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Abstract

Wider bandwidth allows higher data rate by transmitting narrower pulses. However this means that the effective
channel response is longer and the number of significant taps increases. For single-carrier communication systems this
results in higher computational burden at the receiver. We are concerned with single-carrier non-block transmission
schemes with receiver oversampling, as they can provide higher spectral efficiency than block transmission schemes in
the presence of large delay spreads. We first propose a simple FIR equalizer that is based on the circulant embedding
method and analyze its performance by investigating the relationship between solutions of various finite-dimensional
models and the original infinite-dimensional problem. We then focus on the conjugate gradient (CG) algorithm as an
efficient means for equalization that is specifically well suited for dealing with large-delay-spread channels. We discuss
the importance of stopping the iterations for the CG algorithm at the right time in the presence of noise and present
several reliable low-cost stopping criteria. It turns out that the CG algorithm equipped with appropriate stopping
criteria can outperform MMSE equalizers. Since both the CE and the CG methods can be efficiently implemented via
Fast Fourier Transforms, equalization complexity is only in the order of N log(N) for N data symbols. Several numerical
experiments demonstrate the performance of the proposed methods.

I. INTRODUCTION

In recent years, driven by military application as well as consumer products, the demand for high-
data rate wireless communication systems has been increasing at a dazzling pace. This leads to wider
bandwidth communication systems such as ultra wideband system with bandwidth in the order of
hundreds megahertz or more [1]. While the use of multiple antennas is known to increase channel
capacity, it comes at a significant increase in hardware costs. Thus in practice, the best way to achieve
higher data rates in wireless communications is still to increase the bandwidth of the wireless channel
since the channel capacity grows linearly with the channel bandwidth. However, simply increasing
the channel bandwidth is only half the story — there are problems associated with this approach.
For instance, channel state information is harder to obtain for wideband channels and multipath
propagation plays an increasingly dominant role which makes equalization a challenging task.

There exist essentially two competing wireless transmission schemes: single-carrier and multi-carrier
transmission [2], [3]. A prominent example for a multi-carrier communication system is Orthogonal
Frequency Division Multiplexing (OFDM). Comparing the two schemes, OFDM [4] has the advantage
of low receiver complexity while achieving ML decoding. The disadvantage of it is paying a higher
price for the transmitter with a wide dynamic range power amplifier to handle the peak-to-average
power ratio problem that is intrinsic to OFDM. Also, the ML performance is achieved by employing
a cyclic prefix (or postfix) which effectively reduces data rate by transmitting redundant information.
If reducing data rate is tolerable, single-carrier transmission with zero-padding or cyclic extension [5]
may achieve ML performance as well with frequency domain equalization [6] while avoiding the use of
expensive power amplifiers. Furthermore, single-carrier systems are less sensitive to channel estimation
error and to carrier frequency offset.
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In this paper, our interest is in wideband real-time high data rate applications with single-carrier
systems. Due to the long delay spread encountered in wideband communication systems, there is a
severe penalty in terms of loss of data rate when employing single-carrier block transmission as is
done for instance when using guard intervals or cyclic prefix. On the other hand the complexity of
equalization can become significant for non-block transmission schemes which raises the question of
how to construct numerically efficient equalizers for this case. It is also known that oversampling at
the receiver is necessary for the existence of perfect reconstruction FIR equalizers, but again efficient
computation becomes the main issue. Therefore we focus on designing efficient equalization algorithms
for high-data rate single carrier non-block transmissions with oversampling at the receiver. Note that
these methods are naturally applicable to baud rate sampling, block or non-block, transmission as
well. The proposed algorithms are sufficiently fast to be used for (near) real-time applications such as
video streaming, file or data storage sharing, etc..

We consider the computation of FIR equalizers based on approximating the (inverse of the) channel
matrix by a circulant matrix. While this idea of circulant embedding is certainly not new, we discuss
the necessary modifications in the presence of oversampling and provide a rigorous analysis between the
relation of the standard FIR equalizer and its approximation via circulant embedding. Our theoretical
analysis gives valuable insight in the choice of the length of the FIR equalizer with respect to the
condition number of the channel. While this choice is not a big deal for channels with short delay
spread, it does become a critical issue for large delay spread channels.

We then discuss the use of Krylov subspace techniques, specifically, conjugate gradient algorithms for
equalization. The CG algorithm has been proposed for various purposes in wireless communications.
E.g. in the downlink of Wideband Code Division Multiple-Access (WCDMA) it is used to compute a
bank of FIR filters as pre-filters, in part, for approximating the minimum mean-square error (MMSE)
equalizer [7]. An ASIP architecture implementation of a similar CG-FIR pre-filtering scheme for
MIMO WCDMA downlink may be found in [8]. The main advantage of a CG approach is to reduce
the computational cost of the MMSE equalizer that would otherwise involve a matrix inversion.

For multipath channels with many paths, the MMSE equalizer is superior to the conventional RAKE
receiver since the latter can only focus on a few dominating paths due to its huge computational
complexity. In [7], simulations have been performed and it is demonstrated that performance may
improved by increasing the number of CG iterations. More importantly, it outperforms the traditional
Rake receiver.

Another interesting application of CG methods is in the area of HSDPA as a means to implement
low-cost MMSE equalizers [9].

However, a hitherto overlooked problem of using the CG algorithm, is that in the presence of noise,
convergence of CG is not guaranteed. In fact, if the iterations are not stopped at the right time,
the CG algorithm may diverge, leading to inferior results. On the other hand, the CG algorithm has
an important—yet in the communication community not well known—regularization property, which
manifests itself in the following way: in the initial steps the CG iterates approximate those components
of the solution that are associated with the large singular values of the matrix, while the latter iterates
pick up those components associated with the small singular values. Since the small singular values are
the “culprits” that cause noise amplification, we could obtain a regularized solution that suppresses
this detrimental effect by stopping the CG iterations at the right time. One of our main contributions
is the introduction of several robust and low-cost stopping criteria tailored to use CG for equalization.
We also discuss other practical aspects when using the CG algorithm, such as issues related to efficient
numerical implementation as well as various regularization techniques related to CG.

Several numerical experiments for real-world wideband channels demonstrate the performance of
the proposed equalization methods. For instance, simulations show that the CG algorithm equipped
with appropriate stopping rules can even outperform MMSE equalizers.



