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ABSTRACT. The finite section method is a classical scheme to approximate the
solution of an infinite system of linear equations. We present quantitative esti-
mates for the rate of the convergence of the finite section method on weighted
(P-spaces. Our approach uses recent results from the theory of Banach algebras
of matrices with off-diagonal decay. Furthermore, we demonstrate that Banach
algebra theory provides a natural framework for deriving a finite section method
that is applicable to large classes of non-hermitian matrices. An example from
digital communication illustrates the practical usefulness of the proposed theo-
retical framework.

1. INTRODUCTION

Many of the concrete applications of mathematics in science and engineering
eventually result in a problem involving linear operator equations. This problem
can be usually represented as a linear system of equations (for instance by dis-
cretizing an integral equation or because the operator equation is already given on
some sequence space) of the form

(1.1) Az = b,

where A is an infinite matrix A = (ag)xez and b belongs to some Banach space
of sequences. Solving linear equations with infinitely many variables is a problem
of functional analysis, while solving equations with finitely many variables is one
of the main themes of linear algebra. Numerical analysis bridges the gap between
these areas. A fundamental problem of numerical analysis is thus to find a finite-
dimensional model for (1.1) whose solution approximates the solution of the original
infinite-dimensional problem with any desired accuracy. This problem often leads
to delicate questions of stability and convergence.
A simple and useful approach is the finite-section method [11,17]. Let

Pb=1(...,0,b_0,b_pni1,. ., bp1,0,,0,...)
be the orthogonal projection onto a 2n + 1-dimensional subspace. We set

(1.2) A, =P,AP,  and b, =P,b,
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and try to solve the finite system
(1.3) Az, = b,

for properly chosen n. The crucial question is then: What is the relation between
the numerical solution z,, and the actual solution x?

This problem has been analyzed in depth for the case of convolution operators
and Toeplitz matrices in the pioneering work of Gohberg, e.g. see [11]. Important
generalizations and extensions in the Toeplitz setting can be found in [4,5]. Rabi-
novich et al. derive necessary and sufficient conditions for the convergence of the
finite section method in terms of the so-called limit operator [20], which does not
necessarily require any Toeplitz structure. These conditions, while intriguing, are
not always easy to verify in practice.

A general theory for the approximation by finite-section is based on the power-
ful methods of C*-algebras and has been developed by Bottcher, Silbermann, and
coworkers, see for instance [4,17]. Their framework leads to many attractive and
deep results about the applicability of the finite section method as well as other
approximation methods. William Arveson goes a step further and concludes that
“numerical problems involving infinite dimensional operators require a reformula-
tion in terms of C*-algebras” [1]. However, C*-algebras have some limitations. It
was already pointed out in [17] that C*-algebra techniques do not yield any infor-
mation about the speed of convergence of the finite section method. An answer to
this question is obviously not only of theoretical interest, but it is important for
real applications. For instance, we want to choose n in (1.3) large enough to get a
sufficiently accurate solution, but on the other hand, n should be small enough to
bound the computational complexity which in general is of order O(n?). Theorems
about the speed of convergence will give a quantitative indication for how increas-
ing n will impact the accuracy of the solution. Some results about the speed of
convergence for the special case of Toeplitz matrices can be found in [12,22,25,26].
In [12] the convergence in the P-norm (1 < p < 00) is analyzed.

In this paper we present a thorough analysis of the convergence of the finite
section method for positive definite matrices as well as for non-hermitian ones.
Specifically, we solve the following problems.

(a) We study the finite section method on weighted ¢P-spaces. If the input vector
b belongs to a weighted space /£ . then, under suitable assumptions on the matrix
A, the finite section method converges in the norm of /7 .

(b) We obtain quantitative estimates for the rate of convergence of z, to z in
various weighted ¢P-norms.

(c) We define a modified version of finite sections, the non-symmetric finite sec-
tion method, and show that this method converges also for non-symmetric matrices.
The finite section method for non-symmetric matrices raises a number of rather
difficult questions and has motivated a large part of [17]. Even for the classical
case of Laurent operators (Toeplitz matrices) our approach enlarges considerably
the class of matrices to which the finite section method can be applied.

As we work with Banach spaces of sequences, the methods will be taken from
the theory of B*-algebras (involutive Banach algebras) instead of C*-algebras which
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suit only Hilbert spaces. The key property of the matrices A is their off-diagonal
decay; we will rely heavily on recent results from the theory of Banach algebras of
matrices. In fact, an important technical part of our analysis is to establish a finite
section property of infinite-dimensional matrix algebras.

The paper is organized as follows. In Section 2 we recall the well known proof for
the convergence of the finite section method for positive invertible matrices and take
it as a model for more general statements. In Section 3 we introduce several Banach
algebras of infinite matrices and collect their fundamental properties. Section 4
is devoted to the notion of inverse-closedness and spectral invariance in Banach
algebras and their relation to the finite section method. In Section 5 we establish
the convergence of the finite section method on weighted ¢P-spaces, in Section 6
we derive quantitative estimates. In Section 7 we investigate a version of the finite
section method for non-symmetric matrices, and in the final Section 8 we briefly
discuss an application to wireless communications.

2. CONVERGENCE OF THE FINITE SECTION METHOD

It is well known that for positive definite matrices the finite section method works
in principle, see, e.g., [17]. The proof is instructive and exhibits what is necessary
for an understanding of the finite section method.

Recall that if A is an algebra, then the spectrum of an element A € A is defined
to be the set o 4(A) = {\ € C: (A — AI)isnotinvertible}. If the algebra is B(H),
the bounded operators on some Hilbert space, we usually omit the reference to the
algebra and write simply o(A) for the spectrum. For self-adjoint operators on H we
denote the extremal spectral values of 0(A) by A- = mino(A) and Ay = maxo(A),
so that o(A) C [A_, A4].

We will analyze the finite section method for multidimensional index sets of the
form Z¢. To that end we define the projection P, in dimension d > 1. We set C,, =
[—n,n]¢ N Z4, the integer vectors in the cube of length 2n centered at the origin.
Then the projection P, is defined by (P,y)(k) = X(—nnje(k)y(k) = xc, (k)y(k) for
k € Z2. The range of P, is a subspace of £2(Z%) of dimension (2n + 1)¢ and will be
identified with C2")". The finite section is then defined to be A, = P,AP,. By
definition, A, is a (finite rank) operator acting on ?(Z¢), but we often interpret
A, as a finite (2n+1)% x (2n+1)%matrix acting on C?**1*  In particular, by A"
we understand the inverse of this finite matrix, but clearly A, cannot be invertible
on ((Z4).

We mention that our results could also be formulated with respect to other index
sets.

Theorem 1. If A is a positive and (boundedly) invertible operator on (*(Z%), then
T, converges to x in (*(Z2).

