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FAST RECONSTRUCTION METHODS FOR BANDLIMITED
FUNCTIONS FROM PERIODIC NONUNIFORM SAMPLING∗

THOMAS STROHMER† AND JARED TANNER‡

Abstract. A well-known generalization of Shannon’s sampling theorem states that a bandlimited
function can be reconstructed from its periodic nonuniformly spaced samples if the effective sampling
rate is at least the Nyquist rate. Analogous to Shannon’s sampling theorem this generalization
requires that an infinite number of samples be available, which, however, is never the case in practice.
Most existing reconstruction methods for periodic nonuniform sampling yield very low order (often
not even first order) accuracy when only a finite number of samples is given. In this paper we propose
a fast, numerically robust, root-exponential accurate reconstruction method. The efficiency and
accuracy of the algorithm is obtained by fully exploiting the sampling structure and utilizing localized
Fourier analysis. We discuss applications in analog-to-digital conversion where nonuniform periodic
sampling arises in various situations. Finally, we demonstrate the performance of our algorithm by
numerical examples.

Key words. Shannon’s sampling theorem, oversampling, nonuniform periodic sampling, analog-
to-digital conversion, Gevrey regularity, uniform interleaved sampling

AMS subject classifications. 41A05, 41A30, 42C15, 65T50, 94A12, 94A20

DOI. 10.1137/040609586

1. Introduction. The classical Shannon sampling theorem plays a crucial role
in signal processing and communications, indicating how to transfer between analog
signals and discrete sequences [26]. Shannon’s sampling theorem states that if a
function1 belongs to the space of bandlimited functions Bσ, i.e.,

f(t) :=
1√
2π

∫ σ

−σ

e2πiwtF (w)dw, F (w) ∈ L2
0[−σ, σ],(1.1)

then it can be recovered exactly from its equidistant samples

f(t) ≡
∞∑

k=−∞
f

(
k

2σ

)
sin(2πσt− πk)

2πσt− πk
:=

∞∑
k=−∞

f

(
k

2σ

)
sinc(2πσt− πk).(1.2)

Shannon’s sampling theorem assumes that an infinite number of samples is avail-
able, which is of course never true in practice. Truncation of the cardinal series (1.2)
results in rather poor approximation of the original bandlimited signal, and the trun-
cation error is of the unacceptable low order of 1/

√
L, where L is the number of

samples; cf. [26]. In the presence of noise or quantization errors convergence may
even break down completely [4]. To avoid these problems in practice, one usually
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resorts to oversampling of the signal, since this gives rise to vastly better convergence
rates and as a result greater robustness to noise.

While oversampling is therefore desirable in practice, it is not always easily done
in real world applications. For example, consider advanced wireless communication
systems, where demand for data rate is steadily increasing, requiring communication
systems that use transmission signals with a (baseband) bandwidth in the range of tens
of megahertz up to one gigahertz (as in currently developed ultrawideband systems).
Such a huge bandwidth necessitates very high sampling rates in the analog-to-digital
conversion which puts enormous demands on the analog sampling devices. While
it is possible to construct signal acquisition systems that sample a signal even at
nanosecond scales with high precision, such devices become increasingly expensive.
More specifically, a linear increase in precision of a sampling device often goes hand
in hand with a superlinear increase in the costs of constructing such a device.

One possible way to remedy this problem is to combine several analog-to-digital
converters (ADCs) with lower sampling rate to obtain one virtual sensor with high
sampling rate. We describe this concept in more detail. A standard ADC uniformly
(over)samples an analog signal (a continuous-time function) at rate T−1, say, where
T is the time between two successive samples. The so obtained discrete-time signal is
then subject to quantization, and the quantized signal is further processed by a digital
signal processor (DSP). Instead of using one ADC with sampling rate T−1 we could
run N ADCs in parallel, each operating at the slower rate (NT )−1. The sampling
instances of the nth ADC are chosen at {(kN + n)T}k∈Z, n = 0, . . . , N − 1, so that
the combined sampling instances are {kT}k∈Z, which is equivalent to the output of
one ADC that operates at the N times higher rate T−1.

