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Abstract— A time domain interpolation method is presented
and applied to channel estimation for pilot-aided Orthogonal
Frequency Division Multiplexing (OFDM) system. One key ad-
vantage of this method is that it dynamically selects suitable
basis functions to approximate the channel transfer function by
studying the shape of its Inverse Fourier transform. Which results
in a very good approximation by using as few as possible basis
functions, and provides significant reduction of additive white
Gaussian noise (AWGN) and Inter Carrier Interference (ICI) at
the same time. Theoretical analysis and simulations show that it
is an efficient method for approximating various kinds of OFDM
channels.

I. I NTRODUCTION

OFDM has attracted considerable attention in the last
decade due to its desirable properties such as its high data rate
transmission capability with high bandwidth efficiency as well
as its robustness to multipath delay spread. It has been adopted
as a standard for wire and wireless communication such as
Digital Subscribe Line (DSL), European digital Audio and
Video Broadcasting (DAB/DVB), American IEEE 802.11(a)
and European HiperLAN/2 [1], [2].

Coherent OFDM transmission requires an estimation of
the channel frequency response. Usually, channel estimation
in OFDM is carried out by transmitting known pilot sym-
bols in given positions of the frequency-time grid. There
are essentially two kinds of pilot insertions: block-type pilot
arrangements and comb-type pilot arrangements [1]. Block
type channel estimation methods, such as Least Square (LS)
estimation and Minimum Mean-Square Error (MMSE) esti-
mation, have been developed under the assumption of slow
fading channels. In fast fading channel, the channel transfer
function changes significantly even for adjacent OFDM data
blocks, thus the comb-type pilots channel estimation performs
much better than block type pilot estimation [1].

The traditional approach consists of two steps for comb-type
pilot based estimation. First the channel at pilots frequencies
is obtained by LS or MMSE estimation. In the second step the
transfer function is estimated at the unknown tones by using
some kind of interpolation or approximation based on the
pilot information [3]. Among them there are two major types:
Time domain estimation and frequency domain interpolation.
In frequency-domain methods, first or second order interpola-
tion, low-pass interpolation and cubic spline interpolation are
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applied directly to pilot frequencies to approximate the channel
frequency response. In time-domain estimation, one focuses
on the Fourier transform of the frequency-domain channel
response at pilot sub-carriers. Under the assumption that the
number of pilot sub-carriersM is greater than the normalized
maximum time delay aliasing is avoided [4].

While the more advanced of the aforementioned channel es-
timation methods work fairly well under certain assumptions,
they do not fully utilize the available information provided
by the pilots and the characteristics of frequency selective
channels. For instance, while the maximum delay spread of
the channel may be quite large, the impulse response itself
exhibits a sparse structure, i.e., it is composed of only few
(say, a dozen) relevant multipath delays.

A natural way to exploit the sparsity of the impulse response
would be to useL1-minimization techniques [5]. While the re-
cent mathematics and engineering literature has seen a plethora
of publications on sparse representations andL1-minimization,
the algorithms are computationally too expensive to be of
practical interest for OFDM channel estimation. Furthermore
these algorithms would have difficulties in dealing with non-
integer time delays.

In this paper, we propose a robust and numerically efficient
pilot-based channel estimation method for OFDM that utilizes
the sparsity of the channel, is applicable to non-integer time
delays, and performs well both in the low SNR as well as
in the high-SNR regime. It outperforms the aforementioned
channel estimation methods in a variety of scenarios.

By studying the Inverse Fourier transform of the frequency-
domain channel response at pilot sub-carriers, we dynamically
select a set of nonorthogonal basis functions to approximate
the channel frequency response. The two-step procedure adap-
tively estimates first the number and positions of the unknown
time delays. Then based on this estimate we dynamically select
a set of non-orthogonal basis functions to approximate the
channel frequency response. At the same time, this set of
basis functions works as an adaptive “lowpass” filter which can
reduce AWGN and ICI significantly. In addition, our method
can also deal with non-uniformly distributed pilots.

