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Abstract—A time domain interpolation method is presented applied directly to pilot frequencies to approximate the channel
and applied to channel estimation for pilot-aided Orthogonal frequency response. In time-domain estimation, one focuses
Frequency Division Multiplexing (OFDM) system. One key ad- o the Fourier transform of the frequency-domain channel

vantage of this method is that it dynamically selects suitable t pilot sub . Under th tion that th
basis functions to approximate the channel transfer function by response at pilot sub-carriers. Under the assumption that the

studying the shape of its Inverse Fourier transform. Which results number of pilot sub-carrier8/ is greater than the normalized

in a very good approximation by using as few as possible basis maximum time delay aliasing is avoided [4].

functions, and provides significant reduction of additive white While the more advanced of the aforementioned channel es-

Gaussian noise (AWGN) and Inter Carrier Interference (ICl) at  imation methods work fairly well under certain assumptions,

the same time. Theoretical analysis and simulations show that it thev d t fully utilize th ilable inf fi ided

is an efficient method for approximating various kinds of OFDM €y ao no ully utihize the ava'_a, € Information provi e,

channels. by the pilots and the characteristics of frequency selective
channels. For instance, while the maximum delay spread of
the channel may be quite large, the impulse response itself

I. INTRODUCTION exhibits a sparse structure, i.e., it is composed of only few

OFDM has attracted considerable attention in the latdy, @ dozen) relevant multipath defays.
decade due to its desirable properties such as its high data rat@ nNatural way to exploit the sparsity of the impulse response
transmission capability with high bandwidth efficiency as wel¥ould be to use.!-minimization techniques [5]. While the re-
as its robustness to multipath delay spread. It has been adofi@ii mathematics and engineering literature has seen a plethora
as a standard for wire and wireless communication such @gPublications on sparse representations ahaninimization,
Digital Subscribe Line (DSL), European digital Audio andn€ algorithms are computationally too expensive to be of
Video Broadcasting (DAB/DVB), American |EEE 802'11(a)0ract|cal |nrerest for OFDM chgrrnel .estllmatlon.. Furthermore
and European HiperLAN/2 [1], [2]. rhese algonthms would have difficulties in dealing with non-

Coherent OFDM transmission requires an estimation Bft€ger time delays. _ o
the channel frequency response. Usually, channel estimatioi thiS paper, we propose a robust and numerically efficient
in OFDM is carried out by transmitting known pilot sym-Pilot-based channel estimation method for OFDM that utilizes
bols in given positions of the frequency-time grid. Therthe sparsity of the channel, is appllcable to non-integer time
are essentially two kinds of pilot insertions: block-type pilof€lays, and performs well both in the low SNR as well as
arrangements and comb-type pilot arrangements [1]. Blotk the hlgh-_SNR_ regime. It o_utperforms the afore_mennoned
type channel estimation methods, such as Least Square (E@Z””el estimation methods in a variety of scenarios.
estimation and Minimum Mean-Square Error (MMSE) esti- BY Studying the Inverse Fourier transform of the frequency-
mation, have been developed under the assumption of sig@main channel response at pilot sub-carriers, we dynamically
fading channels. In fast fading channel, the channel transR&'€ct @ set of nonorthogonal basis functions to approximate
function changes significantly even for adjacent OFDM datf€ channel frequency response. The two-step procedure adap-
blocks, thus the comb-type pilots channel estimation perforrf¢ely estimates first the number and positions of the unknown
much better than block type pilot estimation [1]. time delays. Then based on th_rs estimate we dynamrgally select

The traditional approach consists of two steps for comb-tyfeSet 0f non-orthogonal basis functions to approximate the
pilot based estimation. First the channel at pilots frequencigd@nnel frequency response. At the same time, this set of
is obtained by LS or MMSE estimation. In the second step tf#&Sis functions works as an adaptive *lowpass” filter which can
transfer function is estimated at the unknown tones by usifgduce AWGN and ICI significantly. In addition, our method
some kind of interpolation or approximation based on tHed" also deal with non-uniformly distributed pilots. _
pilot information [3]. Among them there are two major types; '€ rest of the paper is organized as follows. In section
Time domain estimation and frequency domain interpolatiol}; the pilot based OFDM system is described. In section
In frequency-domain methods, first or second order interpol_'é'—- previous channel estimation methods are reviewed. Our

tion, low-pass interpolation and cubic spline interpolation afBterpolation method is proposed in section IV. An algorithm
for estimating the time delays is introduced in section V. In

