solved beforehand.

Example 5.1: ForT = 21? and randomly given bandlimited
signal z(t), we have computed the interpolation errors by
using expression (24) with r; = 4. For different T, numerical
results are shown in fig. 2.
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Fig. 2. Interpolation errors by using with different —Ils;

In Fig. 2, the units on x-axis are in terms of }f From the
simulation results we see that in general neither T =1 nor
T = T is the best choice. For certain SNR, there is an optimal
solution for T'. In order to have a smaller approximation error,
when SNR is low, we should choose larger T; When SNR is
large, we should choose smaller T.

VI. NON-BLIND CALIBRATION

Non-blind calibration refers to determining the timing error
and gain mismatch based on sending a training signal [8],
[9]. A known signal s(t), usually sinusoidal input, is sent
through these ADCs. Then, given the known samples {yx(n)},
where yi,(n) = (1+ g;)(@(nrT + (k — 14 6;)T + v(n)) for
k=1,2,...,7r and n € Z. We have the following estimation
problem

argmings g1 > > [yr(n) =

k=1 neZ
1+ gr)s(nrT + (k— 1+ (Sk)T)|2.

In its finite mode, let v = (6T,9T)T and the vector F have
components F(i) = (1 + g;)s((i — 1 — Z¥)T + 4, T) for i =
1,2,...rN. Where g1 =0, 6; = 0 and g;1 = 9i,.0i4+r = ;.
The linearization of the nonlinear function F' at v* is given
by

{6,9} =

F(y) = F(Y™) + J(v™*) (v = ™), (26)

with 7N x (2r — 2), matrix J(7);; = g%, i=12,...tN
and j = 1,2,...,2r — 2. In each iteration we solve the linear
least squares problem

{™} = argmin, || F(y"™ )+ (7" D) (y=7 D) —y|].
(27)




This is a similar iteration method as (12), however, there is
a huge difference between the J matrix in these two schemes.
If we use the similar notation as in (17), the matrix J = H,
is always a well-conditioned matrix. This makes the solution
of non-blind calibration much easier than blind calibration. In
addition, the computational complexity is reduced, since the
size of J becomes only 7N x (2r—2) compared to 7N x (M +
2r —2) for blind calibration. The iteration methods introduced
in (13) and (18) are both applicable and numerical simulations
show superfast convergence.

VII. SIGNAL RECONSTRUCTION BY INTERPOLATION AND
FAST COMPUTATION

A. Signal Reconstruction

After we have estimated the time errors and gain mis-
matches, we use raised cosine filters in the interpolation step
to evaluate the signal value at the desired uniform sampling
points from the periodic nonuniform samples. This can be
efficiently accomplished with the algorithm proposed in [16].
The optimized value for T, computed in Section V is also used
in the interpolation method. Considering the boundary effect,
we first take a large interval to do the interpolation, and then
only utilize the solution in the middle of the interval.

But there is one more problem which needs to be addressed.
How does the approximation error introduced during the
interpolation affect the final result? We present the following
experiment to illustrate the interpolation method and explore
the relationship between the estimation error and the final
output.

Example 7.1: The input signal are randomly given in
a 4-ADC system with sampling rate 1.8. The normalized
time errors are [0,0.05,—0.025,0.03] and the gains are
[1,1.03,0.98,1.01]. For different SNR level, we use different
T. We generate the estimation error as a Gaussian random
variable. Fig. 3 shows the numerical results.
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Fig. 3. The effects of different estimation errors to the SNR of output signal
From the results in last experiment, if the estimation error

is zero, due to the oversampling, the SNR of the output is
higher than the SNR of the input signal. In general, if the

approximation error is in the order of % of the noise to
signal ratio (NSR) of the output, the effect of estimation
error is negligible, which also means for given SNR, when
our estimation algorithms has reached a certain accuracy, we
can stop. If the estimation error is higher than the NSR, it
significantly affects the SNR at the output signal. In the next
section, we will show the efficiency of our detector through
different experiments.

B. Fast Computation

Fast FFT-based multiplication and the conjugate gradient
(CG) method [25] are applied to both mismatches estimation
and signal reconstruction. For an r-ADC system, the N sam-
ples in each data block have a periodic nonuniform structure.
By using this structure, we can apply fast multiplication of the
rN x (M + 1) matrix A by any vector y of length M + 1,
where A(i, j) = (1+ gi)((i + 0 — ")T — (j — 2)T) for
1=1,2,...,rNandj=1,2,...,M + 1.

Consider a matrix B(g,8)(i, ) = (L+g)¢((i+6 — )T —
(- %)T), for any given g and 4. Since we can choose any
T € [T, 1], here we try to select T' such that % € Q Thus
we can always construct another Toeplitz matrix D such that
matrix B is only a submatrix of D, the fast multiplication of
B with vector y can be implemented by Dy, where ¥ is a zero
padding version of vector y.