II. PROBLEM FORMULATION AND KNOWN SOLUTIONS

We review continuous-time and discrete-time single-carrier communication models in this section
while establishing the notation that will be used throughout the rest of this paper. Then, we will
discuss some well-known linear equalizers and point out some of their properties and problems when
using them in practice.

A. Communication Model

To transmit the set of discrete information symbols {s;}52_, it is first converted to a continuous-
time signal ¢(¢) by a sum of weighted copies of a finite duration pulse shaping function p(t) via

c(t) =) sip(t — KT). (1)

Let h.(t) represent the impulse response of the communication channel. Throughout the paper, exact
channel state information at the receiver is assumed. At the receiver, the continuous-time received

signal
r(t) = (he* c)(t) (2)

is filtered with a finite duration matched filter ¢(¢) and then sampled to produce a digital signal so
that it may further processes digitally with DSP chips to reduce cost.
Mathematically, define py = p(t — kT), we are discretizing the continuous-time function

b(t) = (r*q)(t) = ) slhe* prx q)(1) (3)

to, depending on the sampling rate, produce discrete sequences b(t; ;) and
ha(i, ) = (he * pr * q)(tij) (4)
where ¢; ; is the sampling time that takes on values from the set
{...—2T/a—jP,-T/a— jP,0— jP,T/a— jP,....,iT/a— jP,...}.

We have in general three cases: Nyquist sampling (if @ = 1, P = 0), Q-fold integer oversampling (if
a=1,P=T/Q and j =0,1,...,(Q — 1) for some natural number Q) and fractional sampling with a
sampling period of P (if a > 0 is not an integer, P = T//(a@®) and j = 0,1, ..., (Q — 1) for some natural
number Q). For a more general multirate signal processing discussion, the reader is referred to [10].

B. Algebraic Formulation

Unless stated otherwise, the following notational conventions are used throughout the rest of the
paper: (1) capital italic letters such as H denote finite dimensional matrices. (2) Lower case italic
letters such as z or h are finite dimensional vectors. (3) For matrices, subscript like z in H, refers to
the z-th row of the matrix H if x is a number, otherwise it is a naming of the matrix, and H7 is the j-th
column of H. Similarly, h; is either the i-th entry in the vector h or an element from the set {h;}, it
should be clear from the context. (4) Superscript with parenthesis like H®*) (or 2*)) refers to different
matrices (or vectors) for different integer k. (5) Bold letter such as H is the infinite dimensional
counterparts of H and other conventions such as subscript or superscript, for finite dimensional matrix
or vector hold for the infinite dimensional one as well. (6) For random variables in matrix or vector
form, bold slanted letters such as n are used.

To develop numerical algorithms, it is often convenient to formulate the problem in terms of algebraic
equations. Discretizing b(t) enables us to do just that. For the Nyquist sampling case, we have the
bi-infinite dimensional linear system

Hx = b, (5)



where

hL hL_1 h1 0 0
H= 0 hL hL—l h1 ' :
0 0 hr hp1 .. M

is a bi-infinite band Toeplitz matrix formed by the length L discrete equivalent channel
h= [hd(lﬁo)ahd(an)a---ahd(La O)]T (6)

and
X = [, 5_1, 50, 51, -] L. (7)

Since the above linear system is infinite dimensional, we will truncate it so that it becomes numerically
tractable. When the discrete channel is assumed to have only finite number of non-zero taps the
truncated linear system still contains all the channel information, however it is rank deficient regardless
of how large we make the linear system. In the absence of noise, a sampling rate higher than the Nyquist
rate, i.e., with @ > 1, is required for perfect (FIR) equalization [11]. For practical purposes, in this
paper, we consider integer oversampling only. For the case of Q-fold oversampling, the finite channel
matrix has block Toeplitz structure with a block size of QQ rows:

hwy  ha-1) h(1 0 .. 0
H@ — 0 hiy hae-1y - hay : n
0 0 h(L) h(L—l) h(l)
where
hay = [ha(1,0), h(1, 1), ... h(1,Q — 1] (9)

For the rest of the paper we assume Q-fold ! oversampling thus we drop the H(?) notation and simply
use H.
To be more accurate, a ()-fold oversampled single-carrier system that also models noise and inter-
ference with a random vector n is
Hz+n=hb. (10)

For simplicity, throughout the rest of the paper, the following assumptions are made: (1) zx = 1 or
—1, i.e., we consider BPSK modulation scheme. (2) When the transmitting symbols are considered as
random variables, we consider them as independent and identically distributed (i.i.d) with zero mean
and equally likely. (3) We assume zero-mean noise with variance 2. It is clear that the samples of
bandlimited noise are no longer uncorrelated if the receiver oversamples the incoming signal. Thus the
noise samples in n are not independent. Therefore in principle to optimize equalizer performance we
should utilize the corresponding noise correlation matrix R with entries Ry; = £((n, m)) where n, m
are different noise realizations. However, partly to reduce computational complexity, but mainly to
simplify the presentation of the key ideas in this paper, we will base our algorithms on the suboptimal
approximation of R by the identity matrix. For the numerical simulations in Section VI, the noise is
of course modeled as correlated noise (even though our algorithms do not exploit this fact).

"However we note that the results hold true with trivial modifications for any integer oversampling rate.



C. State of the Art Baud-Rate Equalizers

Various types of equalizers are known, notably linear equalizers such as zero-forcing (ZF) equalizer
and minimum-mean square error (MMSE) equalizer (or Wiener Filter) — they are respectively

HY, = (H°H) B (11)

and
H}/[MSE:H*(HH*‘FU?IYI, (12)

cf. [12] The ZF equalizer is unbiased and it eliminates the inter-symbol interference (ISI) as much as
possible while ignoring the additive noise enhancement. If the condition number of the channel matrix
H is not small, the ZF solution is highly undesirable. The Wiener filter, on the other hand, balances
ISI mitigation with moderate noise amplification so that the total distortion is minimum in the average
square-error sense and it is biased.