This work was partially supported by NSF DMS grant nr. 0511461.  section VI, we present an error analysis for our and other



channel estimation methods. Section VII presents simulation |lIl. FREQUENCY AND TIME DOMAIN CHANNEL
results and comparisons which indicate the bit error rate (BER) ESTIMATION METHODS

improvements. Section VIII concludes this paper. Proofs of theIn comb-type pilot arrangements, the estimation of channel

theoretical results presented in this paper are omitted due,to ; : . .
. : : . . ~frequency response at pilot sub-carriff, is obtained by
space constraints and will be included in the journal versi

of this paper. U5 or MMSE estimation. For ipstance thg estimation of
channel frequency response at pilot sub-carriers based on LS
estimation is given by:
I[I. SYSTEM DESCRIPTION

Hy(m) = H,(mL) = 2\ _ Ymb) )
0

We consider a standard cyclic-prefix OFDM system, and
assume that the reader is familiar with the basic setgp
t

X(mL)  Xp(m)’

cf. e.g. [6]. Binary data are grouped and mapped to a signal """ = > Vp — 1. The estimation of the whole channel

constellation, such as QPSK or 16-QAM. We denote the d quency re;ponsHe IS then -calculated from t.he information

sequence of an OFDM symbol consistingMéfsubcarriers by 3. ﬁH”' HT h'§ is where :hg;}/artly? ust channftl gsn_m atllon mithlods

{X(k)}-. Since we consider a pilot-aided OFDM systent, "o aving computedii. the transmitied signal Symbols
N—1 are estimated by

we assume that the sequeng& (k)}, -, also contains the
pilots tones, i.e., certain tones that are assigned specific Y (k)
values, the position and value of which are known to the e(k) = H.(k)

receiver. In a comb-type pilot arrangemem, pilot symbols

are uniformly insertetiinto the sequencé X (k)}N- with Then the source binary information is recovered at the receiver

k=0,1,...,N—1. (6)

X,(m) := X(mL) whereL = & is an integer,X,,(m) is ©utput after signal demapping.
the m-th pilot symbol value andn = 0, 1, ... N, — 1. From (3), it is natural to model the real channel frequency
The data sequenceX (k)}Y=! is transfered into a time r€Sponse function as

domain signal{z(n)}.—; by an Inverse Discrete Fourier 7

Transform (IDFT), where P(w) = Zcie*Q’Tj“Ti, (7)
N—-1 . i=1

z(n) = ZX(k)eJ v, n=0,...,N-1. (1) wherew € [0,1], ¢; € C, 7 € Z and7; € R. Thus

k=0 H(k) = ¢(+) and the channel estimation problem can

After inserting a cyclic prefix at the beginning of each symbdie formulated as follows: Given noisy samplel,(m) =:

to prevent inter-symbol interference (IS), the signal symbof& ) + W(m)} o', where W(m) is AWGN, we try to
are modulated on a set of sub-carriers and transmitted throwgtproximates(+) for k = 0,1,..., N — 1.
the frequency-selective channel. A variety of methods has been proposed in the literature to
After removing the cyclic prefix, the received discretizegolve this channel estimation problem. This includes frequency
sampleg{y(n)})-; associated with one OFDM block are sendomain methods such as linear interpolation, second order
to the DFT block withY = F'{y 71:’;01, whereF is the N x N interpolation [8], low-pass approximation and cubic spline
DFT-matrix. Assuming there is no IS, then by [7] interpolation. Based on zero-padding and DFT/IDFT, a time-
domain method was introduced in paper [7], this method is
Y (k)= X(k)H(k)+I(k)+W(k), k=0,...,N—1. essentially trigonometric approximation. It works well in the
(2) low SNR case, however it discards some channel information
Here W (k) is AWGN, H = F{h(n)},_)" and is the inter- since the time delays; may be non integer, which degrades
carrier interference (ICl) caused by Doppler frequency witiis overall performance especially when SNR is high [9].
expressions Furthermore, like the other aforementioned methods, it does
not fully utilize the fact that the impulse response has a sparse
(3) representation in the time domain (beyond the obvious fact that