For example, when the oversampling rate is 1.4, which mean
T = ﬁ, we may choose T' = 1.37T". Thus if T = 0.17 and the
Toeplitz matrix D has components D (i, ) = (1 + g)Y(iT +
(6 — T — jT + XT), the matrix B is a submatrix of
D and B(i,j) = D(10i,135). For any vector y, let § have
components 3(13¢) = y(i) and its other components be 0 for
t =1,2,...,13rN. Obviously multiplication of By can be
implemented by Dg. Dy could be carried out by using about
40r N log(10rN) computations. Thus A can be splitted into
r sub-matrices, and the k-th sub matrix is a sub-matrix of
a Toeplitz matrix D(gy,d)). Hence Ay can be computed in
O(rN log(rN)) operations.

Considering the fast computation issue, when we solve the
problem (25), we may be interested in some solution T such
that the total computation is affordable. We should find the
proper T whenever we know the sampling rate %

For the mismatch detection method in blind calibration
mode, suppose we use K blocks totally, the computational
costs are O(KrNlog(rN)). When applied in non-blind mode,
our method needs only 7N (2r — 2) + O(M (2r — 2)?) com-
putations since the size of matrix J becomes 7N x (2r — 2).
After we have the estimations, at the output, we need another
O(rNlog(rN)) computations for each data block with size
N to find the correct sampling values at the ideal sampling
times.

VIII. SIMULATIONS AND ANALYSIS
A. Results for blind calibration

Several experiments have been done to evaluate the per-
formance of our algorithms. From Theorem 4.1, 4.3 and
Proposition 4.2 we know that the convergence of our approach
is mostly effected by the condition number of the matrix J,



the noise and truncation error, and the nonlinear distortion of
the original problem.

In general, higher oversampling rate results in a thinner
matrix which will have a smaller condition number. We
did some experiments for an 8-ADC system to test how
oversampling affects the convergence of our method. Since
the length of g and & are  — 1, in this section, we measure

imati imi ll6—8*||
the average estimation error for timing errors by “=—" and
the estimation error for gain mismatches by ”*’;—f?.

Example 8.1: The input signal is bandlimited WGN with
bandwidth B = 1/2. We choose different oversampling
rates, 1.2, 1.6, and 2.4. The time errors and gain mismatches
are uniformly distributed in [—0.17,0.17] and [—0.1,0.1]
respectively. The SNR of the input signal is 70dB. We apply
Algorithm 3.2 with the following parameters. The number of
samples in each data block is 320 and we use a total of 30
data blocks in each experiment. Each experiment is repeated
50 times and the corresponding average errors are shown in
fig. 4.

8-ADC system, random input, 70dB SNR
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Fig. 4. Estimation errors for different oversampling rate in a 8-ADC system

For higher oversampling rate, Algorithm 3.2 gives smaller
estimation error. In general, for the same oversampling rate,
the estimation errors for time and gain mismatches are of the
same order.

From Example 7.1 and the above example we conclude that
higher oversampling rate can give smaller estimation error as
well as lead to better noise reduction in the interpolation step.

In order to test the effects for different SNRs, we did the
following experiment.

Example 8.2: We consider an 4-ADC system, the in-
put signal consists of multiple sinusiods with frequencies
0.3,0.52,0.6 and 0.94. The sampling rate is 1.4. The time
errors and gain mismatches are uniformly distributed in
[-0.1T7,0.17] and [—0.1,0.1] respectively. The number of
samples in each data block is 160 and we use a total of 20
data blocks in each experiment. Each experiment is repeated
50 times and the average time mismatches estimation errors
are shown in fig. 5 As expected, the estimation error decreases

4-ADC system, multiple sinusoidal input

—+—SNR 80dB
——SNR 60dB
—5—SNR 40dB

1074%

3000

Average estimation error for timing mismatches

1500 2000 2500

Number of samples

500 1000 3500

Fig. 5. Estimation errors for a 4-ADC system with blind calibration

with increasing SNR. For each SNR, our method can reach an
estimation with an error less than NSR. The numerical results
for gain mismatches are similar.

We have shown that our approach can detect the mismatch
errors very well. In the next example, we combine our de-
tection approach and the interpolation method introduced in
section VII to evaluate the overall performance of our method
at the output.

Example 8.3: We consider an §-ADC and a 16-ADC sys-
tem. The input signal is bandlimited WGN with bandwidth
B = 1/2, sampling rates are 1.4 and 1.8 respectively. The
time errors and gain mismatches are uniformly distributed
in [-0.17,0.17] and [-0.1,0.1] respectively. The number
of total samples for mismatch errors detection is 9600. We
first estimate the mismatch errors, after that we apply the
interpolation method of Subsection VII-A to get the output
signal. The SNR is computed for the output signal. We did the
same experiment 100 times and the average SNRs are shown
in fig. 6.

For the 8-ADC and the 16-ADC system, the SNR of the
output signal is larger or only a little bit smaller than the SNR
of the input signal when the input SNR is between 50dB and
80dB.