The rest of the paper is organized as follows. In section
II, the pilot based OFDM system is described. In section
III, previous channel estimation methods are reviewed. Our
interpolation method is proposed in section IV. An algorithm
for estimating the time delays is introduced in section V. In
section VI, we present an error analysis for our and other
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channel estimation methods. Section VII presents simulation
results and comparisons which indicate the bit error rate (BER)
improvements. Section VIII concludes this paper. Proofs of the
theoretical results presented in this paper are omitted due to
space constraints and will be included in the journal version
of this paper.

II. SYSTEM DESCRIPTION

We consider a standard cyclic-prefix OFDM system, and
assume that the reader is familiar with the basic setup,
cf. e.g. [6]. Binary data are grouped and mapped to a signal
constellation, such as QPSK or 16-QAM. We denote the data
sequence of an OFDM symbol consisting ofN subcarriers by
{X(k)}N−1

k=0 . Since we consider a pilot-aided OFDM system,
we assume that the sequence{X(k)}N−1

k=0 also contains the
pilots tones, i.e., certain tones that are assigned specific
values, the position and value of which are known to the
receiver. In a comb-type pilot arrangement,Np pilot symbols
are uniformly inserted1 into the sequence{X(k)}N−1

k=0 with
Xp(m) := X(mL) whereL = N

Np
is an integer,Xp(m) is

them-th pilot symbol value andm = 0, 1, . . . , Np − 1.
The data sequence{X(k)}N−1

k=0 is transfered into a time
domain signal{x(n)}N−1

n=0 by an Inverse Discrete Fourier
Transform (IDFT), where

x(n) =
N−1∑
k=0

X(k)e
j2πkn

N , n = 0, . . . , N − 1. (1)

After inserting a cyclic prefix at the beginning of each symbol
to prevent inter-symbol interference (ISI), the signal symbols
are modulated on a set of sub-carriers and transmitted through
the frequency-selective channel.

After removing the cyclic prefix, the received discretized
samples{y(n)}N−1

n=0 associated with one OFDM block are sent
to the DFT block withY = F{y}N−1

n=0 , whereF is theN×N
DFT-matrix. Assuming there is no ISI, then by [7]

Y (k) = X(k)H(k) + I(k) +W (k), k = 0, . . . , N − 1.
(2)

HereW (k) is AWGN, H = F{h(n)}N−1
n=0 andI is the inter-

carrier interference (ICI) caused by Doppler frequency with
expressions

H(k) =
r∑

i=1

hie
jπfDi

T sin(πfDi
T )

πfDiT
e
−2jπkτi

N , (3)

I(k) =
r∑

i=1

N−1∑
n=0,n 6=k

hiX(n)
N

1− ej2π(fDi
T−k+n)

1− ej2π/N(fDi
T−k+n)

e
−j2πτin

N .

(4)
Where r denotes the number of propagation paths,hi is
the gain for thei-th path, fDi

is the i-th path’s Doppler
frequency shift,T is the sampling time andτi is the time
delay normalized by the sampling time.

1While the pilots are usually uniformly spaced across the OFDM symbol,
we note that for instance 802.16e contains some transmission modes that use
(slightly) nonuniformly spaced pilot tones.

III. F REQUENCY AND TIME DOMAIN CHANNEL

ESTIMATION METHODS

In comb-type pilot arrangements, the estimation of channel
frequency response at pilot sub-carrierHp is obtained by
LS or MMSE estimation. For instance the estimation of
channel frequency response at pilot sub-carriers based on LS
estimation is given by:

Hp(m) = He(mL) =
Y (mL)
X(mL)

=
Y (mL)
XP (m)

, (5)

for m = 0, . . . , Np − 1. The estimation of the whole channel
frequency responseHe is then calculated from the information
of Hp. This is where the various channel estimation methods
differ. Having computedHe the transmitted signal symbols
are estimated by

Xe(k) =
Y (k)
He(k)

k = 0, 1, . . . , N − 1. (6)

Then the source binary information is recovered at the receiver
output after signal demapping.