r

H#) = Y eirior ST T) 2

pot mfp, T ’ it is time-limited).
If we know r and the exact time delay; in equation (3)
r.o N-l hiX(n) 1—ei2mUp;T=k+n) ...,  we could compute the best least squares approximation for the
Iy =Y > N 1 o2 /NGo T km©  + channel frequency respongé via
i=1 n=0,n#k
(4) H.=A(ATA) Al H,, (8)

Where r denotes the number of propagation paths,is
—j2nkT;

the gain for thei-th path, fp, is the i-th path’s Doppler where the N x r matrix A has entriesA(k,i) = e~ ~
frequency shift,T" is the sampling time and; is the time , . N e
delay normalized by the sampling time. and.theNp by r matrix 4, has entr!es'Ap(m,z) —° :
fori =1,2,...,r. However for realistic OFDM systemn, is
unknown and the time delays are also unknown. This is

Iwhile the pilots are usually uniformly spaced across the OFDM symboal, . . . .
we note that for instance 802.16e contains some transmission modes thatiib@t makes pilot-based channel estimation challenging (and

(slightly) nonuniformly spaced pilot tones. mathematically interesting)!




In the next two sections, we first show how our interpolatiowhenT" < 50.
method can preserve the channel information by using non-Example 4.2:We consider the functiog(w) = e27Iw!
orthogonal trigonometric polynomials provided the approxwith w € [0,1] for ¢ € [0,7], where integerl’ > 2.
mate time delay locations are known. Secondly, we propoket space A {v—1,%0,-.-,07+1} and spaceB
an algorithm to estimate the unknown time delay locations.{¢;, /71, o, ¢1, ... o7 }. Define E;(T) %HEB(t)HQ

and E3(T) = —= || Ea(t) |2, Fig 1 shows the numerical results
for T' from 2 to 50.

IV. ADAPTIVE INTERPOLATION METHOD

Assume that the channel frequency response funetibas
the expression (7), whose Fourier expansion is

0.25

0.2

Gw) = D ane I, ©)

n=—oo

0151

If one or more of ther; are not integers, then it follows from
basic Fourier analysis that,, — O(\Tll) as |n| — oo. This
implies that if we use thé&n + 1-term Fourier serie®,, :

Error

> aje”2™wJ to approximatep, the truncation error
1
||¢>—¢n|\2—>(9(%), for n — oco. 008 ]

In practice this approximation rate is not good enough, es-

pecially whenn is small! That is also the reason why the

method introduced in [7] can not do well in preserving the

channel information in such a case. Fig. 1.
In the following, we show that by using non-orthogonal

Numerical results of approximation error

exponential polynomials as basis functions, we can achieve &learly, we achieve a much better approximation by adding
much better approximation. But note that the choice of thego nonorthogonal basis functions. But in practice the result
nonorthogonal basis functions must be simple, otherwise thleown in Fig 1 may be not good enough. For instance, in

approach may not be practical.

Let p(w) = e 2m«(+3) and gp(w) = e 2m«F for
k =0,1,... with w € [0,1]. Furthermore,P4(f) denotes
the orthogonal projection of a functiofi onto a function
space A. Let ¢p(w) = e 2™ with w € [0,1] for ¢t €

OFDM channel estimation, we would like thH&® norm error
less than 40 dB in channel estimation, which requires us to
add more basis functions. But adding too many basis functions
leads to ill conditioned problem. So we will find an equipoint
between those problems. Fortunately, we find adding four basis

[0,2]. We want to approximate this function (our toy channdlinctions is enough for many applications, especially when

frequency response) by a linear combination of a few (say

%) < 100, we can always makd, (1) < 0.01, while the

fixed trigonometric functions. First we use the standard spagendition number of matrix3 defined as last example is still

of orthogonal trigonometric functiond := {p_1,..., @4}

small.