Proof. Step 1. Since by hypothesis, o0(A) C [A_, A\y] C (0,00), we have

A_[|Pabllz < (APub, Pub) = (Anb, b) < A || Poblf3
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Consequently on the invariant subspace P,¢?(Z%) ~ Cc@ntn?
O(An) - [)‘—7 >‘+]
independent of n. In particular, each A, is invertible on C@+)? and

(2.1) sup 1A lop < AZH = |47 lop -

Step 2. Define an extension of A, by

(2.2) Ay = A+ 2(I—-Py).

Then 0(;1,:) C [A-, A4], and all matrices A, are invertible on (*(Z%). Furthermore,

-1 —~
A, =A'+ 21— P,) and A, converges to A in the strong operator topology.
Step 3. (Lemma of Kantorovich). Since

—~ 1 —~—1 —
140 b= A0 = Ay (A= A)A D]
~1 —~
(2:3) < sup Ay lop I(A = An) A0,

—~ —~ 1
the strong convergence A, — A implies that A, converges strongly to A=1.
Step 4. Recall A,,z,, = b, and Az =b. Then

lz = zalls = A0 — AL bullz = |AT0 — AL Pabll
—~1 —~ 1
(2.4) < AT = An blla+ A (0= Pab)llz =T+1I.
The first term goes to zero by Step 3, and the second term is estimated by

~-1
I <sup [[A, lop [0 = Publla < AZH[b— Publls

and also goes to zero. O

The above theorem uses the ¢?(Z%)-norm, so this is the realm of C*-algebra
techniques, cf. the work of Bottcher, Silbermann, et al. [4,17].

Several questions arise naturally in the context of the finite section method:
1. Does the finite section method also converge in other norms, e.g., in weighted
(P-norms?
2. Can we derive quantitative estimates? If the finite section method works, how
fast does x,, converge to 7 What conditions on the matrix A and the input vector
b are required to quantify the rate of convergence z,, — =7
3. What conditions and modifications are required (if any) to make the finite
section method work for matrices that are not hermitian?

For an answer of the first question, we make the following observation: The
simple argument above extends almost word by word, provided we can show the
following properties:

(1) Both A and A™! are bounded on ¢2,,

—1
(2) sup, ||An |, e, is finite, and
(3) the finite sequences are dense in /2, .
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The answers to the other two questions also revolve around the above observation as
well as on properties of certain involutive Banach algebras, which will be introduced
in the next section.

3. A CLASS OF BANACH ALGEBRAS OF MATRICES

To understand the asymptotic behavior of the finite section method on Banach
spaces, we need to resort to Banach algebra methods. We first consider some typ-
ical matrix norms that express various forms of off-diagonal decay. Our approach
is partly motivated by some forms of off-diagonal decay that is observed in vari-
ous applications, such as signal and image processing, digital communication, and
quantum physics. A different way of describing off-diagonal decay of matrices (and
operators) is given by the notion of band-dominated operators [22].

Weights. Off-diagonal decay is quantified by means of weight functions. A non-
negative function v on Z? is called an admissible weight if it satisfies the following
properties:

(i) v is even and normalized such that v(0) = 1.

(ii) v is submultiplicative, i.e., v(k + 1) < v(k)v(l) for all k, 1 € Z.
The assumption that v is even assures that the corresponding Banach algebra is
closed under taking the adjoint A*. The weight v is said to satisfy the Gelfand-
Raikov-Shilov (GRS) condition [10], if
(3.1) lim v(nk)% =1 for all k € Z4.

n—oo

This property is crucial for the inverse-closedness of Banach algebras, see Theorem 3
below. The standard weight functions on Z? are of the form

o(x) = " (14 d(2))",
where d(x) is a norm on R?. Such a weight is submultiplicative, when a, s > 0 and
0 < b < 1; v satisfies the GRS-condition, if and only if 0 < b < 1.
Consider the following conditions on matrices.

1. The Jaffard class is defined by polynomial decay off the diagonal. Let A, be
the class of matrices A = (ay), k,l € Z%, such that

(3.2) law| < CA+|k—1)"*  VkileczZ

with norm ||A||.4, = supy jeza |an|(1+ |k —1])°.

2. More general off-diagonal decay. Let v be an admissible weight on Z? that
satisfies the following additional conditions: v=! € £1(Z%) and vt x v~ < Cv~! (v
is called subconvolutive). We define the Banach space A, by the norm
(3.3) [All.a, = sup |aw|v(k —1),

k,lezd

3. Schur-type conditions. Let v be an admissible weight. The class A} consists
of all matrices A = (ax)y jeza such that

(3.4) sup Z lag| v(k —1) <oo and  sup Z lag | v(k —1) < o0
k€L cza 1€z} ez
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with norm

(3.5) | Al 42 = max { sup Z lag|v(k — 1), sup Z |aw|v(k —1)}.
ke leza lezs kezd
4. The Gohberg-Baskakov-Sjostrand class. For any admissible weight v we define
the class C, as the space of all matrices A = (a) eze such that the norm

(3.6) 14lle, := Y sup ar -] v(0)

lezd FEL
is finite. An alternative way to define the norm on C, is
(3.7) [Alle, = inf{{[edlle = |aw| < ok = 1)}

5. A further generalization is due to Sun [29]. Roughly speaking, Sun’s class
amounts to an interpolation between C, and A, or between A! and A,. Our results
also hold for Sun’s class, but to avoid a jungle of indices, we stick to the simple
classes defined above and leave the reformulation of our results in Sun’s case to the
reader.

These Banach spaces of matrices have the following elementary properties.

Lemma 2. Let v be an admissible weight and A be one of the algebras As for
s>d, A,, AL, C,. Then A has the following properties:

(a) Both Al and C, are involutive Banach algebras (i.e., B*-algebras) with the
norms defined in (3.4) and (3.5). A, and As,s > d can be equipped with an
equivalent norm so that they become involutive Banach algebras.

(b) If A€ A, then A is bounded on (*(Z4).

(c) If A € A and |by| < |aw| for all k,1 € Z2, then B € A and ||Blj4 < ||A||4.
(A is a solid algebra).

Proof. Properties (a) and (c) are easy and follow directly from the definition of
the matrix norms. The statements about Ay and A, are proven in [16]. (b) is a
consequence of Schur’s test. O

Next we study the spectrum of matrices belonging to one of these Banach alge-
bras.

Definition 1. We say that A is inverse-closed in B(¢*(Z?)), if for every A € A
that is invertible on ?(Z¢) we have that A~! € A.

Our next theorem states that the matrix algebras introduced above are inverse-
closed as long as v satisfies the GRS-condition. The precise formulation is slightly
more complicated, because we need to be a bit pedantic about the weights.

Theorem 3 (Inverse-closedness). Let v be an admissible weight that satisfies the
GRS-condition, i.e., lim, . v(nk)"/™ =1 for all k € Z°.

(a) Assume that v=' € (1(Z%) and v x vt < Cv™t, then A, is inverse-closed
in B((3(Z4)). In particular A, for s > d possesses this property.

(b) If v(k) > C(1+ |k|)° for some & > 0, then AL is inverse-closed in B((*(Z%)).