Many companies such as Maxim (http://www.maxim-ic.com/appnotes.cfm/
appnote number/2094), Agilent Technologies (http://www.agilent.com/labs/news/
2003features/fea adc03.html), and Analog Devices have been developing or are cur-
rently developing such time-interleaved ADCs.

To give another concrete current example for the need of time-interleaved ADCs
consider the 10 Gigabit Ethernet over copper standard (which is part of the IEEE 802.3
standard; see http://www.ieee802.org). There 4 Cat6 copper pairs are used, so 2.5
Gigabits/sec are transmitted. Since a 12-PAM code with error correction is used, this
means the baud rate is about 800 MHz. At least 8 bits precision is necessary. The
fastest ADC with the desired precision runs about 1/2 of that. Consequently 2 or 4
time-interleaved ADC channels must be used to achieve the required precision.

While a time-interleaved ADC structure obviously has its merits, it does not come
without caveats. The coordination of the N ADCs has to be done with high precision,
but in practice timing errors between the individual ADCs result in sampling sets of
the form {kNT + Tn}k∈Z, where the Tn are distinct random timing shifts. In other
words, the combined sampling set does not form a uniform sampling set but consists of
nonuniformly shifted unions of uniform sampling points, which is often referred to as
periodic nonuniform sampling or bunched sampling [2, 18]. This poses two problems:
(i) How can we estimate the unknown shifts Tn? (ii) How can we reconstruct quickly
and stably the original signal from its periodically nonuniformly spaced samples? In
this paper we focus on the second question, with shift estimation discussed in [23].
While there are several algorithms in the literature that deal with the reconstruction
of bandlimited signals from periodic nonuniform samples (see, e.g., [14, 18, 2, 25, 24,
5, 12, 15, 20]), none of these algorithms provide high order accuracy with respect to
truncation error.
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Sometimes it can be advantageous to deliberately perform nonuniform periodic
sampling in connection with analog-to-digital conversion. For instance, in [20] the use
of periodic nonuniform sampling is proposed to avoid noise coupling in a mixed-signal
integrated circuit, which contains analog and digital signal processing circuits, as is
the case for an ADC. After the analog input signal has been sent through the ADC,
the digital output is processed further by a DSP. However, switching of the digital
circuits generates noise that can couple into the analog signal path through so-called
parasite signal paths. Such noise coupling distorts the analog signal, which degrades
the signal-to-noise ratio at the input of the ADC.

To avoid this noise coupling, it is proposed in [20] to have the ADC acquire a
group (bunch) of samples at high rate while the digital signal processor is inactive,
and allow digital processing of the ADC output during a second phase when the
ADC is not sampling. This reduces the noise coupled to the analog signal, since the
DSP operates only during the second phase. As the final step, one has to convert
the bunched samples to uniformly spaced samples. Practical restrictions in terms
of available memory and tolerable time delay imply an upper limit on the number
of samples that can be processed during the conversion from bunched to uniform
samples. This sampling pattern is obviously a special case of the periodic nonuniform
sampling pattern described in the previous paragraph, with the simplification that all
Tn − Tn−1 are (nearly) equal, but with the difficulty that we have a potentially large
gap between two clusters of samples. This large gap may cause some instabilities;
therefore it is vital to have a numerical reconstruction algorithm that is robust to
such large gaps.

In this paper we develop the first method for reconstruction of a bandlimited
signal from its periodic nonuniformly spaced samples that achieves root-exponential
accuracy from a finite number of samples. The proposed method is numerically robust,
and since its computationally most expensive steps consist of fast Fourier transforms
(FFTs), it is numerically very efficient.