Any left matrix inverse of H, denoted by H may be used as an equalizer for the single-carrier
system (10). And any row from the left matrix inverse, e.g., the k-th row of HLMSE written as

T
k
g](\/I)J\/[SE = ((HJ]I/IMSE>IC> ) (13)

termed an FIR equalizer [13], may be used to decode symbols one at a time by taking inner product
of the time synchronized received vector and the FIR equalizer. Particularly for wideband wireless
single-carrier system, the matter of which FIR equalizer to choose among the rows of H' is relevant;
we will come back to this point in Section V-C. Also, for channels with long delay spread, the MMSE
(or ZF) solution becomes impractical because of its cubic computational complexity in inverting the
matrix (HH*) + oI (or (H*H)).

For the Nyquist rate sampling case a computationally efficient sub-optimal FIR equalizer is given

by [13]
g=rF1{ Th (14)
|Fh|? + o2’

where F denotes the discrete Fourier transform (efficiently implemented via the FFT algorithm) and A
is the baud rate discrete channel impulse response. For good performance, in general, the FFT length
is much longer than the length of h, however, to reduce cost, the equalizer g is then truncated.

Non-linear equalizers like decision feedback equalizers (DEFs) are effective and simple to implement
when the channel delay spread is short or sparse with few significant taps. However, for channels with
many significant taps, error propagation limits the use of them. In terms of performance, the best
equalizer is the mazimum-likelihood (ML) equalizer given by

argmin ||b — Hz||, (15)
T€S
where S is the set of all possible solutions and ||.|| denotes the Euclidean norm. While recent results

show that the expected complexity of ML is not exponential [14], for large delay spread channels ML
is nevertheless way too costly or even impossible to implement in practice.

D. Owersampling and SIMO

Note that the basic idea in the solution of (14) is to approximate the baud rate Toeplitz channel
matrix Hy by a circulant matrix C,. In matrix notation, the solution is

H} = (C;Cy + o*1)7'C; (16)
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where the FIR equalizer ¢ may be found in one of the rows of Hg if the FFT length in (14) is the
same size as the circulant matrix Cy in (16). However, unlike the matrix ZF and the Wiener Filter of
(11) and (12), for baud rate sampling, the simple FFT-based equalizer in (16) and (14) is not directly
applicable to the oversampling case since the oversampled channel matrix H is block Toeplitz instead
of Toeplitz.

Incidentally, the formulation for the integer oversampling case is the same as for a single-input-
multiple-output (SIMO) communication systems [15] with the exception that for the SIMO case the
noise is indeed uncorrelated. For the Q-fold oversampled case, the m-th sub-channel

R = [hq(1,m), ha(2,m), ..., ha(L,m)]?, (17)

where m =0, 1, ..., (Q — 1), is the equivalent m-th receiver discrete channel. Therefore, the results in
this paper are applicable directly to SIMO single-carrier communication systems.

III. AN EFFICIENT FIR EQUALIZER IMPLEMENTATION

In this section we present an equalizer based on the idea of circulant embedding. In practice, for
reasons such as efficient implementation (last topic of this section) and stability, an FIR equalizer is
preferable. However, analysis through matrices is more general as well as more convenient, thus, both
solutions are presented.

A. Circulant-Embedding Equalizers

To develop similar efficient FFT-based solutions as (14) or (16), we rely on the following two results:
Lemma II1.1: For any matrix A € C>** and real number o > 0, the minimum mean-square error

inverse of A,
A}L\/[MSE—I = A*(AA" + al,) ™ (18)

is equivalent to

A;r\/[MSE—H = (A"A+al,) " A (19)
Proof: Assume m > n, we follow the usual convention of singular value decomposition (SVD) of
a matrix and write A = UDV*, where U € C>** and V € C* is an unitary matrices and D =
diag(dy, ds, . ..,dy) is such that d; > dy > ... > d, > 0. By substituting the SVD of matrix A into
(18) we have (19) with the following manipulation:

AIV[MSE—I = A"(AA" + aIm)_l

VDU (UDV*VD*U* + al,)™"
= VD'U*U, (D% + al,) U}

= VD*(D*+al,) 'U*

= V(D?+al,)"'V*'VD*U*

= (VDU*UDV* +al)~tA*

= (A*A+al)'A (20)
where U,,, € C> is an unitary matrix with U in its first n columns and D,,, = diag(d;, d, ..., d,,0,...,0).
Similar derivation holds for the case when m < n. a

To distinguish the two different forms of the MMSE solution, we called (18) the matrix MMSE
Equalizer Form-I and the alternative expression (19) MMSE Equalizer Form-II. And the following
result highlights the key advantage of the second form of the solution.
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Lemma II1.2: For any QM x N block Toeplitz matrix H of the form (8) with a block size of Q-rows,
where Q € N and N > (2L — 1), the product matrix H*H has the form

[* * O-I
H'H = |x Ty« * (21)
0 * *
where Ty+p is a hermitian positive definite (or semi-definite) Toeplitz matrix that may be written as

a product of matrices of the form

Tyy = H'H (22)
where H is the truncated matrix of H with the left and right most L — 1 columns been deleted.
Proof: Since the i-th row j-th column of (H*H) is the vector product (H*); H’, from the construction
of Ty« in (22), it is clear that the matrix Ty« shows up in the center of (H*H). Thus the hermitian
and positive definite (or semi-definite) properties are obvious. To show that it is also Toeplitz, first
note that by the assumption on the size of N > (2L —1), the size of H is at least one or more columns,

and from the block Toeplitz structure of H, the non-zero entries in the columns of H are the entries
of the vector

[ha(1,0), ha(1,1), ..., he(1,Q — 1), hg(2,0), hg(2,1),..., hg(L, Q@ — 1)]* (23)

shifted from one to another by @ entries. Therefore, (H*);H7 = (H*),H" if i —j = u — v, i.e., H*H

is Toeplitz. Q
Therefore, alternatively, the MMSE equalizer may also be written as

Hlysp = (HH+ o) H*, (24)

For the case of oversampling, where the channel matrix H has block Toeplitz structure, the solution
in this form is more useful since it leads to the efficient CE equalizers. The main difference between
the two different forms of the Wiener Filters are in the structure of the product matrices — the matrix
(HH*) is a block Toeplitz matrix with blocks of size of @ by @ , i.e., the size of the oversampling factor,
while the matrix (H*H), as pointed out in lemma III.2, contains a Toeplitz matrix in the middle.