(c) C, is inverse-closed in B((*(Z?)) for arbitrary admissible weights with the
GRS-property.
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Remark 3.1. The inverse-closedness is the key property and lies rather deep. While
for C*-(sub)algebras this property is inherent, for Banach algebras it is always hard
to prove. Inverse-closedness for A is due to Jaffard [19] and Baskakov [2,3], a
simple proof is given in [29]. For A4, it was proved by Baskakov [3] and reproved in
a different way in [16]. The result for C, with v = 1 is due to Gohberg-Kasshoek-
Wordeman [13] and was rediscovered by Sjostrand [24], the case of arbitrary weights
is due to Baskakov [3], the algebra A! was treated by one of us with Leinert [15].
More general conditions were announced by Sun [29].

The following properties are well-known consequences of inverse-closedness.

Corollary 4 (Spectral invariance). Let A be one of the algebras A,, A,, AL, or
C, and assume that v satisfies the conditions of Theorem 3. Then
(a) oA(A) = o(A) (the spectrum in the algebra A coincides with the spectrum of A
as an operator on (*(Z%))

(b) If A is bounded on (2, for all A € A, then the operator norm satisfies

(3.8) |Allg, e, < ClAlla for all A€ A,

and
o, (A) € o(A)

(the spectrum is almost independent of the space A acts on).

Remark 3.2. Statement (a) is equivalent to inverse-closedness, the norm estimate
in (b) follows from the closed graph theorem, the inclusion of the spectra is an
immediate consequence of Theorem 3.

Let us emphasize that in our analysis of the finite section method we only need
that the algebra A acts boundedly on ¢ . In order to understand how the weight
m depends on the submultiplicative weight used to parametrize the off-diagonal
decay, let us briefly discuss some sufficient conditions for the bounded action of A
on ¢ . The weights m satisfy slightly different conditions. Let v be an admissible
weight. The class of v-moderate weights is

(3.9) M, = {m >0: supM

kezd  M(K)
For example, if a, s € R are arbitrary, then m(z) = ead(:”)b(l +d(z))® is e'“‘d(”)b(l +
d(x))*l-moderate.

The explicit examples of Banach algebras discussed above all act on the entire
range of /F for 1 < p < oo and a family of moderate weights associated to v. The
following lemma provides some explicit sufficient conditions on m for A,, Al or C,
to act boundedly on 2.

< Cu(l), Vi€ Zd}.

Lemma 5. Let v be an admissible weight.

(a) If A € AL, then A is bounded simultaneously on all (% (Z%) for 1 < p < oo
and m € M,,.

(b) If A € A, and vy(k) == v(k)/(1 + |k|)® is submultiplicative for some s > d,
then A is bounded simultaneously on all (2,(Z%) for 1 < p < oo and m € M,,.
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(c) If A € A,, then A is bounded on (>°(Z%).
(d) If A € C,, then A is bounded on all (* (Z%) for 1 < p < oo and m € M,,.

Proof. For completeness we sketch the easy proof.
(a) First, let p=1, c € £} (Z?) and A € A!. Then, since m(k) < Cv(k —)m(l),

we obtain

el = 3| D awalm(k) <€ 373 lawl lale(k — Hm()

kezd lezd kezd lezd
<Oy (sup Y- laulotk =) lalm(®) = CJlAlLay el
lezd V€ pega

Next, let p = oo and ¢ € £5°. Then, as before

| Ac]| o0 = sup ‘ Zaklcl‘ (k) <C sup Z lag| |ci|v(k — D)m(l)

ReZ 'y 2 ez

<C’<Sup|cl|m )SupZ|akl|v — 1) = C|lAllaliclless.

d
leZ keZd |

The boundedness on (7 (Z%) for 1 < p < co now follows by interpolation.
(b) and (d) follow from the easy embeddings A, — A, , C, C A} and from (a).
(c) uses the subconvolutivity of v. Let A € A, and ¢ € (>°(Z%). Then, |ay| <
|Alla,v(k = 1)~" and || < ||¢]leev(l)~. Consequently,

| Acl| e = sup ‘ Zaklcllv(k)

ke leza
1
< [[Alla, llelleze sup Z mv(k‘) < Cll A4, llellege
kezd | 7a Y )
because (v™!xv71) (k) < Co(k)~L. O

The matrices of the Banach algebras introduced above can be considered as ap-
proximate banded matrices. This might suggest that it would be sufficient to set
those entries smaller than some threshold to zero and simply work with banded
matrices, which are a special case of sparse matrices. At first sight this may seem
appealing, since invertible banded matrices have inverses with exponentially fast
off-diagonal decay [9]. However there is an important difference. In many applica-
tions, cf. [19,25,26,28] the matrix entries do decay off the diagonal, but thresholding
would still leave us with banded matrices with the number of non-zero diagonals
easily in the order of several dozens. The theoretical prediction for the decay of
the inverse of such banded matrices is so slow that it is meaningless for practical
purposes. The reason is that by resorting to banded matrices we have neglected the
decay of the entries above the chosen threshold. Thus banded matrices are simply
not the most suitable model to capture the decay behavior of those matrices and
their inverses.
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4. FINITE SECTIONS IN MATRIX ALGEBRAS

We first study the finite sections of matrices belonging to an inverse-closed matrix
algebra and give a new characterization of inverse-closedness by means of finite
sections. This is a necessary step in the qualitative analysis of the convergence
properties of the finite section method on weighted ¢P-spaces, but should be of
independent interest in the study of Banach algebras.

Let AFS be the set of all finite sections of matrices in A, formally

(4.1) APS = {A = (A)en : Ay = P, AP, forsome A € A}.

Although A9 is not an algebra anymore, we may define a notion of inverse-
closedness.

Definition 2. We say that A" is inverse-closed if for every sequence {A, }nen of
invertible finite sections such that ||4,||4 < C and [|A,']|,, < C, we have that
|A |4 < €, for some constants C' and C” that do not depend on n € N.

The comparison of inverse-closedness of A and of A indicates that the transi-
tion from the infinite-dimensional setting A to the finite-dimensional case A is
done by replacing the hidden word “bounded” by “bounded uniformly in dimen-
sion”.

The definition of A suggests as a next step to consider sequences of arbitrary
finite square matrices instead of finite sections. To define a norm that is related to
the A-norm, we must assume that the norm || - || 4 can be applied to arbitrary finite
matrices by defining an appropriate embedding of (C?**1)? into ?(Z4). For j € Z*
and C,, = {—n,...,n}¢ C Z? we define an extension of the (2n + 1)¢ x (2n + 1)%
matrix B to in infinite matrix B’ of B, say B’ = (B”); cz¢ such that

(B)kl for k,1 € C,
0 otherwise.

(4.2) (BY)j k11 = {

Then we define the norm of B by
(4.3) IBlla= B4

In the big picture, this definition makes sense only when the norm does not depend
on the embedding cube J = j + C,,. This requires an additional property of A.