The paper is organized as follows. In section 2 we review some results on over-
sampling and localization of functions and their Fourier transforms. The Gevrey
class arises as a natural candidate space for compactly supported smooth filter func-
tions in connection with oversampled bandlimited signals. In section 3 we briefly
describe how these smooth filters correspond to a localized reconstruction, resulting
in a root-exponential accurate, fast algorithm for recovering a bandlimited signal from
its uniformly spaced oversampled values. This simple observation is integral for the
derivation of the main algorithm for the case of periodic nonuniformly spaced sam-
ples; cf. section 4. Numerical simulations that demonstrate the performance of the
proposed method are presented in section 5. Finally, section 6 contains our conclusion
and an outlook of future research.

2. Oversampling and localization. As mentioned in the introduction, the
formulation in (1.2) is unsuitable for practical applications, where only a finite number
of samples is available, {f(k/2σ)}|k|≤L. For truncated samples the error, classically
referred to as the truncation error, is controlled by the atom’s localization

ε(t, L, T ) :=

∣∣∣∣∣∣f(t) −
√

2π

2σ

∑
|k|≤L

f

(
k

2σ

)
ψ

(
t− k

2σ

)∣∣∣∣∣∣(2.1)

≤
√

2π

2σ
· ‖f‖L∞

∑
|k|>L

∣∣∣∣ψ
(
t− k

2σ

)∣∣∣∣ .
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In the case of the classical Shannon sampling theorem, the atom, ψ(τ) := sinc(τ),
suffers from an unacceptably slow decay, limτ→∞ ψ(τ) ∼ 1/τ , resulting in a first order
convergence rate while moving from the sample boundaries, ±L/2σ, to the interior.
Moreover, if the samples f(k/(2σ)) are replaced by noisy samples f(k/(2σ))+εk, then
the corresponding approximation via the cardinal series in (1.2) may differ significantly
from f(t); cf. [4].

To remedy these problems in applications, one usually introduces oversampling.
Sampling a function in the time domain introduces a periodization in the associated
Fourier dual space, where sampling rate T−1 = 2σ corresponds to a 2σ periodization.
In (1.2) the reproducing atom (time domain), sinc(2πσt−πk), removes the periodiza-
tion introduced by sampling, through the action of its associated filter (Fourier dual
space), χ[−σ,σ]. For this critical, Nyquist sampling rate, sinc(·) is the unique atom
that can be used to remove the periodization. However, if the bandlimited signal is
sampled at a faster rate, T−1 := 2σ/r, where r < 1, then the dual space periodization
is increased to 2σ/r, allowing a large family of reproducing filters. Specifically, any
function satisfying2

Ψ(w) =

⎧⎨
⎩

1, |w| ≤ σ,
0, |w| > σ(2 − r)/r =: Ω ⇒ ψ ∈ BΩ,
anything else

(2.2)

gives rise to a Shannon-type series expansion

f(t) ≡
√

2πT

∞∑
k=−∞

f (kT )ψ (t− kT ) .(2.3)

For r = 1 the above filter reduces to χ[−σ,σ] and the classical Shannon’s sampling
theorem, whereas for r < 1 a gap3 is introduced between σ and σ(2 − r)/r, allowing
for a host of other reproducing filters, including those with a high degree of regularity;
see Figure 2.1.

Asymptotically the atom’s localization is reflected in the filter’s smoothness; con-
sequently, the filter’s regularity controls the convergence rate of the truncation er-
ror (2.1). By constructing infinitely differentiable filters with precise regularity esti-
mates, we obtain root-exponential accuracy for the approximation of a bandlimited
signal, as the point to be approximated moves from the sampling boundary, ±LT , to
the interior; see subsection 2.1. Unfortunately, unlike classical finite regularity filters,
such as the raised cosine, which have a closed form expression for their corresponding
atoms, to the authors’ knowledge, there is no known infinitely differentiable compactly
supported filter whose atom allows an explicit closed form expression. Alternatively
to approximating the atoms as proposed in [16, 22], we introduce and analyze a di-
rect Fourier domain implementation that does not adversely affect the high resolution

2It has been noted in [11] that the reproducing property is somewhat less strict than as stated
in (2.2), in that the filter need not be zero for all |w| ≥ (2 − r)/r. Rather, the reproducing property
is satisfied if the filter is one for |w| ≤ σ and zero at the points where the periodic extension
of the signal’s dual representation is nonzero. However, this added flexibility cannot increase the
regularity of the filter or decrease its regularity constants and, as such, cannot improve the asymptotic
convergence rate. Although this added flexibility can be used to increase the atom’s immediate
localization about the origin, it introduces substantial peaks away from the origin [11], decreasing
the overall convergence rate.