The class of circulant-embedding (CE) equalizers is based on the idea of approximating not H but
(H*H), or Ty+y rather, by a circulant matrix C. Thus, the main computational cost of equalization is
the cost of circulant matrix inversion which is in the order of N log(/NV) due to the efficiency of the FET
algorithm. Variations of CE equalizers deriving from approximating the ZF and MMSE equalizers are
the zero-forcing circulant-embedding (ZFCE) equalizer

H;FCE‘ =C'H" (25)
and the regularized circulant-embedding (RCE) equalizer
HIT-'ECE = (C+o*I)"'H". (26)

Now, having a finite Toeplitz matrix Ty« to work with, we are in a good position to discuss the
construction of the circulant matrix C'. There are various ways to do this, in this paper we consider
the embedding method. That is, C' is constructed first by embedding 7y« into a larger matrix and
then modifying only the lower-left and upper-right corner entries appropriately so that it becomes a
circulant matrix [16], [17]. Therefore we may write

C=Tgpg+W (27)

for some W that depends on Ty-g. Although H is not Toeplitz, Ty«g is and to compute its row
or (column) which is needed to construct C' we can still use the FFT algorithm. Thus the overall
computational complexity of the ZFCE (or the RCE) equalizer remains in the order of Nlog N.



B. Rates of Convergence of CE Equalizers

Throughout this section, the size of the matrices is explicitly denoted by using subscript notation.
Assuming the M x N channel matrix Hy has full rank, then the product matrix (HxHy) is invertible
and the k-th symbol ZF FIR equalizer may be expressed as

gy = (uf (HyHy) ' Hy)" . (28)

It is clear from the above expression that the full-rank assumption is sufficient and necessary for the
existence of gy. To satisfy such an assumption, the channel matrix Hy has to be at least square. For
the case of ()-fold oversampling, the parameters M, N and () are related by the equation

M=Q(N —L+1), (29)

and for the matrix Hy to be square or tall, the minimum N is

Q(L—1)
Nuin = | —F5—| -
m ’V 0-1 (30)
For the ZF IIR equalizer:
_ T
gzr = (ug (H'H) " H") ", (31)

where ug is the 0-th unit vector, and the necessary and sufficient condition for it to exist is also the
invertibility of (H*H). In the infinite dimensional case, however, we may check the existence of gz p
from the finite sub-channels instead, and this is the well-known “no common zeros” condition, i.e., the
sub-channel transfer functions are coprime; for the remaining part of this section, we will make such
an assumption so that gz exists. Furthermore, N > N,;;, and Hy having full-rank are also assumed.
In practice, we may only approximate the IIR equalizer (31) with an FIR filter. One approach to
this is to approximate the infinite model (5) with a finite model (10) and then proceed to compute
the finite model solution with the hope that when the finite model converges to the infinite model,
the finite model solution (28) will convergence to the infinite model solution (31) as well. However,
we observe that, e.g., when the boundary taps of the discrete sub-channels are very weak, the product
matrix (Hy Hy) may be very ill-conditioned even when (H*H) is not. Thus, we propose to compute
the FIR equalizer by inverting a more stable matrix instead and redefine the ZF FIR equalizer as

g = (uf (Tg-m)y' H*)' (32)

where (Ty-p)y is @ N X N matrix that is defined in (22). This alternative FIR solution approximates
more directly the infinite model solution (31). The advantage of it is that the matrix (Ty-z), is at
least as well conditioned as the matrix (H*H) by Cauchy’s interlacing theorem [18].

For N € N and z € C?"*! | define the embedding operator Ex of x as

EN'T = ( : .,0,0,$,N,$,N+1, s afolaxNaana .- ')Ta (33)

and we denote Xy := Eyz and identify the image of Ey with the 2N + 1-dimensional space C?N+1,
We also define the orthogonal projection Py : £*(Z) — C*N*1 of y by

Pyy =1[y n, - ,yn]T. (34)

For convenience when comparing to the IIR solution, let us also define

gy = Engn. (35)
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While in the absence of noise (and assuming we can compute the IIR equalizer) both gzr and gy
give the same result, i.e., the exact solution, in the case of noise it is clear that gz will in general give
better results. The question is now: how are gzr and gy related? And how fast does gn converge to
gzr when we increase N (if it converges at all), in other words how fast does the FIR equalizer approach
the performance of the IIR equalizer?” We proceed to give an answer; again, ()-fold oversampling is
assumed but the following results can be extended to any oversampling rate.

Lemma II1.3: Let H be as in (5) and assume that the sub-channel transfer functions are coprime.
Let k denote the condition number of H. Furthermore, let

PNH*HPN.’L'N = PNH*IIO. (36)

Then the truncated-system vector inverse xy, or Xy = Enxx rather, converges to the bi-infinite-system
inverse x as N — oo and

K—l)ﬁ

_ <c(
I —xnll < (57

, (37)

where the constant C' is independent of N.
Proof: Clearly, H*H and PyH*H Py are hermitian positive-definite Toeplitz matrices. Note that the
entries of H*H (and thus of PyH*HPy) can be computed exactly, since H is a band matrix. Denoting
S:=H'H, Sy := PvH*HPy, g = H*ug and gy = PyH"uy, it is easy to see that the setup is now the
same as in Theorem 3(ii) in [19] (with some obvious changes in the notation, since the aforementioned
theorem has been derived and proved for a different problem). Hence the estimate (37) follows now
easily by applying the same proof as for Theorem 3(ii) in [19]. ]
Theorem II1.4: Let H'g,r = uy be given where H is as in (5) and assume that the sub-channel
transfer functions are coprime. Let x denote the condition number of H. Furthermore, let gy as define
in (32). Then the FIR equalizer gy converges to the IIR equalizer gz as N — oo and

Kk — 1\ 2zen
el < c( ) , 38
lgzr — gnl| < P (38)
where the constant C is independent of V.
Proof: Define
so=ul (H'H)™', (39)
sv = En (uf (Ta-m)y) ") (40)
and -
gv = Ey (Py (ug (H'H) ™) Hy) . (41)
Then, it is true that
lgzr —gnll < llgzr — &~ + |IE~ — g
< |lso — EnPnsol|[[H|| + [Iso — sw ||| Hn]|- (42)