Let T;,1 € Z% denote the translation operator T;f(k) = f(k — 1) acting on
f € (3(Z%). We say that the norm of A is translation-invariant if

(4.4) ITL AT 4= ||Ala VA€ Alez?.

Clearly, if the norm of A is translation-invariant, then ||B”|| 4 does not depend on
the cube J = j + C,,, and we can apply || - || 4 to finite matrices. From now on, let
us assume that || - || 4 is translation-invariant.

Similarly to (4.1) and analogous to [17, Section 1.2.2] we introduce the set A"
by

AP ={B = (By)nen : By is a (2n4+1)% x (2n+ 1)? matrix and sup || By||4 < oo},
neN
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and we endow A with the norm

(4.5) IB]| ar = sup || By|.a-
neN

If the norm of A is translation-invariant, then A" is a well-defined object. We note
that A" is a Banach algebra contained in B := @~ B((C*"*1)4).

Definition 3. We say that A is inverse-closed if for every sequence { B, };meze of
finite invertible matrices such that ||B,,||4 < C and || B;;!|l,, < C, we have that
B, |4 < 7, for some constants C' and C” that do not depend on m € Z,

In view of Definition 1 this amounts to saying that the algebra A’ is inverse-
closed in @@, , B((C?+1)%).

The inverse-closedness of A, Af°, and A" depends on the original algebra A.
For the study of the relations between them we introduce some further natural
conditions.

(C1) Weak solidity: For every A € A there is a constant C' such that ||A,||4 <

C||Al| 4 for all n € N.
(C2) Weak inverse-closedness: For every A € A that is invertible on ¢?(Z?) the
condition sup,,cy |4, ||+ < C implies that A™' € A.
Our third condition concerns an infinite matrix B”°°* that is built from blocks of
finite square matrices {B,,}men by stacking them “along the diagonal”. For this
we choose a sequence j,, € Z% such that sequence of cubes J,, = jm + C,, C Z% is
disjoint. Now set

(46) BblOCk — Z B#{n,
meN
where B’m is the extension of B, given in (4.2).

(C3) Block norm equivalence: There exist constants C,C’" > 0, such that for
every B € AF

(4.7) Cl| B"||a < sup |Binlla < C'[| B"| 4
me

Remark 4.1. We want to point out that in all settings A, A, and A" it suffices to
show the inverse-closedness property for positive matrices. Therefore, if necessary,
one could restrict conditions (C1)—(C3) to such matrices. We note that the upper
bound in (4.7) follows already from condition (C1).

These three conditions are sufficient to show that the concepts of inverse-closedness
in A, A" and AP are equivalent.

Theorem 6. Let A C B((*(Z%)) be a Banach algebra such that the norm of A is
translation-invariant and A satisfies conditions (C1)-(C3). Then the following are
equivalent:

a) A is inverse-closed in B((*(Z%)).

b) A is inverse-closed.

¢) AF is inverse-closed in B := @~ B((C**1)9).
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Proof. ¢) = b) This implication is clear, because each sequence of finite sections
A, belongs to A" by (C1).

b) = a) Since a matrix A is invertible, if and only if the matrices A*A and AA*
are invertible, we may assume without loss of generality that A is positive and
invertible on ¢?(Z?%). So assume that A € A is positive and invertible on ¢*(Z?).
We want to show that, if A" is inverse-closed, then A~! € A.

By condition (C1), we have that ||A,||4 < C for all n € N and some constant C
independent of n € N. Moreover, (2.1) implies that [|A,!(|,, < ||A7!||sp- Since by
assumption A is inverse-closed, we obtain that ||A,!||4 < C’ for all n € N and
some C’ > 0. By condition (C2) we obtain A~! € A.

a) = c¢) We argue by contradiction and show that if (c¢) fails, then so does (a).
Assume that A" is not inverse-closed. This means that there is a sequence of finite
invertible matrices { B, }men such that || By, || 4 and || B;,}||,p are uniformly bounded
in m € N, but sup,,cy || Byt la = oo.

Consider the corresponding matrix B%* as given in (4.6). Then its inverse
(Bbleck)=1 is a block matrix that corresponds to the sequence {B;'},,cza. There-
fore, ||(BY*)=|,, = sup,,en || B! llop < 00, so BY°* is invertible on ¢*(Z?). Con-
dition (C3) implies that ||B%°*|| 4 < C"sup, ez ||Bmlla < o0, so BY* € A. The
same condition guarantees that |[(B%*)71||4 > C'sup,,czq || Btll4a = oo. Thus
(Bblock)=1 ¢ A and A cannot be inverse-closed in B(¢?(Z%)). O

Next we apply Theorem 6 to the matrix algebras A,, A, and C, introduced
in Section 2. As we mentioned in Lemma 2, all these algebras are contained in
B(¢*(Z%)). Moreover, the norms associated to these algebras are translation in-
variant. Indeed, to check that (4.4) holds, we denote the standard basis of £*(Z<)
by {ek}reze and observe that (I_;ATe;, ex) = (ATje;, Tjer) = (Aeiy, extj) for all
j € Z4. Therefore, (T_;AT;)t1 = (A)k+j1+; and since the norms of A, A} and C,
use only the difference of k& and [, they are translation invariant.

By Lemma 2(c) each of these algebras is solid, so condition (C1) holds for all
of them. Condition (C3) is more problematic. Since the norm of a matrix in A,
and A! is defined in terms of its rows and columns, it follows that ||BYo*| 4 =
SUp,nezd | Bmll4- So property (C3) holds for for A, and A}. Condition (C3) fails,
however, for C,.

It remains to consider the weak inverse-closedness (C2).

Proposition 7. Condition (C2) holds for each of the algebras A, and AL,

Proof. Assume that A € A is invertible on ¢?(Z?) and that sup,,cy |4, |4 = C <
oo. Recall that A,, = P,AP, + A (I — P,) is the extension of A, defined in (2.2).
Clearly, our assumption that ||A!|| 4 is uniformly bounded, implies immediately
that ||:47;1H A is uniformly bounded as well.

— 1

Since both A and A~! are bounded on (?(Z%), A, ~ converges strongly to A~* in
— 1

(*(Z%), as we have seen in the proof of Theorem 1, Step 3. Therefore, (A, e, ex)

converges to (A7 le, e;,) for all vectors of the standard basis of £2(Z?).
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Case I: A= A,. Since ||Z;_1||A is uniformly bounded, we have that

—~—1 —~—1
|An |la= sup (A, e ep)|vk—1) <C.

k,lezd

Thus, we obtain that, for every k, [ € Z,

(A ey e[k — 1) = lim [(An e, ex)o(k —1) < C,

n—oo

and so A7t € A with |47 4 < C = sup,ey ||:47;1||AU.
Case II: A = A]l. We use Fatou’s Lemma. We have that

HA ||A = max{ sup Z| n_ €1, Ck |U kf l Sup Z | n_ 61,6k>|v(/{3—l)} < C.

leZd lezd kezd

Therefore, we obtain, for every k € Z<,

D (A e ex)|v(k — 1) < liminf )~ [(A (A, leneo(k—1) < C

lezd lezd

and for every | € Z¢

Z|A e, ex)|v(k —1) <11m1nf2| ni e, ep)v(k —1) < C.

kezd keZd

Taking the supremum over [ € Z¢ (or k respectively), we conclude that A~! € A!
—1
and [[AH Ly < C =suppen[[An lar- O

Since we have verified that all assumptions of Theorem 6 are satisfied for A, and
Al we obtain the following result.