From (3), it is natural to model the real channel frequency
response function as

φ(ω) =
r̃∑

i=1

cie
−2πjωτi , (7)

where ω ∈ [0, 1], ci ∈ C, r̃ ∈ Z and τi ∈ R. Thus
H(k) = φ( k

N ) and the channel estimation problem can
be formulated as follows: Given noisy samples{Hp(m) =:
φ( m

Np
) + W (m)}Np−1

m=0 , whereW (m) is AWGN, we try to

approximateφ( k
N ) for k = 0, 1, . . . , N − 1.

A variety of methods has been proposed in the literature to
solve this channel estimation problem. This includes frequency
domain methods such as linear interpolation, second order
interpolation [8], low-pass approximation and cubic spline
interpolation. Based on zero-padding and DFT/IDFT, a time-
domain method was introduced in paper [7], this method is
essentially trigonometric approximation. It works well in the
low SNR case, however it discards some channel information
since the time delaysτi may be non integer, which degrades
its overall performance especially when SNR is high [9].
Furthermore, like the other aforementioned methods, it does
not fully utilize the fact that the impulse response has a sparse
representation in the time domain (beyond the obvious fact that
it is time-limited).

If we know r and the exact time delayτi in equation (3)
we could compute the best least squares approximation for the
channel frequency responseH via

He = A(AH
p Ap)−1AH

p Hp, (8)

where theN × r matrix A has entriesA(k, i) = e
−j2πkτi

N

and theNp by r matrix Ap has entriesAp(m, i) = e
−j2πmτi

Np

for i = 1, 2, . . . , r. However for realistic OFDM system,r is
unknown and the time delaysτi are also unknown. This is
what makes pilot-based channel estimation challenging (and
mathematically interesting)!
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In the next two sections, we first show how our interpolation
method can preserve the channel information by using non-
orthogonal trigonometric polynomials provided the approxi-
mate time delay locations are known. Secondly, we propose
an algorithm to estimate the unknown time delay locations.

IV. A DAPTIVE INTERPOLATION METHOD

Assume that the channel frequency response functionφ has
the expression (7), whose Fourier expansion is

φ(ω) =
∞∑

n=−∞
αne

−2πjωn. (9)

If one or more of theτi are not integers, then it follows from
basic Fourier analysis thatαn → O( 1

|n| ) as |n| → ∞. This
implies that if we use the2n + 1-term Fourier seriesφn :=∑n

j=−n αje
−2πiωj to approximateφ, the truncation error

‖φ− φn‖2 → O(
1√
n

), for n→∞.

In practice this approximation rate is not good enough, es-
pecially whenn is small! That is also the reason why the
method introduced in [7] can not do well in preserving the
channel information in such a case.

In the following, we show that by using non-orthogonal
exponential polynomials as basis functions, we can achieve a
much better approximation. But note that the choice of these
nonorthogonal basis functions must be simple, otherwise the
approach may not be practical.

Let ψk(ω) = e−2πjω(k+ 1
2 ) and ϕk(ω) := e−2πjωk for

k = 0, 1, . . . with ω ∈ [0, 1]. Furthermore,PA(f) denotes
the orthogonal projection of a functionf onto a function
spaceA. Let φ(ω) = e−2πjωt with ω ∈ [0, 1] for t ∈
[0, 2]. We want to approximate this function (our toy channel
frequency response) by a linear combination of a few (say 5)
fixed trigonometric functions. First we use the standard space
of orthogonal trigonometric functionsA := {ϕ−1, . . . , ϕ4}.
Then we choose a space spanned by the non-orthogonal
functions B := {ϕ0, ϕ1, ϕ2, ψ0, ψ1}. We define the error
functionsEB(t) = ‖φ−PB(φ)‖2 andEA(t) = ‖φ−PA(φ)‖2.
From the numerical results we find that‖EB(t)‖∞ = 0.0109
and 1√

2
‖EB(t)‖2 = 0.0060, while ‖EA(t)‖∞ = 0.2883

and ‖EA(t)‖2 = 0.2045. Thus it seems that modifying the
orthogonal trigonometric basis by adding a few non-orthogonal
trigonometric functions at the “boundaries” can improve the
channel estimation accuracy by counteracting the boundary
effects caused by non-integer time delays.