The first inequality is straightforward while the second one follows from the assumption that |H|| is
finite. Since (H*H)f1 is hermitian, Lemma III.3 applies to row vector linear systems as well as column
ones, thus ||so — En Pnso|| goes to zero, as N goes to infinity, with the same exponential decaying rate.
By Lemma III.3 and the fact that (Ty-g), is hermitian, ||so — sy|| also converges to zero with the
desired decaying rate. a

Although we have concentrated on the ZF equalizer, the results are trivially extended to the MMSE
case. And having the ZF equalizer result from above, we are now in a good position to give a
convergence result for the ZF-CE equalizer.
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Theorem I11.5: Let H'gzp = uq be given where H is as in (5) and assume that the sub-channel
transfer functions are coprime. Define the embedded ZF-CE equalizer

gy = Engy"”. (43)
where g$¥ is the FIR-ZFCE equalizer which is the middle row of H; FCE = C;,lHj;,. Then, for N > 3L
lgzr — 57| = 0 as N — oo. (44)
Moreover,
-1 ﬁ
_gSF < C ("€ ) 45
lgzr —gn Il < Nk +1 ] (45)
and N
— 1\ 3z=p
_gCF| < C (“ ) 46
lew — g5l < & (27) ™7, (46)
where k is the condition number of H and C', Cs are constants independent of V.
Proof: There holds
lgzr — 85" Il < llgzr — gnll + llgx — 85" |l- (47)

The first term on the right hand side of (47) goes to zero by Theorem III.4. the second term goes to
zero by Theorem 4.3 in [20]. The error bound (45) follows also from Theorem 4.3 in [20], and (46)
follows from combining (38) with (47) and (45). Q

C. Length of FIR equalizers

The last point to be addressed in this section is the length of FIR equalizers — a key parameter in
the FIR equalizer design. Usually, this is a tradeoff between equalization performance and cost — the
longer the FIR equalizer, the larger the costs and the better the performance and vice versa.

Given an M-tap FIR equalizer, g;, for the k-th symbol of z in the system in (10), the MSE as a
function of the equalizer length is

MSE(M) = [|g,H||* = 2Re {(garH)e } + 1 + 0|9l |? (48)

which may be used to predict the FIR equalizer performance and thus to decide the FIR equalizer
length.

An example of a MMSE-FIR equalizer’s MSE versus its length of a two-fold oversampled system
is demonstrated in Fig. 1 below. The sub-channels are 64 taps long and the SNR is 12 dB. Clearly,
the performance of the equalizer degrades significantly when it is too short. The minimum N in this
case is Ny, = 126 and the corresponding channel matrix size is 126 x 126. Notice the three different
sections of the curve of different characteristics: First, as the equalizer length increases up to the value
of Np.in, the negative slope of the MSE curve is the largest in magnitude, i.e., greatest improvement
in performance as the length of the FIR equalizer increases; since the plot is in semilog scale, the
decrease in MSE is actually exponentially fast. For the second (middle) section of the curve, the
length of the equalizer increases from 128-tap to about twice that value, the slope is also decreasing
with an approximate constant slope — this is expected from theorem (I11.4). When the length of the
FIR equalizer is beyond 2N,,;, or so, the MSE is so small that noise dominates — as the last term in
(48) approaches o2||grmse|?, the curve flattens out and will never actually reach zero.

We also see from the convergence results in Section III that the condition number of the channel
has a crucial role on the length of the FIR equalizer. In a nutshell, the better the condition number
of the channel, the shorter the FIR equalizer can be. If the channel is ill-conditioned the length of the
FIR equalizer will need to quite large to achieve reasonable performance. Clearly, these issues become
more pronounced for large delay spread channels.

For the remaining part of the paper, the length of the FIR equalizer, i.e., the size of the finite linear
system, is assumed to be predetermined and we will drop the subscript notation, which indicates the
size of vectors or matrices, for convenience.
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Fig. 1. MSE vs length of the MMSE-FIR equalizer (sub-channel length is 64 taps).

IV. KRYLOV SUBSPACE METHODS IN THEORY

Solving noisy linear systems is a well established topic in the theory of regularization. The methods
may be categorized into direct and iterative schemes. Direct methods cost as much as inverting a
matrix so we will only focus on efficient iterative methods that are fast enough to be used in real
time. In particular, we will consider Krylov subspace methods based on the conjugate-gradient (CG)
algorithm [21].

A. The CG Algorithm

There are various algorithms that are considered as Krylov subspace methods; the first of these
is the by now classical CG algorithm, cf. [22] for a detailed discussion of CG. Due to its many nice
properties, the CG algorithm is also a natural candidate as an efficient equalization method for single-
carrier communication systems. While the CG method has become a standard tool in numerical
analysis? its practical use in the context of equalization is not straightforward at all and requires some
careful modifications and adaptations. And this is the topic for most of the rest of this paper.

For an N x N hermitian positive definite linear system

Ax =y (49)

the CG algorithm [18], [23] is merely five lines of code:
a(k) e <T(k_1)’ T(k_1)>/<p(k_1)’ Ap(k_l))
x(k) — ./L‘(kfl) _+_ a(k)p(kfl)
/,"(k) — ,’.(k—l) — a(k)Ap(k_l)
BE) = (r®) pR)Y /(1) (k1))
p®) = pk) 4 k) (k1)
where z(¥) is the k-th iterated solution. Most often, the algorithm initializes with

2 = 0,70 =p, and p® = O,

The computational complexity of the algorithm is determined by a matrix vector multiplication
in each iteration. When the matrix is not hermitian positive definite, as is the case in (5), the CG
algorithm can be applied to the associated normal equations and there are variations of CG like CGNE
(CG algorithm applied to normal equations) that avoid the explicit computation of the matrix product
H*H; instead it only costs another matrix vector multiplication with H*y for some vector y in each

20bviously not aware of the CG method and its many variations, this technique was partially “rediscovered” by Goldstein et
al. in the context of Wiener filtering, who called the method “Multistage Wiener filtering”. But their paper does not provide new
insights into the theory of the method or its practical use for equalization that would be of relevance to our work.
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iteration[22]. Throughout the rest of this paper, we will refer both CG and CGNE algorithm as CG
algorithm; it should be clear from the corresponding linear systems to which one it refers to.