Theorem 8. If A is either A, or AL, then A is inverse-closed, if and only if AT
is inverse-closed if and only if A is inverse-closed.

Remark 4.2. Theorem 8 holds for A} even if v = 1. In this case, A} is the Schur
class, i.e., the class of matrices that satisfy the Schur test [18] or, equivalently, the
class of matrices that are bounded simultaneously on all ;1 < p < oco. It seems
to be an open problem if this algebra is inverse-closed. Theorem 8 reduces this
problem to an equivalent (and equally difficult) question about finite-dimensional
matrices. However, if v satisfies a mild growth condition, see Theorem 3(b), then
Al is inverse-closed.

We need a few more facts before addressing questions of convergence of the finite
section method.

Corollary 9. Let v be an admissible weight satisfying the GRS-condition (3.1).
(a) If A € Al is positive and invertible on (*(Z%), then sup, ey ||4," || 41 < o0.
(b) Assume in addition that v=! € El(Zd) and v~ x vt < Co~l If A is positive

and invertible on (*(Z%), then sup,cy | A4, < 0.

n'l



QUANTITATIVE ESTIMATES FOR THE FINITE SECTION METHOD 13

Proof. Our assumptions on v imply that A € {A,, AL} is inverse-closed. By Theo-
rem 8, A" is inverse-closed as well. Therefore, to achieve that sup,,cy || 4,4 < oo
it is enough to assure that ||A4,|| 4 and ||A, ||,y are bounded uniformly in n € N.
This, however, follows from ||A,||4 < ||Al|4 (solidity) and from Step 1 in the proof
of Theorem 1, where we showed that ||A; ][0, < [|A7|op- O

As the block norm equivalence (C3) fails for the algebra C,, we do not know
whether (C,)"* is inverse-closed. However, since C, C Al, we have the following
result.

Corollary 10. Let v be an admissible weight satisfying the GRS-condition (3.1)
and v(k) > C(1 + |k|)¢ for some ¢ > 0. If A € C, is positive and invertible on
(2(Z%), then sup,ey [|4, | a1 < oo.

n

5. CONVERGENCE IN (7

After the analysis of finite sections in matrix algebras, we are now in a position
to show that the finite section method converges in weighted ¢P-spaces, whenever
the matrix is in one of the algebras A,, A,, AL, and C,.

Theorem 11. Let A be one of the inverse-closed algebras As, Ay, Cy,, or AL, where
the weight satisfies the conditions stated in Theorem 3 for each case. Assume that
A € A is positive and invertible on (*(Z%) and acts boundedly on (P,.

If b € I and p < oo, then the finite section method converges in the norm of
2
If b € 2 and p = oo, then the finite section method converges in the weak”-
topology. In particular, x, goes to x entrywise.

Proof. We expand the model proof of Theorem 1 and insert the results about

Banach algebras obtained in Sections 3 and 4. Recall that A,, = P,AP,+A . (I—P,)
is the extension of A,, defined in (2.2). Throughout the proof C' denotes a constant
that may change from step to step.

Step 1 in the proof of Theorem 1 remains unchanged and yields that

o(An) € Ao, 0]

independent of n and that

—~1
(5.1) sup [|An lop < AT =[[A7 lop
neN
(where || - ||op is the operator norm on ¢?(Z?)). Since A is positive and invertible

on (?(Z%) and A is inverse-closed in B(¢?(Z?)) by our hypotheses on the weights,
Theorem 3 guarantees that A~! € A as well. By Corollary 4(b), the inverse A™! is
then bounded on ¢? . Furthermore, for A € {A,, A,, AL} by Corollary 9 we know
that

— 1 — 1
sup [[An |, —p, < Csup |4, |la=C <oo.
neN neN
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For A = C,, Corollary 10 implies that
— 1 — 1
sup |12, Nenan, < Csup|| A, lay = € < o0
neN neN

—~

Step 2. For p < oo, A, converges to A in the strong operator topology on ¢ .
This follows from the inequality

|A— PnAPnHEfnﬂffn <[ - Pn)AHZ?nHZ?n + |1 P AL — Pn)”éﬂlﬂﬁn’
and the fact that P,f — f € 2 is equivalent to the density of the finite sequences
in /7.
Step 3. (Lemma of Kantorovich). We know that 1/4\;;1 = A+ 0N = P).

Since

14, b= A"%]w = ||, (A—A)A

P
£ m

(A= A)A™

IN

(5.2)

—~ 1
sup |4, e, ez, o,
n

IN

—~ 1 —~
(5.3) sup (|4, L4 ll(A = An) A7 bl

—~ —~ 1
the strong convergence A, — A on (7 implies that A, converges strongly to A~*
on /F for 1 <p < oc.

Step 4. Recall, that A,z, = b, and Ax =b. Then

lo —2alls, = A7 = A bl = 1470 — A7 Publlg,
—~1 ~1
(5.4) < AT = A Yl + 1A, (b= Pab)lly, = T+11.

For 1 < p < oo the first term goes to zero by Step 3, and the second term is
estimated by

—~-1
(5.5) I <sup |An e, —em, 10— Pablle, < C7H[b— Publler,,

and also goes to zero.

For p = oo we prove weak*-convergence. Assume b € (°° = (E‘L /m> andy € £ I

Then,
(@ = wn,y) = (A= A Pb,y) = (b— Pub, A7'y) + (P, (A7 = A)y).

the first term tends to zero, because finite sequences are weak*-dense in £;°. The
second term is majorized by [|b|eo||(A™F — A;I)yﬂgb and converges to zero by
Step 3, (5.3). O

6. QUANTITATIVE ESTIMATES

In Theorem 11 we have investigated the convergence of the finite section method
in the norm of /£ provided that the input vector b is in ¢? . For the quantitative
analysis, we assume that the input is in #? and we study the convergence in a
weaker norm.
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We first work with the algebra A = A, defined by off-diagonal decay of the
matrices and a subconvolutive weight satisfying the GRS-condition. Recall that
C, = {—n,...n}? is the cube of integer vectors, so that > kgc, - - becomes a tail
estimate.