B. Results for non-blind calibration

For non-blind calibration the oversampling is not necessary
for detecting the mismatch errors. As we analyzed in section
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Fig. 6. SNR of output signal with blind calibration in 8-ADC and 16-ADC
systems

VI, the problem is much more stable and robust than for blind
calibration.

Example 8.4: We consider a 64-ADC system, the training
signal is sin(0.87t) with sampling rate 1. The time errors and
gain mismatches are uniformly distributed in [—0.17,0.17]
and [—0.1,0.1] respectively. The number of samples in each
data block is 160 and we use a total of 30 data blocks in
each experiment. We did the same experiment 50 times and
the average estimation errors are shown in fig. 7

From this plot we see that our method achieves very high
accuracy for a large range of SNR values, even with less than
1000 samples and without oversampling. Similar results can
be achieved for an 128-ADC system or even for an 256-ADC
system.

Example 8.5: We consider a 128-ADC system, the training
signal is sin(0.87t) with sampling rate 1. The time errors and
gain mismatches are uniformly distributed in [—0.17,0.17]
and [—0.1, 0.1] respectively. The number of total samples for
mismatch errors detection is 2400. We first estimate the time
and gain mismatches then apply this estimation to a 128ADC
system with random input signal and sampling frequency 1.1.

64—ADC system, known input
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Average estimation errors in 64ADC system with non-blind

The SNR of output signal is computed for different SNR level.
The same experiment is done 50 times and the average SNR
is shown in fig. 8.

128-ADC system, known input
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Fig. 8. SNR of output signal with non-blind calibration for 128 ADC system

As we can see, the SNR of the output signal is almost the
same as the SNR of the input signal with oversampling rate
of only 10% for a 128-ADC system!

Compared with blind calibration, non-blind calibration has
to inject the training signal periodically, which is its main
disadvantage. On the other hand, by using our method, we
can make the multiple-ADC system work for a large number
of ADCs without oversampling, which highly reduces the
sampling frequency of each ADC; We can have a very good
estimation with only about 1000 samples, which is a very
small number compared to other methods in the literature. Its
high accuracy makes it applicable in 14-bit or even higher bit
systems.



IX. CONCLUSION

We have modeled the mismatch errors detection problem for
time-interleaved ADCs as a nonlinear separable least squares
problem, and proposed a Gauss-Newton type method to find
the optimal solution. Theoretical analysis and simulation re-
sults show that our approach converges very fast. Our approach
can be applied to both blind and non-blind calibration. For
blind calibration, our method can achieve an almost error free
ADC system with relatively modest oversampling rate in 8-
ADC and 16-ADC systems. For non-blind calibration, our
method can achieve an error free ADC system even for an 128-
ADC system with only 10% oversampling. The computational
complexity and memory requirements of the algorithm are low,
which makes this method an attractive candidate for various
practical applications.

APPENDIX

Theorem 4.1: In each data block, if the matrix J has full
rank, the function ®(d,g,c) has a local minimum given by

(8%, 9%, 1+ (JUI) LI (0 + o) +O( {2 + H;cHQ)
Proof: 1If the input signal is (4), and the true timing errors
and gain mismatches are 6*, g*, then y,, = (1+g,)*(z(rnT+
(k—1+6%)T)+v(n)). When we apply Taylor expansion and
use the initial value {6*,g*,¢*} as in (11), we have F(y) =
F(y*) + J(v*) (v =7*) + O(lly = 7*|*). Here F,7,Q and
J are as defined in section III and v* = {6*,g*,c*}. Now
O(y) = I7(v) (v =) = (e +v) + O(|ly = v*[I*)||, @ has
a local minimum at v = v* + (JTJ) "' JT (z. + v) + O(||y —
V*IIi)llgnd f(llllg =71 = oI NI (ze +0)IIP =
Oe.l? + Tzgl?): . "
Theorem 4.3: If in the [-th data block, the iteration method
converges to the local minimum

2 2
O
’ “\28
the solution of (13) is
vl | [lz|]?
(87,97 + O + opp) @9)

with probability 1 when K — oo.

Proof: If the solution of the lth2 data bzlock is
{6%,9%, ¢ 3+ (JTI) I (0 + 2)+O([25 + 2=l), then

o = 6% + o + O(IP:HHZ + “:“HQ) where » — 1 by 1 vector
= (JFH) "I (v + z)(1 : 7 — 1,1). Since the signal
is randomly given, the truncation z. is also a random signal.

Thus E(ay) = 0, consider another sequence & =6+ ay,
by the strong large number theory, P(<==i— Tin ¥ 1 —0*=0)=

when K — oo. Since 8! = &' + (9( ”v” + llee E) we

Iz |ze
conclude in equation (13), &* — &* +(9(”|:””2 + Iz“I ) with
probability 1 when K — oo. A similar proof holds for g* in
equation (13), which gives the result. ]
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