B. Stopping Criteria

The CG method, when applied to a hermitian positive definite linear system, produces a sequence of
iterates 2¥), k = 1,2, ..., which converge monotonically to the true solution in the noise-free case in a
finite number of iterations. It is widely used today due to its nice convergence properties [23], [22]. If
the eigenvalues of matrix A are clustered or bounded away from zero, it converges fast. Furthermore,
the error measure in matrix norm is non-increasing in the noise-free case. Therefore, the residual error

which is defined as
r® = p — Hz®) (50)

also has the monotone convergence property in the 2-norm. However the convergence properties are
more delicate in the presence of noise. As mentioned, in the noise-free case CG produces a sequence z*)
that converges to the true solution z. Unfortunately, in the presence of noise the monotone convergence
of this sequence to the true solution is no longer guaranteed, this fact is also true for CGNE [22]. The
iterates 2(¥) may first converge, but later diverge from the true solution. A rule is needed to determine
which one in the sequence of iterates is the best choice. Furthermore, the evaluation of such a rule
must also be efficient so that it may be applied in real time applications. These are often overlooked
aspects when the CG method is proposed for various applications.

One such efficient stopping rule is the so-called discrepancy principle [24], [22]. This principle
depends on a parameter €, and the solution index £ is the smallest integer such that

[r®l; < e (51)

is satisfied. The advantage of this rule is that it is simple to compute. However, it requires to chose a
parameter € which should be a function of the noise power for example. We found that ¢ as a simple
linear function of noise power is not a robust SC to use across a wide range of signal-to-noise ratio
(SNR) values. Figure 2 demonstrates the difficulty in using this principle as well as the importance of
a good stopping rule.

14 T T T T T

—= |x=x¥)|
@ - llo-Hx" |

\ 00666 ¢ 1
b || 1
107 x\@ 4

0 5 10 15 20 25 30
# of CG iterations

Fig. 2. Actual and residual error.

Another well-known stopping criterion in the theory of regularization is the L-curve [25]. The name
comes from the shape of the curve of log(||Bz®)||) versus log(||r*)||) that resembles the letter L. The
matrix B models known properties such as the first or second derivative of the solution. The best
solution, according to this rule, is the one corresponding to the one at the corner of the L-curve. For
the application of single-carrier communication, e.g., see Figure 3, we found that this rule is also not
reliable.
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log(lILx*|)

log(|lb-Hx™,)

Fig. 3. The L-curce.

C. Two Different Uses of the CG Algorithm

Before discussing optimal stopping criteria for the CG algorithm, we want to point out that by
properly formulating the problems, the CG algorithm can be used to compute both the matrix system
solution and the FIR solution and these different solutions require different SCs.

Applying the CG algorithm in the straightforward manner, we may use it to solve for z in the noisy
linear system (10) directly. On the other hand, we may first compute an FIR equalizer g and then find
the desired solution via decoding (¢7b). The latter approach motivates the use of the CG algorithm
to solve the following linear equation

HTg=u®, (52)

k)

where 1) is a vector consisting only of zeros except for the k-th entry, which is equal to 1.

D. Stopping Criteria for the CG Algorithm - Theoretical Considerations

Given full knowledge of the channel information H, for any FIR equalizer g, the BER may be
analyzed. Suppose, without lost of generality, x; is the desired decoding symbol. Define a vector
d = g"'H and assuming d; # 0 otherwise, the BER for x; is 0.5. By normalizing the vector g as
g = (1/d;)g, we may expand

N M
T
(g(l)) b= T -+ (l/dl) Z dkﬂ')k -+ Zg,(cl)nk. (53)
k=2 k=1

Thus, the BER may be computed by analyzing the total noise distribution that consists of ISI due to
the neighbor symbols zs, ... y (the second term in the above equation) and the equalized noise (the

third term). The interference noise may be modeled with a sum of Bernoulli distributions x, ..., xx
that have zero-mean and variances |do/d;|?, ..., |dy_1/d1|?>. The equalized noise is a sum of normal
distribution with zero mean and variance (|g1|0)?, ... (|gar|o)?, thus it is still normally distributed

with zero mean and variance (||g||c)%. The total noise is then modeled as

N
n" = " x +|g]lom, (54)
k=2

where 7 is a normally distributed random variable with zero-mean and unit variance.

Therefore, for the CG algorithm when it is used to compute FIR equalizers as in (52), an optimal
SC is possible, at least in theory. Since for the i-th CG solution, by knowing the corresponding
noise distribution function f,rew of nf*, the BER can be computed by integrating the distribution
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function, and by minimizing the BERs with respect to the number of CG iterations, optimal BER-

performance CG-FIR equalizer can be obtained. More generally, we have the following result.
Theorem IV.1: For BPSK constellation symbols, the best FIR equalizer g; from the sequence of FIR

equalizers {gz} for the j-th symbol, with respect to BER, is the one with index i equal to

min / fa;(n (55)

€[1,2,...,N

where f;,, is the i-th total noise distribution function corresponding to the sequence {g,}f\;l
Proof: The proof is straightforward since

/1 " fu(n)dn (56)

is simply the BER for the i-th FIR equalizer. a

In practice, however, the computational complexity of the BER is in the order of 2V), due to the
summation of Bernoulli distributions in the ISI term. For large /N, the exponential complexity renders
the optimal SC impractical. A suboptimal SC based on second order statistics, discussed in the next
section, is much cheaper to compute and thus may be used in practice.

For direct computation of x by the CG algorithm, from the ML solution, it is reasonable to minimize
the metric

16— Ha®||? (57)

as a SC. In practice however, the above expression requires modification, which is also discussed in
the next section.

V. SUBSPACE METHODS IN PRACTICE

Applying the CG algorithm in practice requires some additional consideration such as finding a low
cost SC with acceptable performance and implementing the same algorithm more efficiently. These
are the topics of this section.