Theorem 12. Assume that A € A, is invertible and b € (>°(Z). Set
o\ 1/2
e(n) = (3 w(k) )"
keCr,

Then the finite section method converges in the (*(Z%)-norm with the asymptotic
estimate for the error

(6.1) |z — 22 < Co(n) .
Proof. We write
r—z, = A'b— A,
= AYb—b,) + AT (A, - AATIPL=T+11.
Estimate of I:

_ _ 1/2
1Tl2 < HA  Wop b= balls = 1A op (S 102"
|k|>n
1 _9y\1/2
< A op Bl (D7 w(k)?)
kgCh,

= A7 op Ibllege (n) -

Estimate of II: Set z, = AP,A-'P,b = AP, A,  P,b, then Il = A~ (P, — I)z,.
Using Lemma 2, Corollary 9 and the obvious fact that ||P,b||» < ||b]|x, (true for
every solid sequence space) we obtain

—~ -1
[2nlleze < [[Alla, [ An |

-Av b”£8°7

or the pointwise estimate
|(z0 )i < Co(k)™

which is independent of n. So

IL]ly = AP0 = Dzl
< A op [[(Pa = D 2all2
_ 1/2
= [|4 1”017(2 |(Zn)k‘2)
kgCh
1 _9n\1/2
< AT C( Y v(k) ™)
k@Ch
= [[A7!lop Cp(n).
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1/2
Remark 6.1. If v(x) = (1 4 |z|)®, then ¢(n) = (Zkecn(l + |k||)*25> ~ 2,

and we recover the result of [26].

Theorem 12 can be generalized to other matrix algebras and sequence spaces.
For this we note that the input b is in a “small” space, but that we measure the
rate of convergence in a “large” space. The other item is that A and A, have to
be invertible on both the small and the large space with uniform bounds.

The rate of convergence will follow from the following tail estimates for the
embedding of sequence spaces.

Lemma 13. Assume that ¢, C (1 for 1 < p,q < oo and m,w are moderate
weights. Set r~! = max{q¢~! —p~1,0} and

(6.2) o(n) = (Z ff(?)) g

k¢ Ch

Then, [|[b = Pableg, < (n)[|le,

Proof. We write b — P,b = (1 — x¢, )b, where x¢, is the characteristic function of
Cn. Then, ||b— Pub||e = [|bm(1 — xc,) = ||ea. If p < g, then ||c[[w < |[/c[|e and so

w w
b—Pan<Hb - —H <H1— —H bl = bll,r |
b~ Pl < [Jom( —xe) 2], < [0 = xe) 2] lemlle = otlble,

(since for r = oo formula (6.2) has to be interpreted with the supremum norm).
If p > q, then r = (¢! —p~1)™! > 1. Thus, we use Holder’s inequality ||bcl|, <
16l ||| and obtain

w
b= Publlg, < || =xe. )= || bl = () [l
U

Theorem 14. Let A be one of the inverse-closed algebras A, A,, Al orC,. Assume
that ¢, C 1 and that A acts boundedly on both (%, and (9. If A € A is invertible
on (? and b € (¥, (the “smaller” space), then the finite section method converges in
03 (the “larger” space) with the error estimate

(63) Iz = zalleg, < Cllbller, 9(n),
where C' = ||[A™ |2 (1 + || A A-Y4) and o(n) is as in (6.2).

o
Proof. As in the proof of Theorem 12 we estimate the error by
(6.4) Iz = @nlleg, < NATH0 = ba)lleg, + AP = 1) 2nller,

where z, = APngganb.
Since A € A is invertible on ¢2, by inverse-closedness A~! € A and consequently
A~1 is also bounded on ¢2. We note that, by Corollaries 9 and 10 we also have

s, e | A L4 < oc.
For the first term in (6.4) we obtain, with Lemma 13, that

1A = ba)lles, < 1A e 1 = balleg, < 1A leg 1Bl ez, ().
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The second term is estimated by
IAT (P = Dzalleg, < 1A egen, 1P = Dzaller, < IA™ et e, l2nller, o(n)-
Finally,

1znller, = 1AL AL Pabller, < [[Alleg,—en, A7 lep, —ez, 1B,

and this expression is uniformly bounded by Corollary 9 and 10 and Corollary 4.
Thus, we are done. O

If ¢>° C /%, then we recover the simpler statement of Theorem 12.

7. NON-SYMMETRIC FINITE SECTION METHOD FOR NON-SYMMETRIC
MATRICES

In the previous section we derived quantitative estimates for the convergence
of the finite section method under the assumption that the matrices are positive
definite. This assumption is crucial. For non-hermitian matrices it is already a
difficult problem to derive merely qualitative statements about the convergence of
the finite section method [6,11,12,20]. Indeed, even for very simple non-hermitian
matrices the finite section method may fail.

As an example, let us consider the Laurent operator given by the biinfinite
Toeplitz matrix

0O 0 0 0O
1 0 0 0 0
A= c 1[0/ 00
2 c 1 00
A ¢ 10

Here, we assume |c| < 1 and, as usual in the finite section method literature, the
box indicates the entry in the zero-zero position. An easy calculation shows that A
is invertible on ¢?(Z) and its inverse is the Laurent operator with biinfinite Toeplitz
matrix

—c 1 0
A7l = 0 1
0 0 —c

Let us choose b = ey, i.e, the right hand side is given by the zero-th unit vector.
The solution to Az = b is obviously the zero-th column of A~ z = e_; + cep.
The finite section method as described in (1.2)—(1.3) applied to this system fails
completely, because none of the matrices A,, is invertible. In theory the solution
could be computed by solving the normal equations A*Ax = A*b. Thus, one might
want to apply the finite section method to the positive definite system A*Ax = A*b
and invoke the results from the previous sections, since A (and thus A*) belongs
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to A,, AL, or C, with weight v(k) = e/*I",0 < a < 1. However, the computation
of P,A*AP, involves the infinite matrices A, A*, which makes this approach not
feasible for numerical purposes.

It is easy to see how to alter the finite section method to make it work for this
particular example. Our goal is more ambitious, and we want to derive a version of
the finite section method that works for large classes of (algebras of) non-hermitian
matrices, and not just for some individual cases. We will derive conditions for the
convergence of the finite section method for non-hermitian matrices in some matrix
algebras. For this, we consider a slightly generalized version of the finite section
method.

Consider the system Az = b where A is an invertible, but not necessarily her-
mitian matrix. We set

(7.1) A, = P,AP,, and brn = A;0,
and try to solve the system
(72) A:,nAr,nxr,n = br,n

for properly chosen 7 and n. Observe that A,, is a (2r +1)? x (2n + 1)¢ matrix,
and so A%, A, is a (2n 4+ 1)? x (2n + 1)%-matrix. In general we will need 7 > n,
therefore we refer to (7.1)—(7.2) as non-symmetric finite section method.

Let us denote B, = P,A*AP,, D,, = P,A*P,AP, = Ai,nAr,n- Analogously
to (2.2) we define the extensions

—~

(7.3) B, =B, +A\.(I - P,), Dyp = Dy + A (I = Py,

where o(A*A) C [A_, A\, ].
Clearly, B,,n € N, is the sequence of finite sections of A*A and D,, is an
approximation of B,. We study this approximation for matrices in A,.

Lemma 15. Assume that A € A,. Then there ezists a sequence R(n) € N, such
that for every r(n) > R(n)

(7.4) nh_{go ”Bn - Dr(n),nHAv =0.