Then we choose a space spanned by the non-orthogondfor givenT’, the basis functions are chosen by solving the

functions B := {0, ¥1, ¢2, %o, ¥1}. We define the error
functionsEp (1) = [|o—Pp(¢)|l2 andEa(t) = [|6—Pa(s)]l2.
From the numerical results we find thgE g (¢)||-c = 0.0109
and %HEB(LL)HQ = 0.0060, while [|[Ea(t)]|cc = 0.2883

and |[Ea(t)[l = 0.2045. Thus it seems that modifying thes.t.  x(B)
orthogonal trigonometric basis by adding a few non-orthogon@: , 12, 13, ¥4, @o, . . .

next problem

(n1,n2) = argmin E5(T) (12)
(n1,m2)
k(B) < My, where space B =

cor}t With @1 = ¥, P2 = tn,,

trigonometric functions at the “boundaries” can improve thes = ¢p_,,_1 andyy = ¥y_,,_1. After solving (12), we
channel estimation accuracy by counteracting the boundatyooseB as our final basis space. F@r < 100, numerical

effects caused by non-integer time delays.

results show we can always mak& (7)) < 0.01 when we

Indeed, by extendingd by just two basis functions at theset M7 = 60.

interval boundaries, we arrive at the following result:
Theorem 4.1:Let A span{¢_1,¢o,...,pr+1} and

B = span{t1,Y¥r-1,90,¢1,..-,pr}. SUupposes(w) =
e~2miwt wherew € [0,1] andt € [0, 7], then

|6 — Pe(9)ll2 < C(t)]|¢ — Pa()l2, (10)
whereT > 2 and0 < C(t) < 1.
In fact, numerical results show

¢ — PB(9)|l2 < 0.65[|¢ — Pa(e)ll2, (11)

_Theorem 4.3:Let spaceA = {@1,902,...,501\4}, space
A = {p1,¢2,...,4u} and gp(w) = gp(w)e >m70¢ for
arbitraryrg € R andk = 1,2,..., M. Assume thay is a
bounded function ang(w) = ge=2™"o«  then we have

lg = Pa(g)llz = IV — Pz (4)]l2- (13)
The above theorem tells us that for functiptw) = e~2™«t
with ¢ € [a, T +a], we can first consider € [0, 7] and choose
the basis functions, then simply multiply 277~ onto each
basis function to form the new basis space.



Thus, concerning problem (7), if we have a priori knowledg8 ¥ (BY"” BS”) = BS' (f), where B? (n,i) = x,;(%) and
of the approximate time delay locations, i.e., we knowe B,(f)(k,i) = Xi(NL) fori=1,2,...,m,.
[0, 7] or i € Uy, lar, bi], we first choose a set of non- "gio 4. 7 " 5 5100 when one of the following is true,
orthogonal exponential polynomials as basis functions as e go tostep 1of the next iteration
(12) for each intervalay, bx], then combine all these basis _ prosaiips N .
. ’ . 1. < i wherem; is the number of i
functions. Let spaceB = {x1,x2,---,xm} contain all the Igll> < /5 | fll2, wherem is the number of basis

basis functions we choose. Furthermore, let us introduce fiH@ctions used in this iteration.

Ei 1
N x 7 matrix B with entries B(k,i) = x;(£) and the 2. gy <1, wherer is a small number.
In our algorithm, we sel = 3,y = 0.5, = 1.5 andn =

N, x m matrix B, with entries B,(m,i) = x;(++) for A
fll= is the average

k=01,...,N—1,m=0,1,...,N,—1andi = 1.9 . 35 In the first stopping Criterio”\/@
Then the approximation of the channel frequency responsepi@ver in frequency domain, when the energy in the biggest
given by peak is close to the average energy, we treat it as noise and
H, = B(BYB,)"'BYH,,. (14) stop. In the second stop criterion, when the curretht peak
L o _ is very small, we may treat it as approximation error and stop.
In real applpatpn we do not have any a priori mforr.natlo.n After we find all the[a;, b;], we solve problem:
aboutr;! Thus finding the approximate time delay locations is
a critical problem. In the next section, we build an algorithm N

to accomplish this task. (o Bl]mil%ak 5 > bi—a (18)
]

V. ESTIMATING THE TIME DELAY LOCATIONS s.t. for integera;, b;, US_, [a;, b;] contains domainJ; [a;, b;]
wandbir1 —a; > 6. Then Uk_, [a;, b;] is the final solution for

the approximate time delay locations. After we have this, we
~ - can go back to problem (14) to find the approximate channel
_{ Yisice?en we[0,1] 15) frequency respons#..

and its inverse Fourier Transford(t) = >, ¢; sinc(t—7;).
Since the peak of the functiofinc(¢t — 7;) is located atr;, it
is not surprising that all the time delays are close to some
peaks of the function®(¢)|.