3Filters which are nonzero for σ < |w| < Ω necessarily decrease noise less than the characteristic
filter, χ[−σ,σ], but the vastly improved convergence rate more than makes up for this modestly lower
denoising which is overcome in other ways.
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Fig. 2.1. The signal’s dual space representation (solid line) and the signal’s periodization due
to sampling at the rate, T−1 := 2σ/r, for r < 1 (dotted line). With the gap between periodization,
a smooth filter (dot-dash line) can be used to remove the periodization introduced by sampling.

achieved by smooth filters. The time domain localization of an atom, ψ(·), is reflected
in the regularity4 of its corresponding filter, Ψ(·),

|ψ(t)| ≤ (2πt)−s‖Ψ‖Cs · 2Ω√
2π

∀s, ψ ∈ BΩ,(2.4)

where ‖Ψ‖Cs := ‖Ψ(s)‖L∞ .
Consequently, combining the bounds in (2.1) and (2.4), convergence is gained at

the polynomial rate5

ε(t, L, T ) ≤ Const · (LT − |t|)1−s(2π)−s‖Ψ‖Cs ·
(

Ω

σ

)
, s ≥ 2,(2.5)

as t passes from the boundary, ±LT , to the interior, where T := r/2σ.
Rather than improving the atom’s localization by increasing its corresponding

filter’s regularity, attempts have been made to construct highly localized atoms by

maximizing the atom’s local weight,
∫ R

−R
ψ2(t)dt/

∫∞
−∞ ψ2(t)dt. However, such ap-

proaches have resulted in discontinuous filters [17] and atoms which do not decay
globally [11]. A much more successful approach for polynomial order filters is to min-
imize the filter’s regularity constant, ‖Ψ‖Cs . The classical raised cosine is such a filter
[21]:

Ψrc(w) =

⎧⎪⎪⎨
⎪⎪⎩

1, |w| ≤ σ,
0, |w| > σ(2 − r)/r,
1
2 (1 + cos(π2 ( r

1−r )(wσ − 1)), σ < w < σ 2−r
r ,

1
2 (1 + cos(π2 ( r

1−r )(wσ + 1)), −σ > w > −σ 2−r
r ,

(2.6)

4This is achieved by s integrations by parts, where the derivatives are transferred onto the filter.
5If the underlying filter possesses ‖Ψ‖Cs+1 < ∞, then the bound (2.5) can be tightened by one

order of (LT − |t|) to the rate (LT − |t|)−s [9].
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where the bounded regularity constants are given explicitly by ‖Ψ‖C1 = 1
2 ( T

2(1−r) )

and ‖Ψ‖C2 = 1
2 ( T

2(1−r) )
2.

When a comparatively small number of sampling points is taken, low regular-
ity constant polynomial order methods give extremely good reconstructions. How-
ever, when a larger number of samples is available, atoms with significantly im-
proved asymptotic localization can be achieved by constructing infinitely regular fil-
ters, Ψ ∈ C∞

0 . It should be noted that for infinitely differentiable functions, the opti-
mal bound in (2.4) is not necessarily obtained for large s, as the regularity constant
‖Ψ‖Cs grows rapidly in s. Rather, for functions where precise regularity estimates are
known, the optimal s can be determined, resulting in an exponential decay without
necessarily large constants. These claims will be realized in the numerical experi-
ments presented in section 5, contrary to the assertion in [3], where it is claimed
that the increased regularity does not improve numerical convergence. In a direct
numerical comparison with the raised cosine filter, our infinitely differentiable filter
(2.10) achieves dramatically superior convergence in the interior of the samples, and
quantitatively similar errors near the sampling boundaries; see Figure 5.1.