Ifv(k) = (1+|k|)® and A, = A, then we may choose R(n) = n® for a > 52 and

2s—d
obtain the rate

o(d—2s)+2s

||Bn - Dno‘,n A, )

4, < CJA]

Proof. We define E’Tn = E\; — 5:1 = B, — D, . Clearly, E,,, is hermitian and in

A,, and (E, ) =0 for k,l ¢ C,. If k,l € C,,, then
(Bt = (Ba)ut = (Drg)is = Y (Ajau — > (A)ijau = Y Trage,
jezd JECr J€Cr
and we obtain the estimate

(Ern)iil < lagellagl

JECr
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for all entries. If A € A,, then |a;r| < ||Al|4,v(j —k)~'. Consequently we estimate
the norm of £,,, by

1Emnlla, = sup |[(Erp)ulv(k—1)
k‘,leCn

< sup AL, oG — k)Tl =0 Mok ).
kleC 120,
Since v(j — 1)t < w(j — k)" tv(k — 1), we continue with

|Brlla, < AL, sup 37 ol — k) 2ok — 1),
k,lEangcT

Clearly, if k,l € C,, and j & C,., then k — [ € Cy, and j — k &€ C,_,, and we arrive
at the estimate

(7.5) |Evnlla, < 1AIZ, sup v(k)® > o(i)~>.
hECan J€Crn

As a consequence, we obtain that lim, ||E\7«,/n||,4v =0 and (7.4) is proved.
If A€ A, e, v(k) = (1+|k])*, then supyec,, v(k)* = O(n*)and 3, v(j) % =
O((r —n)4=2%). For r(n) = n®, we obtain the explicit estimate
1By = Do lla. < C|Alla, n@242,

which tends to 0 for o > fod. O

Theorem 16. Let A € { A, A,} where the weight v satisfies the conditions stated
in Theorem 3(a). Let Az = b be given. Assume that b € ( and that A € A is
invertible on (*(Z%) and acts on (.

Consider the finite sections

(7.6) Al Ariy = A%D.

Then, for every n there exists an R(n) (depending on A_ and v) such that ),
converges to x in the norm of (¥ . for every choice r(n) > R(n).

Proof. We split the error x — z,,, into three terms as follows:
& = 2ralley, = 1A 4)"" A% — D7} A, bl
< [(A*A) A — B PuA™b|l g, + || B, PaA™b — B,  Apnbller, +
(77) + HB;IAnnb - D;’;Ar’nb ZP + || II EP + H III zg’n .

We observe that the vector B, P, A*b is exactly the result of the finite section
method applied to the normal equation A*Ax = A*b. Since A*A € A, and A*b €
2, Theorem 11 is applicable and implies that || I||; — 0 for p < co and I — 0
weak™ for p = oc.

~ -1
Since A, , = P,AP, and B, 'p, = B, P, we can estimate the second term by

g =1

m

~_1
|| II Héi’n = HBn (PnA*b - PnA*Prb)HZ%’n
~_1
(7.8) < Slelg 1B ez, —en, 1A |z, [[b — B0l e, -
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~1
As in the proof of Theorem 11, Corollary 4 and 9 imply that sup,,cy || By ||z, ez, <

~ 1
Csup,ey [|Bn |4, < C" < oo. Since the finite sequences are dense in 2, for
p < 00, (7.8) yields || I ||z, — 0, similarly II — 0 weak* for p = oco.
For the third term, we start with the obvious estimate
—~1 —
1T s, = | By Arnb = Dy Arabllen, < 1B = Dyfllen, —~an, 1470l e, -

Here || A} bl = | PaA*Pob|| e, < ||A*| 2, ez, |0l is uniformly bounded indepen-
dent of n and r.

For the operator norm we use an estimate for inverses in Banach algebras, see
e.g., [8], and obtain that

—~ 1 — 1 —~—1 — 1
HBn _Dr,n HZ”—>€” < CHBn _Dr,n H-Av
m m
—~ 1 — —
1Bn 1%, 1Bn = Drnlla,

< C — .
1- HBn ”Av ”Bn - Dr,nHAv

Once again by Corollary 9 we have sup,,cy B, 1||~Av < C < o0, and by Lemma 15
lim, o0 || B — Dyl 4, = 0.

Consequently, for any positive sequence €, — 0, we may choose R(n), such that
|Br — Drnynlla, < € for r(n) > R(n).

By combining the estimates for I, IT, III, we have thus proved that ||z —xy) e —

0 for every sequence r(n) > R(n) and we are done. O
Remark 7.1. If v(k) = (1 + |k|)® for s > d, then R(n) can be chosen to be n® for
o > 25211 by Lemma 15.

Remark 7.2. Tt is well-known that, from a numerical viewpoint, the solution of the
normal equations should be avoided whenever the condition number of the matrix is
large. As an alternative to the normal equations one could use matrix factorization
methods. Since D, is invertible, the matrix A,,, has full rank (2n + 1), and one
could apply a QR-factorization of A, , or some other factorization and compute an
approximate solution to Az = bin that way. This idea raises a number of interesting
questions: For instance, assume we can factorize a matrix A € A into A = QR,
where () is unitary and R is upper triangular, do the individual components @)
and R also belong to A? How about other matrix factorizations such as LU- or
polar-decomposition? We refer the reader to [27] for answers to these questions.

We return to the example in the beginning of this section. Clearly, A belongs
to A, for every weight v(k) = el** 0 < a < 1. Since the entries of A decay
exponentially off the diagonal, it is not difficult to see that it is sufficient to choose
r(n) = sn for a sufficiently large s > 1, independently of n. In this particular
example it would even suffice to set s =n + 1, but as pointed out, our goal was to
derive a finite section technique that is applicable to large classes of matrices, not
just to this particular one.

In light of Theorem 16 it is worthwhile to recall that a necessary and sufficient
condition for the applicability of the finite section method (1.2)—(1.3) to Laurent
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operators is that the winding number of the invertible Laurent operator is zero,
cf. [12,17]. For the non-symmetric finite section method the winding number is not
relevant, the key property is the off-diagonal decay of the matrix. Thus Theorem 16
considerably enlarges the range of applicability of finite section type methods even
for the classical and thoroughly analyzed cases of Laurent and Toeplitz operators.

8. AN EXAMPLE FROM DIGITAL COMMUNICATION

In this section we demonstrate the practical relevance of the theoretical frame-
work derived in this paper by analyzing a problem arising in digital communication.
We highlight the details related to the finite section method and refer the reader
to [21] for a more detailed description of the engineering aspects of the problem.