Indeed, by extendingA by just two basis functions at the
interval boundaries, we arrive at the following result:

Theorem 4.1:Let A = span{ϕ−1, ϕ0, . . . , ϕT+1} and
B = span{ψ1, ψT−1, ϕ0, ϕ1, . . . , ϕT }. Supposeφ(ω) =
e−2πjωt whereω ∈ [0, 1] and t ∈ [0, T ], then

‖φ− PB(φ)‖2 < C(t)‖φ− PA(φ)‖2, (10)

whereT ≥ 2 and0 < C(t) < 1.
In fact, numerical results show

‖φ− PB(φ)‖2 < 0.65‖φ− PA(φ)‖2, (11)

whenT ≤ 50.
Example 4.2:We consider the functionφ(ω) = e−2πjωt

with ω ∈ [0, 1] for t ∈ [0, T ], where integerT ≥ 2.
Let space A = {ϕ−1, ϕ0, . . . , ϕT+1} and spaceB =
{ψ1, ψT−1, ϕ0, ϕ1, . . . ϕT }. Define E1(T ) = 1√

T
‖EB(t)‖2

andE2(T ) = 1√
T
‖EA(t)‖2, Fig 1 shows the numerical results

for T from 2 to 50.
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Fig. 1. Numerical results of approximation error

Clearly, we achieve a much better approximation by adding
two nonorthogonal basis functions. But in practice the result
shown in Fig 1 may be not good enough. For instance, in
OFDM channel estimation, we would like theL2 norm error
less than 40 dB in channel estimation, which requires us to
add more basis functions. But adding too many basis functions
leads to ill conditioned problem. So we will find an equipoint
between those problems. Fortunately, we find adding four basis
functions is enough for many applications, especially when
T ≤ 100, we can always makeE2(T ) ≤ 0.01, while the
condition number of matrixB defined as last example is still
small.

For givenT , the basis functions are chosen by solving the
next problem

(n1, n2) = argmin
(n1,n2)

E2(T ) (12)

s.t. κ(B) ≤ MT , where space B =
{ψ̃1, ψ̃2, ψ̃3, ψ̃4, ϕ0, . . . , ϕT } with ψ̃1 = ψn1 , ψ̃2 = ψn2 ,
ψ̃3 = ψT−n1−1 and ψ̃4 = ψT−n2−1. After solving (12), we
chooseB as our final basis space. ForT ≤ 100, numerical
results show we can always makeE2(T ) ≤ 0.01 when we
setMT = 60.

Theorem 4.3:Let spaceA = {ϕ1, ϕ2, . . . , ϕM}, space
Ã = {ϕ̃1, ϕ̃2, . . . , ϕ̃M} and ϕ̃k(ω) = ϕk(ω)e−2πjr0ω for
arbitrary r0 ∈ R and k = 1, 2, . . . ,M . Assume thatg is a
bounded function and̃ψ(ω) = ge−2πjr0ω, then we have

‖g − PA(g)‖2 = ‖ψ̃ − PÃ(ψ̃)‖2. (13)
The above theorem tells us that for functionφ(ω) = e−2πjωt

with t ∈ [a, T +a], we can first considert ∈ [0, T ] and choose
the basis functions, then simply multiplye−2πjaω onto each
basis function to form the new basis space.
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Thus, concerning problem (7), if we have a priori knowledge
of the approximate time delay locations, i.e., we knowτi ∈
[0, T ] or τi ∈

⋃µ
k=1[ak, bk], we first choose a set of non-

orthogonal exponential polynomials as basis functions as in
(12) for each interval[ak, bk], then combine all these basis
functions. Let spaceB = {χ1, χ2, . . . , χm̃} contain all the
basis functions we choose. Furthermore, let us introduce the
N × m̃ matrix B with entriesB(k, i) = χi( k