2.1. Localization and Gevrey regularity. To achieve exponential accuracy
and satisfy the reproducing condition, (2.2), requires a filter which is infinitely dif-
ferentiable and compactly supported. The natural space for infinitely differentiable
compactly supported functions is the Gevrey class which consists of functions satis-
fying the smoothness bound

‖h‖Cs := ‖h(s)‖L∞ ≤ Const · (s!)α

ηsh
⇐⇒ h ∈ Gα,(2.7)

where ηh is a constant independent of s. Incorporating the regularity information in
the localization bound, (2.4), and minimizing over all admissible s, we conclude that
Gevrey class filters satisfy a root-exponential localization decay,6

|ψ(t)| ≤ Const ·
√
|t| exp(−α(2πη|t|)1/α), Ψ ∈ Gα,(2.8)

and root-exponential truncation error

ε(t, L, T ) ≤ Constα,η exp(−(2πη(LT − |t|))1/α),(2.9)

where Constα,η ∼ η−2
∑q

l=0 q!η
l/2/(q− l)!, with q the smallest integer greater than or

equal to (3α− 2)/2.
A similarly localized atom was constructed in [8, 16] by multiplying the sinc

function with the inverse Fourier transform of an appropriately dilated G2 function.
Alternatively, such Gα filters can be expressed explicitly in the dual space, such as

ΨG2(w) =

⎧⎪⎪⎨
⎪⎪⎩

1, |w| ≤ σ,
0, |w| > σ(2 − r)/r,
ρ
(

w−σ
σ(2−r)/r

)
, σ < w < σ 2−r

r ,

ρ
( −w−σ
σ(2−r)/r

)
, −σ > w > −σ 2−r

r ,

(2.10)

where ρ(w) := exp[β(w − 1)−1 e−1/w] ∈ G2 [13].

6Compact support is inconsistent with analyticity, G1, so reproducing atoms can at most be in
the space Gα, for α > 1, excluding true exponential decay, i.e., α = 1, as was shown in the classical
paper [1]. The Gevrey class of functions is essentially similar to ultradifferentiable functions [19].
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Although the filter ΨG2(·) and the one in [16] result in rapid convergence while ap-
proaching the interior, |t| ≤ LT , their associated atoms lack an explicit construction.
As a result, to reconstruct a bandlimited signal at an arbitrary point has required the
costly implementation of a quadrature evaluation, or a global approximation of the
atom, such as the Padé and Gabor approximations proposed in [16] and [22], respec-
tively. Alternatively, in the next section we introduce and analyze a direct Fourier
domain implementation that does not adversely effect the high resolution achieved by
smooth filters.

3. Dual space implementation for uniform oversampling. In this section
we introduce an implementation which removes the sampling induced periodization
through the direct action of the filter in the Fourier dual space. More specifically, if
the bandlimited signal is sampled on the mesh R := {kT}|k|≤L, with T := r/2σ and
r < 1, we seek to compute an approximation to the signal on the refined mesh P :=
{kT/p}|k|≤pL, where p ∈ N/{1}. This implementation is extremely efficient, as it only
requires the FFT of the zero inserted signal, (3.2), and the pointwise multiplication
in the dual space.