In a time-invariant digital communication system one is confronted with a linear
system of equations Az = b, where © = {x,},c7 is a sequence of information symbols
to be transmitted and b = {by }rez is the received, discrete signal. We can assume
that zy € {—1,1}, thus « € £*°. The entries of A are of the form

(8.1) agl = (,0(' - kR) x h o 90(- - ZT),

where h is the channel impulse response, ¢ is a bandlimited function (the trans-
mission pulse), T is the transmission period, and R is the receive sampling period.
We do not go into detail about the particular choice of ¢, T', and R. The only facts
we need are: (i) for properly selected T" and R we can choose ¢ to be a bandlimited
function in L!(R), where v must satisfy the Beurling-Domar condition, i.e.,

> og v(k
(8.2) y ng—g‘”) <oo, forallzeR;
k=0

(i) under certain conditions on h, the matrix A has an inverse for R = T and a
left-inverse for R < T.

Furthermore, we note that h is a causal function that decays exponentially in
time. This implies that A is non-hermitian and that A € A,, the latter follows
from well-known properties of Beurling convolution algebras [23] and the fact that
a weight which satisfies (8.2) also satisfies the GRS condition (3.1), cf. [14].

There are two ways to approach the problem of recovering x from b. In the first
case we try to recover the entries of x “on the fly”, i.e., we solve the truncated sys-
tem A, T, = b,. In this case we only assume that b € £*° and the ¢? -convergence
estimates of Theorem 16 apply. In the second case we precompute the inverse
of A by solving Az = ey where ¢ is the zeroth unit vector. Due to the specific
(block)-Toeplitz structure of A, the vector z contains all required information to
fully determine the inverse of A, which is then used to recover z. In this case we
apply the non-symmetric finite section method from Section 7 to Az = ¢y. Since
A€ A, and A*ey € (!, quantitative estimates as in Section 6 apply and we can ap-
proximate the true solution z with a rate of convergence depending on v. Since in
this application v can be chosen to be v(z) = el”I" with a < 1, the (non-symmetric)
finite section method achieves exponential rate of convergence.



22

[1]
2]

KARLHEINZ GROCHENIG, ZIEMOWIT RZESZOTNIK, AND THOMAS STROHMER

REFERENCES

W. Arveson. C*-algebras and numerical linear algebra. J. Funct. Anal., 122(2):333-360, 1994.
A. G. Baskakov. Wiener’s theorem and asymptotic estimates for elements of inverse matrices.
Funktsional. Anal. i Prilozhen., 24(3):64-65, 1990.

A. G. Baskakov. Estimates for the elements of inverse matrices, and the spectral analysis of
linear operators. Izv. Ross. Akad. Nauk Ser. Mat., 61(6):3-26, 1997.

A. Bottcher and B. Silbermann. The finite section method for Toeplitz operators on the
quarter-plane with piecewise continuous symbols. Math. Nachr., 110:279-291, 1983.

A. Boéttcher and B. Silbermann. Analysis of Toeplitz operators. Springer-Verlag, Berlin, 1990.
A. Béttcher and B. Silbermann. Introduction to large truncated Toeplitz matrices. Universi-
text. Springer-Verlag, New York, 1999.

O. Christensen and T. Strohmer. The finite section method and problems in frame theory.
Journal Approx. Theory, 133(2):221-237, 2005.

J. B. Conway. A course in functional analysis. Springer-Verlag, New York, second edition,
1990.

S. Demko, W. F. Moss, and P. W. Smith. Decay rates for inverses of band matrices. Math.
Comp., 43(168):491-499, 1984.

I. Gelfand, D. Raikov, and G. Shilov. Commutative normed rings. Chelsea Publishing Co.,
New York, 1964. Translated from the Russian.

I. Gohberg and I. Fel’dman. Convolution equations and projection methods for their solution.
American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F.
M. Goldware, Translations of Mathematical Monographs, Vol. 41.

I. Gohberg, S. Goldberg, and M. Kaashoek. Basic classes of linear operators. Birkh&user
Verlag, Basel, 2003.

I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman. The band method for positive and
strictly contractive extension problems: an alternative version and new applications. Integral
Equations Operator Theory, 12(3):343-382, 1989.

K. Grochenig. Weight functions in time-frequency analysis, 2006. preprint.

K. Grochenig and M. Leinert. Wiener’s lemma for twisted convolution and Gabor frames. J.
Amer. Math. Soc., 17:1-18, 2004.

K. Grochenig and M. Leinert. Symmetry of matrix algebras and symbolic calculus for infinite
matrices. Trans. Amer. Math. Soc., 358:2695-2711, 2006.

R. Hagen, S. Roch, and B. Silbermann. C*-algebras and numerical analysis, volume 236 of
Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York,
2001.

G. H. Hardy, J. E. Littlewood, and G. Pédlya. Inequalities. Cambridge, at the University
Press, 1952. 2d ed.

S. Jaffard. Propriétés des matrices “bien localisées” pres de leur diagonale et quelques appli-
cations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7(5):461-476, 1990.

V. Rabinovich, S. Roch, and B. Silbermann. Limit operators and their applications in oper-
ator theory, volume 150 of Operator Theory: Advances and Applications. Birkhduser Verlag,
Basel, 2004.

J. G. Proakis. Digital Communications. McGraw-Hill, New York, 2000.

V. S. Rabinovich, S. Roch, and B. Silbermann. Algebras of approximation sequences: finite
sections of band-dominated operators. Acta Appl. Math., 65(1-3):315-332, 2001. Special issue
dedicated to Antonio Avantaggiati on the occasion of his 70th birthday.

H. Reiter and J. Stegeman. Classical harmonic analysis and locally compact groups, vol-
ume 22 of London Mathematical Society Monographs. New Series. The Clarendon Press
Oxford University Press, New York, second edition, 2000.



QUANTITATIVE ESTIMATES FOR THE FINITE SECTION METHOD 23

[24] J. Sjostrand. Wiener type algebras of pseudodifferential operators. In Séminaire sur les
Equations auxr Dérivées Partielles, 1994-1995, pages Exp. No. IV, 21. Ecole Polytech.,
Palaiseau, 1995.

[25] T. Strohmer. Rates of convergence for the approximation of dual shift-invariant systems in
¢%(Z). J. Four. Anal. Appl., 5(6):599-615, 2000.

[26] T. Strohmer. Four short stories about Toeplitz matrix calculations. Linear Algebra Appl.,
343/344:321-344, 2002. Special issue on structured and infinite systems of linear equations.

[27] T. Strohmer. Matrix factorizations and Banach algebras, 2006. manuscript.

[28] T. Strohmer. Pseudodifferential operators and Banach algebras in mobile communications.
Applied and Computational Harmonic Analysis, 20(2):237-249,2006.

[29] Q. Sun. Wiener’s lemma for infinite matrices with polynomial off-diagonal decay. C. R. Math.
Acad. Sci. Paris, 340(8):567-570, 2005.

FAcUuLTY OF MATHEMATICS, UNIVERSITY OF VIENNA, NORDBERGSTRASSE 15, A-1090 VI-
ENNA, AUSTRIA
E-mail address: karlheinz.groechenigQunivie.ac.at,ziemowit.rzeszotnik@univie.ac.at

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAvis, CA 95616-8633,
USA

FE-mail address: strohmer@math.ucdavis.edu