N ) and the
Np × m̃ matrix Bp with entriesBp(m, i) = χi( m

Np
) for

k = 0, 1, . . . , N−1,m = 0, 1, . . . , Np−1 andi = 1, 2, . . . , m̃.
Then the approximation of the channel frequency response is
given by

He = B(BH
p Bp)−1BH

p Hp. (14)

In real application we do not have any a priori information
aboutτi! Thus finding the approximate time delay locations is
a critical problem. In the next section, we build an algorithm
to accomplish this task.

V. ESTIMATING THE TIME DELAY LOCATIONS

In order to find the approximate time delay locations, we
consider the exact function

φ(ω) =
{ ∑r̃

i=1 cie
−2πjωτi ω ∈ [0, 1]

0 ω /∈ [0, 1]
(15)

and its inverse Fourier TransformΦ(t) =
∑r̃

i=1 ci sinc(t−τi).
Since the peak of the functionsinc(t− τi) is located atτi, it
is not surprising that all the time delaysτi are close to some
peaks of the function|Φ(t)|.

Theorem 5.1: Let φ(ω) have expression (15), whereτi ∈
[a, b]. Φ(t) is its Inverse Fourier Transform.|Φ(t)| has its
maximum att0, then

t0 ∈ (a− 2, b+ 2). (16)
From this theorem we see, by studying the peaks of the

function |Φ(t)|, we can estimate the time delay locations.
In this iterative algorithm, we consider the biggest peak of

the function|Φ(t)| in each iteration and find a proper interval
[ak, bk] which contains this peak. Two or more peaks which are
close to each other will be considered in the same iteration,
which means we find one interval[ak, bk] to contain these
peaks. Letf̂ = Hp, the procedure of this algorithm in itsi-th
iteration is given by:

Step 1: Define function|Φ(t)|, where

Φ(t) =

{ ∑Np−1
k=0 e

j2πt k
Np f̂(k) t ∈ [0, Np − 1)

0 t /∈ [0, Np − 1)
(17)

Step 2: Find region
1. Find the biggest peak of function|Φ(t)| at t0 and let

Ei = Φ(t0).
2. Find all the peaks inΓ = {tn}, which satisfy|Φ(tn)| >

γ|Φ(t0)|, and for anytn, there is atm ∈ Γ such that0 ≤
(tn − tm)sign(tm − t0) < θ.

3. Find integersai, bi such thattn ∈ [ai, bi] for all tn, with
Φ(ai) > γΦ(ta) andΦ(bi) > γΦ(tb), whereta is the nearest
peak toai and tb is the nearest peak tobi for 0 < γ < 1.

Step 3: Select basis spaceB(i) = [χ1, χ2, . . . , χmi ]
based on interval[ai, bi] as in problem (12). letḡ =

B(i)(B(i)H
p B

(i)
p )−1B

(i)H
p (f̂), whereB(i)(n, i) = χi( n

N ) and
B

(i)
p (k, i) = χi( k

Np
) for i = 1, 2, . . . ,mi.

Step 4: f̂ = f̂ − ḡ, stop when one of the following is true,
else go tostep 1of the next iteration.

1. ‖ḡ‖2 ≤ α
√

mi

Np
‖f̂‖2, wheremi is the number of basis

functions used in this iteration.
2. Ei

E1
≤ η, whereη is a small number.

In our algorithm, we setθ = 3, γ = 0.5, α = 1.5 and η =
1
30 . In the first stopping criterion,

√
mi

Np
‖f̂‖2 is the average

power in frequency domain, when the energy in the biggest
peak is close to the average energy, we treat it as noise and
stop. In the second stop criterion, when the currenti-th peak
is very small, we may treat it as approximation error and stop.