A. MMSE-SC for FIR Equalizers

For the application of wireless communications, we know that the entries of the solution x belong
to a finite alphabet set and we should take advantage of this information when developing SCs. Now,
consider the case that the entries of x are uncorrelated zero-mean unit energy random variables with
Bernoulli distribution again. Assume the transmitted symbols and the receiver noise are uncorrelated
as well, i.e.,

When the CG algorithm is applied to the linear system in (52), a sequence of approximate FIR
equalizers, {g(k)}keN, is produced. For each of these solutions, say ¢(™, written as GT for notational
clarity, we may analyze them, similar to (53), by separating the signal and noise components as

Gnb = (GuH)xy + Y (GoH)ix; + Gun. (59)
itk

By formulation, we know (G,H); is supposed to converge to 1. We may initialize g(°) to be the
matched filter, i.e., the conjugate of the k-th row of H?. Thus, it is reasonable to make the following
approximation

(GpH) =~ 1. (60)
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Therefore, minimizing the (total) noise power may be used as a SC. This suggests the following noise
power metric

2
1
Pl sc=€ Z(GnH)ixi + Gnn (61)
i#£k
= [|GoH|[? = (G H)i|* + (||Gnll0)?.
By the approximation in (60) and the definition of the residual, (61) may be approximated by
Pitn_sc = [[u® —r™| + (||Gallo)* - 1. (62)

Computationally, this may still be further simplified since the value ||7(™]|? is known in each iteration

and u®) is non zero only at the k-th entry which is one. An efficient SC is then
3 n
Pitn_sc = Ir™|P + (|Gall0)” (63)

since both the residual ™ and the FIR equalizer G,, are computed in each iteration by default.

Now, consider the case that the approximation in (60) is not good due to for example taking the
initial approximation to be the zero vector, which is often done in practice so that the residual converges
monotonically. In this case, we want to maximize signal minus noise power. This leads to another SC
rule

P1(74[)R—SC =¢ {‘(GnH)kxk‘Q}
2
— £ (D (GaH)ix; + Gyn (64)
ik

= 2|(GnH)i[* — [|GoHI|* = (||Gnllo)*.

The above SCs are different due to the quality of approximation of (G, H )y by one. When normalizing
the FIR equalizer GG,, such that

(GoH) =1, (65)
the unbiased FIR equalizer condition, we found that the expected error of the k-th entry of x is
E{lxk — %"} = (IGoH||* = 1) + (||Gal0)*. (66)

The proof is a straightforward computation.

Note that, SCs (61) and (64) will give the same solution as SC (66) when (65) is true. Therefore, if
the SNR is known, the above mean-square error (MSE) expression may be used as a practical SC. In
fact, we found that it is the best SCs among the ones presented in this paper for the CG algorithm for
computing FIR equalizers. Such SC actually determines the MSEs from a set of FIR equalizers that
are computed by the CG algorithm, thus it is the minimum mean-square error SC or MMSE-SC.

From the two terms in (66) we may see that the “best” equalizer, in the presence of noise is the
one that balances between equalizing the channel (the first term) and not amplifying the noise too
much (the last term). The MMSE-SC rule is only suboptimal since it is possible to have two different
(total) noise distributions where the one corresponding to the smaller BER may actually have a larger
variance.

One last point to be addressed to complete the discussion on FIR equalizer computation with the
CG algorithm is that which symbol (entry) in z is the best to be equalized. That is, what value
should we choose for k in u*) from equation (52). The answer to this question is given in the next
subsection since it is related to the (not surprising) observation that the BER for the symbols in the
middle entries of x is much better than the ones on the two boundaries.
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B. Boundary Effects

In practice, due to the finite model approximation to the infinite model, the truncation of the finite
model leads to unequal MSE for different entries in the solution vector z. The full analysis of this BER
behavior includes the effect of the noise and it is too involved. For this reason, we will only analyze
the loss of signal energy due to truncation in this paper. In the absence of noise, let us consider any
one particular transmission of the signal z. In the finite model formulation, cf. eq. (8), the energy in
the first transmitted symbol z; is spread out by the channel by the taps h(Ll) and h(LQ) and arrives at
the receiver, captured by the samples b; and by. To capture the maximum energy of this symbol, the
matched filter () = [h(Ll), h(LQ), 0,---]7 is applied, which gives

L
k=2
Similarly, the analysis for the symbol, w.l.o.g., x, is

gl = (1RO + [[RP[2) 2+ fams. (68)
k#L

The first terms in the right hand side of equations (67) and (68) represent the equalized signal while
the second terms are interference noises due to neighbor symbols which we are ignoring. Therefore,
we see that unless the energy of each sub-channel is well concentrated in the last taps, the equalized
signal energy for the entries in the middle of the vector z, e.g., xr, is larger than the boundary entries
such as z1. Again, the MSE of (48) may be used to demonstrate this idea; Figure 4 below shows the
MSE as function of different FIR equalizers from the matrix MMSE solution (24). The SNR is 12 dB.

1

06F | 1

MSE

04r ‘ B

0.21 \\ / b

0 100 200 300 400 500 600
Entry of x

Fig. 4. MSE of different FIR equalizers from the rows of MMSE matrix equalizer (sub-channel length is 64 taps).

Now, we are in a better position to answer the question from the last sub-section — which symbol in x
should we equalize? For the matched filter case, we see that it is possible to extract the maximum signal
energy for xp, xry1, ..., Txy_r+1- Thus, equalizing any one of those symbols is equally good. Taking
noise and interference into consideration, the matter is not so straightforward. The MSE expression
in equation (66) offers an elegant but expensive solution if H is large. For a general guideline, we
recommend equalizing exactly the middle entries, though, this is not always the best choice.

C. Matriz Solution

As mentioned in section IV-D, minimizing the ML metric (57) may be used as a SC for the CG
algorithm when computing = directly. However, from the last subsection we see that the boundary effect
due to truncation of the bi-infinite model, non-equal MSEs in the matrix solutions are unavoidable.
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Therefore, it is a good idea to modify the ML metric SC in (57) by truncating the boundary terms.
Also, it is a good idea to used the decoded symbols instead of the equalized solution in the ML metric
so that the chosen solution is most likely the true solution among the ones from the set of CG iterates.
A better stopping rule is therefore the minimization, with respect to &, of the metric

o — Hyay” || (69)
where a:gc) is the k-th decoded and boundary-truncated CG solution of z(*) and H, and b, are the
appropriate truncated versions of H and b.

Also due to the fact of non-equal MSEs again, the symbols in the boundary of the solutions are not
as reliable as the ones in the middle, thus they should be neglected. Therefore, when equalizing the
next block of symbols, the next block’s head should be overlapped with the tail of the previous block

of symbols. If the truncation length in the head and the tail of x() is L, and L; respectively, then the
length of overlapping symbols is (Lj + L;).