Define the approximation on the fine mesh as

Approxψ f

(
qT

p

)
:=

∑
|k|≤L

f(kT )ψ

[(
q

p
− k

)
T

]
.(3.1)

We zero insert the samples from the coarse mesh to the fine mesh

fo(x) :=

{
f(x), x ∈ R,
0, x ∈ P/R,

(3.2)

and note that the approximation in (3.1) is a discrete convolution,

Approxψ f(hq) =
∑

|k|≤pL

fo(hk)ψ ([q − k]h) ,(3.3)

where h := T/p. To transfer the discrete convolution to pointwise multiplication in
the dual space, we define the discrete, pseudo-Fourier transforms of a function as

G̃(wj) :=
h√
2π

∑
|k|≤pL

g(hk) exp(−2πihkwj),(3.4)

g(hq) :=

√
2π

h(2pL + 1)

∑
|j|≤pL

G̃(wj) exp(2πihqwj),(3.5)

where wj := j/h(2pL + 1).
In this notation the time domain implementation can be expressed in the Fourier

domain,

Approxψ f(hq) =
∑

|k|≤pL

fo(kh)ψ([q − k]h)

=
2π

h2(2pL + 1)

∑
|j|≤pL

F̃o(wj)Ψ̃(wj) exp(2πihwjq).(3.6)
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Although this illustrates an efficient method for computing the approximation on
a refined grid without increasing the overall error, it remains necessary to compute
the atom in order to determine Ψ̃(wj). However, the pseudo-Fourier transform is the
spectral projection (truncated Fourier series) of the true Fourier representation,

Ψ̃
( wj

2πh

)
=

h√
2π

∑
|k|≤pL

ψ(hk) exp(−ikwj)

= h

∫ σ(2−r)/r

−σ(2−r)/r

Ψ
( w

2πh

)
DpL(2πh(w − wj))dw

= SpLΨ
( wj

2πh

)
,(3.7)

where DR(x) := sin((R + 1/2)x)/2π sin(x/2) is the Dirichlet kernel of order R, and
SRf(·) is the R term truncated Fourier series projection of f(·), i.e., SRf := DR∗f . As
such, for highly smooth filters, the two Fourier representations are root-exponentially
close7 for all wj ,∣∣∣Ψ(wj) − Ψ̃(wj)

∣∣∣ = |Ψ(wj) − SpLΨ(wj)|

≤ Const · e−α(ηΨLT )1/α , Ψ(·) ∈ Gα.(3.8)

The composite error is then composed of the traditional truncation error, (2.1), and
the error in replacing the pseudo-Fourier transform with the exact dual space repre-
sentation of the atom, i.e., the filter. We summarize the above results in the following
theorem.

Theorem 3.1. Let f(t) be a signal bandlimited to [−σ, σ], and Ψ(·) a filter in Gα

satisfying (2.2). From the function’s oversampled values on the mesh, R := {kT}|k|≤L,
where T := r/2σ; its approximation on the fine mesh, P := {kh}|k|≤PL/R, where
h := r/2σp for p ∈ N/{1}, can be computed by pointwise multiplying the pseudo-
Fourier transform, (3.4), of the signal’s zero insertion onto P and the filter, Ψ(·).
The resulting error is bounded by∣∣∣∣∣∣f(hk) − 2π

h2(2pL + 1)

∑
|j|≤pL

F̃o(wj)Ψ(wj) exp(2πihwjk)

∣∣∣∣∣∣
≤ Const · p

2L

σr
‖f‖L∞

(
e−α(ηΨLT )1/α + e−α(ηΨ(LT−|t|))1/α

)
≤ Const · p

2L

σr
‖f‖L∞e−α(ηΨ(LT−|t|))1/α .

Remark. Although the approximation of an arbitrary point is not possible by
the method put forth in Theorem 3.1, the filter can be modulated to give an approx-
imation on a shifted submesh, P + s0 := {kh + s0}|k|≤pL. This can be seen directly

be replacing Ψ̃(wj) in (3.6) with its modulation Ψ̃(wj) exp(2πis0wj) and absorbing
the modulation into the exponential, resulting in Approxψf(hq + s0). An arbitrary
point in |t| ≤ LT can be approximated for a small modulation, |s0| ≤ h/2, and

7This is true for any p ∈ N/{1} as the trapezoidal quadrature is taken over the support of the
filter, [−σ(2 − r)/r, σ(2 − r)/r] ⊂ [w−pL, wpL].
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as a result, the difference between the modulated pseudo-filter and the true modu-
lated filter remain exponentially small, only modestly increasing the constant in (3.8).
Consequently any point in the interior of the samples, |t| ≤ LT , can be approximated
with the exponential accuracy stated in Theorem 3.1 through the application of the
appropriately modulated filter and a zero insertion of p = 2.