Theorem 5.1: Let ¢(w) have expression (15), wherg €
[a,b]. ®(t) is its Inverse Fourier Transform®(¢)| has its
maximum attg, then

In order to find the approximate time delay locations,
consider the exact function

VI. ERROR ANALYSIS

In this section we give a brief error analysis for the inter-
polation method proposed in Section IV. Formally, an interpo-
lation method involves an operator mapping discrete data to a
continuous-variable function. Here we consider functions with
finite entry. Let the interpolation operat@i : CV — L2?(R),
then the functionp. = T'(H, + W) is the approximation we
get after interpolation. We cath — T'(H),) the interpolation

to € (a —2,b+2). (16) error andT(H, + W) — T(H,,) the interpolated noise.The

From this theorem we see, by studying the peaks of tgorementioned interpolation methods are linear operators, we
function |®(¢)[, we can estimate the time delay locations. thus have in this case th&t(H, + W) = T(H,) + T(w),

In this iterative algorithm, we consider the biggest peak @fence the interpolated noise is simglyw).
the function|®(¢)| in each iteration and find a proper interval |n order to explore the effect of AWGN for various inter-
[ax, bi] which contains this peak. Two or more peaks which afgolation methods, we show the following observations:
close to each other will be considered in the same iteration,Theorem 6.1:Suppose functionp(w) has expression (7)
which means we find one intervady, b;] to contain these and its samplings are given byH,(m) = ¢(=) +

~ . . . ™ NP
peak;. Lgtf = H,, the procedure of this algorithm in iisth W<m)}zpz—o1 (pilot tones) in[0, 1], where W (m) are i.i.d.
iteration is given by:

S 1- Define f ionl® h complex Gaussian random variables with variamiég Let
tep 1: Define function|®(t)|, where ¢. denote the approximation function resulting from the

ZNpqejszLpf(k) €0,N, —1) interpolation method proposed in Section IV. Suppose we
®(t) = k=0 0 L [0’ N 1) (17)  know the approximate time delay locations and thus the basis
P spaceB, then¢. () = () + e1(F) + e2(5), wheree;
Step 2: Find region is the interpolation error ane, is the interpolated noise with
1. Find the biggest peak of functio®(t)| at t, and let E([le2(%)[|3)) = ;\%No, m is the number of basis functions
E; = O(tg). in Bandn=0,1,...,N — 1.

2. Find all the peaks i’ = {t,,}, which satisfy|®(¢,,)| > From this theorem we can see, that if the number of basis
~v|®(to)|, and for anyt,, there is at,, € I such that0 < functions is small we can get an additional reduction of the
(tn — tm)sign(t, —to) < 6. channel estimation error that is caused by AWGN.

3. Find integersy;, b; such that.,, € [a;,b;] for all ¢,,, with To compare the interpolation error and interpolated noise
®(a;) > y®(t*) and ®(b;) > y®(t*), wheret® is the nearest for different methods, we introduce an example as follows.
peak toa; andt® is the nearest peak tg for 0 < v < 1. Example 6.2:Consider the  function ¢(w) =

Step 3: Select basis spacB!) = [X15 X250 Xma)  Doieq Ci€~2™9Ti where ¢; is iid. complex Gaussian
based on intervalla;,b;] as in problem (12). let = random variable with varianc&,, ¥ = 15 is the number



of the multiple path andr; is the time delay for the-th In OFDM system, the interpolation error and interpolated
path. Assume we are given th&¥, = 128 noisy samples noise of an interpolation method correspond to how well it
{o(5) + W(m)}ﬁ‘;’ol, where W (m) is AWGN. We need can preserve the channel information and reduce noise respec-

to evaluate the values of function(w) at {%}iv;(f for tively. Fig 2 and Fig 3 show the efficiency of our interpolation
N = 1024. method in these two aspects. The overall BER performance of
an interpolation method depends on its interpolated noise and
interpolation error together. In section VII, simulations for all
kinds of channel models make more clear comparisons for

In the first experiment, we let the noise be zero and
be uniformly distributed random variables 0, o], whereo
changes from 0 to 66 for = 1,...,7. When applying our * ) k
interpolation method, we first run the algorithm from Sectioflifférent interpolation methods.