D. Regularized CG Algorithm

Applying the CG algorithm to the noisy linear system (10), with enough iterations, the algorithm
will produce the ZF solution. However, this is not a good solution due to the amplification of noise.
There are two different ways to deal with the noise enhancement problem and produce a regularized
solution similar to the MMSE equalizer.

One way to do this is stopping the CG algorithm earlier with a good stopping rule. For real time
applications, the process of solution selection should be done automatically. And to avoid unnecessary
iterations we would like to stop the algorithm as soon as the “best” solution is produced. We found
that minimizing (69) achieves this purpose. Note that this approach of applying the CG algorithm to
an un-regularized system, as opposed to the regularized system that we will be discussed next, relies
on the intrinsic regularization effect of the CG algorithm which is still not fully understood when it is
used in presence of noise [25].

A “safer” way to avoid too much noise amplification, however, is by explicitly regularizing the linear
system with a regularization parameter 7 [26], i.e., we are applying the CG algorithm to the regularized
linear system

(H*H +n*I)x = H*D. (70)

When 7 is chosen to be equal to the noise power o instead of zero, the algorithm converges to the
MMSE solution instead of to the ZF solution.

E. Efficient Implementation of the CG Algorithm

For the explicitly regularized system (70), since the noise power for each finite observation is not
known, the optimal regularization parameter n needs to be determined (or estimated). This is the
parameter selection problem and the traditional approach is actually to compute the solution of various
amounts of regularization say from the set {n;, 72, ..., 75} by brute force and then select a posteriori the
best solution from the corresponding solution set {z1, z, ...,z } of different amounts of regularization.
This type of brute force approach, is s times more expensive than regularizing the system by simply
choosing a priori n = o.

We find that a more efficient approach to this parameter selection problem for single-carrier equal-
ization is, in each CG iteration, to select a best solution from the set of solutions {xgk), xgk), e mgk)}
that corresponds to different amount of regularization. As for the next CG iteration, the direction of
decent as well as the residual (which is used to compute the next step size) is taken to be the one with
the amount of regularization n; corresponding the best solution in the current CG iterate.

The advantage of this reqularized C'G-iteration parameter selection method, as opposed to the tra-
ditional brute force parameter selection approach, is its better efficiency — the efficiency comes in two
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ways: (1) numerical efficiency and (2) adaptivity. (1) Concerning numerical efficiency we observe the
following: When computing the solutions x¥’s that correspond to different 7;’s in the k-th CG iteration,
the main computational cost, due to a variant of the regularized CG algorithm which can be found in
[27], is still only one matrix vector multiplication Hu and one matrix vector multiplication H*v for
some vector v and v. In the (k + 1)-th iteration, only the direction corresponding to the previous best
iterate is searched (but again with respect to a range of regularization parameters 7;,i = 1,...,s).
Thus the computational complexity of this regularized CG parameter selection method is of the same
order as for the standard CG method and not s times more expensive as the brute force approach. (2)
Concerning adaptivity, we note that by selecting the best regularization parameter in each iteration
we allow the amount of regularization to change during iterations, and thus due to this adaptivity
improve the performance.

Now, notice the similarity in the two different uses of the CG (or CGNE) algorithm, section IV-C,
they all require the matrix vector multiplications Hu and H*v for some block Toeplitz channel matrix
H and some vector v and v. It is well-known that these may be computed efficiently with the FFT
algorithm [16]. Thus, the FFT algorithm reduces the over all CG algorithm computational complexity
to N log(N), which is a still low even when N is large.

Alternatively, it is well known that preconditioning [16] may be used in conjunction with the CG
algorithm to speed up the rate of convergence in order to reduce the required number of iterations.
However, we observed from simulations that the number of iterations (which is partially determined by
a SC) is rather small, especially in the low SNR region. And since preconditioning requires additional
computations, it does not offer complexity reduction in our case, unless perhaps for the case of a
channel with deep fades under high SNR conditions.

VI. SIMULATION RESULTS

The BER performance of various equalizers discussed in this paper have been simulated and the
results are shown in Fig. 5 to Fig. 8. These results were simulated with an 8-tap and a 64-tap long
sub-channel and the channel data were constructed from measurement data of real channels — courtesy
of Intel Corporation. The two 8-tap sub-channels are the odd and even samples of an 16-tap short
channel impulse response and the two 64-tap sub-channels are the odd and even samples of a long 512-
tap channel impulse response that was down-sampled by 4 first. The measurements were conducted
inside an office building with a network analyzer. The environment is an office space (40m x 60m)
with many cubicles. Measurements were conducted at several locations, at off-peak hours to ensure
channel stationarity, and span a bandwidth of 2-8 GHz with 3.75 MHz frequency resolution.

The FIR equalizer BER curves with the MMSE, RCE and the CG solutions are compared and
shown in Fig. 5 and Fig. 7 for the two channels of different length, while the BER performance for the
matrix solutions, MMSE and CG-direct methods, are shown in Fig. 6 and Fig. 8 respectively for the
8 and 64-tap length sub-channels. Comparing the FIR equalizer results, the MMSE and RCE BER
curves are overlapped due to very good approximation of the CE method. The CG-FIR performance is
worse than the MMSE-FIR and this is expected since the CG-FIR equalizer is a low-cost sub-optimal
estimated solution to the MMSE-FIR equalizer.

Comparing the matrix solutions, it is interesting to see that the CG-direct solution outperforms
the MMSE equalizer. This is not too surprising since the MMSE equalizer does not make use all
the information that is available — it uses only the channel state and noise power information. In
contrast, when solving the variable x directly, the CG algorithm make uses all the information available,
including the received vector b, hence it is able to outperform the MMSE solution. We stress again
that for the CG-direct method being able to achieve such a good performance, it is crucial to have a
reliable stopping criterion.

From our simulation with various channels, we observed that the number of CG iterations needed
to compute the FIR equalizer or to compute the solution z directly is small — two to ten iterations
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Fig. 5. FIR equalizers performance comparison of an 8-tap sub-channel.
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Fig. 6. Matrix equalizers performance comparison of an 8-tap sub-channel.

across a wide range of SNR values. Many researchers also observed this rapid convergent behavior of
the CG algorithm that is due to its (still not fully understood) inherent regularization property that
the algorithm iterates extract first the dominant directions/subspace(s) of the matrix, and only later
those directions that are associated with the small singular values [25].
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