After we find all the[aj , bj ], we solve problem:

min
([ā1,b̄1],...,[āk,b̄k])

k∑
i=1

b̄i − āi (18)

s.t. for integerāi, b̄i, ∪k
i=1[āi, b̄i] contains domain∪i[ai, bi]

and b̄i+1 − āi ≥ θ. Then∪k
i=1[āi, b̄i] is the final solution for

the approximate time delay locations. After we have this, we
can go back to problem (14) to find the approximate channel
frequency responseHe.

VI. ERROR ANALYSIS

In this section we give a brief error analysis for the inter-
polation method proposed in Section IV. Formally, an interpo-
lation method involves an operator mapping discrete data to a
continuous-variable function. Here we consider functions with
finite entry. Let the interpolation operatorT : CN → L2(R),
then the functionφe = T (Hp +W ) is the approximation we
get after interpolation. We callφ − T (Hp) the interpolation
error andT (Hp + W ) − T (Hp) the interpolated noise.The
aforementioned interpolation methods are linear operators, we
thus have in this case thatT (Hp + W ) = T (Hp) + T (ω),
hence the interpolated noise is simplyT (ω).

In order to explore the effect of AWGN for various inter-
polation methods, we show the following observations:

Theorem 6.1:Suppose functionφ(ω) has expression (7)
and its samplings are given by{Hp(m) := φ( m

Np
) +

W (m)}Np−1
m=0 (pilot tones) in [0, 1], whereW (m) are i.i.d.

complex Gaussian random variables with varianceN0. Let
φe denote the approximation function resulting from the
interpolation method proposed in Section IV. Suppose we
know the approximate time delay locations and thus the basis
spaceB, thenφe( n

N ) = φ( n
N ) + ε1( n

N ) + ε2( n
N ), whereε1

is the interpolation error andε2 is the interpolated noise with
E(‖ε2( n

N )‖22)) = m̃
Np
N0, m̃ is the number of basis functions

in B andn = 0, 1, . . . , N − 1.
From this theorem we can see, that if the number of basis
functions is small we can get an additional reduction of the
channel estimation error that is caused by AWGN.

To compare the interpolation error and interpolated noise
for different methods, we introduce an example as follows.

Example 6.2:Consider the function φ(ω) =∑r̃
i=1 cie

−2πjωτi , where ci is i.i.d. complex Gaussian
random variable with varianceN0, r̃ = 15 is the number
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of the multiple path andτi is the time delay for thei-th
path. Assume we are given theNp = 128 noisy samples
{φ( m

Np
) + W (m)}Np−1

m=0 , whereW (m) is AWGN. We need

to evaluate the values of functionφ(ω) at { k
N }

N−1
k=0 for

N = 1024.
In the first experiment, we let the noise be zero andτi

be uniformly distributed random variables in[0, α], whereα
changes from 0 to 66 fori = 1, . . . , r̃. When applying our
interpolation method, we first run the algorithm from Section
V to find the approximate locations ofτi, then use the selected
basis functions to approximateφ. Fig 2 shows the numerical
results for interpolation error of different methods.
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Fig. 2. Comparisons of interpolation error

In the second experiment, we letτi be uniformly distributed
random variables in[0, 10] which are given, fori = 1, 2, . . . , r̃
and the SNR changes from 0 to 40. Fig 3 shows the numerical
results for interpolated noise of different methods.

0 5 10 15 20 25 30 35 40
10−3

10−2

10−1

100

101

SNR

in
te

rp
ol

at
ed

 n
oi

se

second order
our method
cubic spline
low−pass filter
linear interpolation

Fig. 3. Comparisons of interpolated noise

When α is small, the interpolation error of cubic spline
interpolation is the smallest, followed by our interpolation
method, lowpass filter, second order interpolation and linear
interpolation. Asα becomes large, the interpolation error of
our method stays at the same level, while the interpolation
error of the other interpolation methods grows rather quickly.
Whenα is large, our method achieves the smallest interpola-
tion error, as illustrated in Fig 3.