V to find the approximate locations ef, then use the selected
basis functions to approximate Fig 2 shows the numerical VII. SIMULATIONS AND COMPARISONS

results for interpolation error of different methods. L
The performance of our proposed channel estimation

method is evaluated under fast fading channels. A 16QAM-
OFDM system with carrier frequency of 1 GHz and bandwidth
of 2 MHz is used. The total number of sub-carriers in one
OFDM block is 1024, the number of uniformly distributed
pilots sub-carriers is 128. The channel models are Rayleigh
as recommended by GSM Recommendation 05.05 [10]. In
the first channel model, our channel has 6 paths, the time
delays are given b@us, 0.2us,0.5us, 1.6us,2.3us,5.0us and

the average power of each path is given-by.0 dB,0.0 dB,

interpolation error

T —2.0 dB, —6.0 dB, —8.0 dB, —10.0 dB respectively. In the

; —— cubio spine second channel model, we have 10 paths and the normalized
i e time delays are uniformly distributed {0, 40] with the same

1075 - 5 - - - - ) average power-1.0 dB. We assume that the guard intervals

a

are longer than the maximum time delay to avoid ISI, and the
ICl is affected only by Doppler spread.
The proposed interpolation method is compared to first and

Fig. 2. Comparisons of interpolation error

random variables i, 10] which are given, foi = 1,2,...,7 Pass filtering. Furthermore we compare our method to the case
and the SNR changes from 0 to 40. Fig 3 shows the numeri¥gien the time delay positions are known in (8), as well as to
results for interpolated noise of different methods. the ideal case when the receiver has exact channel knowledge.
For our interpolation method, we first run the algorithm to find
o : : : : ‘ : : the approximate time delay locations then approximate the
T e channel response function. Known time delay interpolation in
e mion (8) and known true channel case are of course simulated only

for comparison purposes, as they are not applicable in real
problems. For different noise and ICI levels, the simulation
results are shown in Fig 4 and Fig 5.

For the first channel model, the maximum time delay is
not large. From the analysis in the previous section we know
that the interpolated noise is the dominant part for channel
estimation errors. From Fig 4 we can find the overall BER of
our interpolation method is smaller than linear interpolation,
followed by second order interpolation, low pass filter and

interpolated noise

0% s S R R ") cubic spline, which coincides with the analysis in last section.
SNR . .
When the time delays are large, as in our second channel
Fig. 3. Comparisons of interpolated noise model, the overall performance is determined by interpolation

error and interpolated noise together. For high SNR, the
When « is small, the interpolation error of cubic splinedominant part is interpolation error, from Fig 5 we can find
interpolation is the smallest, followed by our interpolatiothe BER of our interpolation method is smaller than low-pass
method, lowpass filter, second order interpolation and linegiter, followed by cubic spline, second order interpolation and
interpolation. Asa. becomes large, the interpolation error ofinear interpolation method, which confirms the error analysis
our method stays at the same level, while the interpolatiom last section again.
error of the other interpolation methods grows rather quickly. In these two channel models, our method beats the other
When« is large, our method achieves the smallest interpolarterpolation methods. In the following we compare the result
tion error, as illustrated in Fig 3. of our interpolation method with the best result of linear
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Fig. 4. Comparisons of BER in channel 1 Fig. 5. Comparisons of BER in channel 2

interpolation, second order interpolation, cubic spline and |0WI,S approach can also be applied when the pilots are non-
piformly spaced.

pass filtering in each experiment. When the maximum Doppli&l

spread is0.3% of the subcarrier spacing, our method can
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