4. An algorithm for periodic nonuniform sampling. Although uniform
oversampling achieves the optimal convergence rate for a given sampling rate, appli-
cations exist where for various reasons one is confronted with more general sampling
geometries. In this section we devote our attention to the case of periodic nonuni-
form sampling (bunched sampling), i.e., when multiple uniform undersampled sets
are combined to achieve an effective sampling density similar to the uniform sam-
pling case. First order methods exist for the reconstruction of the bandlimited signal
from periodic nonuniform sampling [18, 2, 25, 5]. Here we investigate the dual space
structure induced by periodic nonuniform sampling, and derive direct high resolution
reconstruction methods.

It is well known that for periodic nonuniform sampling a generalization of the
cardinal series (1.2) holds by using N atoms in the series expansion (in combination
with appropriate coefficients) instead of just one atom. Various essentially equivalent
versions of this generalized sampling theorem have been derived, which all revolve
around exploiting in the Fourier domain certain periodicities induced by the sampling
geometry. Initially we follow a similar path, but unlike other approaches we pay
special attention in our derivations to our goal of using highly localized atoms for the
reconstruction of the sampled function.

Poisson’s summation theorem relates the physical space sampling to the resulting
dual space periodization. Specifically, a bandlimited signal, f ∈ Bσ, sampled at the
rate T−1 := 2σ/r causes a dual space periodization of 2σ/r. For oversampling, r < 1,
the signal’s dual space representation is separated (Figure 2.1), and the introduced
periodization can be removed in one step by applying a smooth filter which satisfies the
reproducing condition (2.2). Alternatively, when a signal is undersampled (r > 1), the
dual space periodizations overlap, and a general signal cannot be reconstructed from
those samples alone. More precisely, if a signal is sampled at the points {lT +Tn}l∈Z,
the dual space representation is given by

STn(w) := e2πiTnw
∞∑

l=−∞
e−2πilTnT

−1

F (w − lT−1).(4.1)

If N ≥ 
r� such undersampled sets are available, then an effective sampling rate of
2σN/r is obtained and the overlapping can be removed for |w| ≤ σ, allowing the
recovery of the bandlimited signal. We now present general conditions, reminiscent
of (2.2), for the recovery of a bandlimited signal from its bunched sampling. We then
conclude this section with an algorithm for the construction of a family of filters which
remove the sampling induced periodization.

For a given value of k, F (w) can be recovered from the N bunched sampling sets
of the signal in the interval Ik := [(−N +k−1)T−1 +σ, kT−1−σ] by multiplying each
undersampled set’s dual space representation, STn by an undetermined coefficient,
ck,n, selected to remove the periodizations for l = −N + k, . . . , k − 1, i.e.,

Fk(w) :=

N∑
n=1

ck,ne
−2πiTnwSTn(w) with Fk(w) = F (w) for w ∈ Ik.(4.2)
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The coefficients can then be determined by solving the resulting system8

AR(k)c(k) = eN−k+1 with Am,n := exp(2πiTnT
−1m), m, n = 1, . . . , N,(4.3)

c(k) = (ck,1 ck,2 · · · ck,N )T , eN−k+1 = δj,N−k+1, and

R(k) := diag(γ1(k) γ2(k) · · · γN (k)),where γn(k) := exp(2πiTnT
−1(k −N − 1)).