In OFDM system, the interpolation error and interpolated
noise of an interpolation method correspond to how well it
can preserve the channel information and reduce noise respec-
tively. Fig 2 and Fig 3 show the efficiency of our interpolation
method in these two aspects. The overall BER performance of
an interpolation method depends on its interpolated noise and
interpolation error together. In section VII, simulations for all
kinds of channel models make more clear comparisons for
different interpolation methods.

VII. S IMULATIONS AND COMPARISONS

The performance of our proposed channel estimation
method is evaluated under fast fading channels. A 16QAM-
OFDM system with carrier frequency of 1 GHz and bandwidth
of 2 MHz is used. The total number of sub-carriers in one
OFDM block is 1024, the number of uniformly distributed
pilots sub-carriers is 128. The channel models are Rayleigh
as recommended by GSM Recommendation 05.05 [10]. In
the first channel model, our channel has 6 paths, the time
delays are given by0µs, 0.2µs, 0.5µs, 1.6µs, 2.3µs, 5.0µs and
the average power of each path is given by−3.0 dB,0.0 dB,
−2.0 dB, −6.0 dB, −8.0 dB, −10.0 dB respectively. In the
second channel model, we have 10 paths and the normalized
time delays are uniformly distributed in[0, 40] with the same
average power−1.0 dB. We assume that the guard intervals
are longer than the maximum time delay to avoid ISI, and the
ICI is affected only by Doppler spread.

The proposed interpolation method is compared to first and
second order interpolation, cubic spline interpolation, and low-
pass filtering. Furthermore we compare our method to the case
when the time delay positions are known in (8), as well as to
the ideal case when the receiver has exact channel knowledge.
For our interpolation method, we first run the algorithm to find
the approximate time delay locations then approximate the
channel response function. Known time delay interpolation in
(8) and known true channel case are of course simulated only
for comparison purposes, as they are not applicable in real
problems. For different noise and ICI levels, the simulation
results are shown in Fig 4 and Fig 5.

For the first channel model, the maximum time delay is
not large. From the analysis in the previous section we know
that the interpolated noise is the dominant part for channel
estimation errors. From Fig 4 we can find the overall BER of
our interpolation method is smaller than linear interpolation,
followed by second order interpolation, low pass filter and
cubic spline, which coincides with the analysis in last section.
When the time delays are large, as in our second channel
model, the overall performance is determined by interpolation
error and interpolated noise together. For high SNR, the
dominant part is interpolation error, from Fig 5 we can find
the BER of our interpolation method is smaller than low-pass
filter, followed by cubic spline, second order interpolation and
linear interpolation method, which confirms the error analysis
in last section again.

In these two channel models, our method beats the other
interpolation methods. In the following we compare the result
of our interpolation method with the best result of linear
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Fig. 4. Comparisons of BER in channel 1

interpolation, second order interpolation, cubic spline and low
pass filtering in each experiment. When the maximum Doppler
spread is0.3% of the subcarrier spacing, our method can
achieve improvement about1.2 dB for the first channel model.
For the second channel model, our method can achieve an
improvement of about1.2 dB when the SNR is 10 and about
2 dB when the SNR is 20, it increases when the SNR increases.
When the maximum Doppler spread is7.5% of the subcarrier
spacing, our method can achieve1.2 − 1.5 dB improvement
for these two channel models when SNR is 10 and2.1− 2.3
dB improvement when SNR is 20. The improvement becomes
much larger when the SNR increases as shown in Fig 4 and
Fig 5.

VIII. C ONCLUSIONS

We have proposed a promising interpolation method and
shown its efficiency when applying it to OFDM channel esti-
mation. This method outperforms all the typical interpolation
methods introduced in this paper when comparing the BER
performance. Numerical experiments for various channel mod-
els demonstrate that the proposed channel estimation method
yields a BER performance that is only slightly worse than
when the receiver has full knowledge of time delay positions.
Another appealing property of our OFDM channel estimator
is that we only need pilot information and do not require
any knowledge of channel statistics and SNR. In addition,
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Fig. 5. Comparisons of BER in channel 2

this approach can also be applied when the pilots are non-
uniformly spaced.
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