Repeating this process for a sufficient set of intervals to cover the bandwidth of the sig-
nal, [−σ, σ] ⊆ ∪κ

j=1Ikj
, removes the sampling induced periodization for the bandwidth

of interest.9 However, the overall domain is segmented into κ overlapping intervals
which must be spliced together with partitioning functions Φkj (w) constructed ap-
propriately to recover F (w),

F (w) =

κ∑
j=1

Fkj (w)Φkj (w), |w| ≤ σ.(4.4)

For partitions which are not dependent on the translates, {Tn}Nn=1 requires Φk(w) = 0
for w /∈ Ik and consequently

∑κ
j=1 Φkj

(w) = 1 for |w| ≤ σ. In summary, the signal’s
dual space representation can be recovered from its bunched sampling if the following
conditions on the intervals and partitioning functions are satisfied:

[−σ, σ] ⊆ ∪κ
j=1Ikj

, Φkj
(w) = 0 for w /∈ Ikj

,

κ∑
j=1

Φkj
(w) = 1 for |w| ≤ σ.

(4.5)

Accordingly, a bandlimited signal’s (f(·) ∈ Bσ) Fourier transform can be recov-
ered from its overlapping induced periodization by the set of filters {Ψn(·)}Nn=1,

F (w) =

κ∑
j=1

Φkj (w)

N∑
n=1

STn(w)ckj ,ne
−2πiTnw

=

N∑
n=1

⎛
⎝ κ∑

j=1

cn,kjΦkj (w)

⎞
⎠ ∞∑

l=−∞
e−2πilTnT

−1

F (w − lT−1)

=

N∑
n=1

Ψn(w)

∞∑
l=−∞

e−2πilTnT
−1

F (w − lT−1)

= T

N∑
n=1

Ψn(w)

∞∑
l=−∞

f(lT + Tn)e−2πiw(lT+Tn),(4.6)

where the last equality is due to the Poisson summation formula, and the filters are
defined as

Ψn(w) :=

κ∑
j=1

ckj ,nΦkj
(w),(4.7)

8The matrix A is of Vandermonde type and is therefore invertible for distinct translates, {Tn}Nn=1.
9The effective oversampling rate N/r > 1 guarantees the full set of intervals cover the signal’s

bandwidth, [−σ, σ] ⊆N
k=1 Ik.
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with Ikj
and Φkj

selected to satisfy conditions (4.5), and ckj ,n being the solutions
of the system (4.3). Note that this N stage filtering is in contrast to the one-step
filtering, F (w) = Ψ(w)

∑∞
l=−∞ F (w−lT−1), used to remove the periodization induced

by uniform oversampling.
Consequently, by taking the inverse Fourier transform of (4.6), the signal can be

represented by its bunched samples and translated atoms:

f(t) = T

N∑
n=1

∞∑
l=−∞

f(lT − Tn)ψn(t− (lT + Tn)),(4.8)

where ψn, the inverse Fourier transform of Ψn, is the atom associated with the under-
sampled set {lT−Tn}l∈Z. This is the corresponding generalization of the oversampling
representation (2.3) to the case of bunched sampling.

Similar to the case of uniform oversampling, the truncation error for bunched
sampling, (4.8), is governed by the atom’s localization:

εb(t, L, T ) :=

∣∣∣∣∣∣f(t) − T

N∑
n=1

∑
|l|≤L

f (lT − Tn)ψn (t− (lT + Tn))

∣∣∣∣∣∣
≤ T‖f‖L∞

N∑
n=1

∑
|l|>L

|ψn (t− (lT + Tn))| .(4.9)

In [5] the Nyquist sampling rate N = r was considered, where the interval |w| ≤ σ
was necessarily partitioned with characteristic functions, Φk(w) = χIk . However,
similar to uniform Nyquist sampling the abrupt filtering results in atoms with first
order decay, and consequently the convergence rate for truncated sets of samples is
first order, making it an impractical method for real world applications.

For smooth Gα filters, the atoms, ψn(t), possess root-exponential localization,
(2.8), and consequently the truncation error satisfies

εb(t, L, T ) ≤ Constα,ηNT‖A−1‖‖f‖L∞ · exp(−α(2πη((L− 1)T − |t|))1/α),(4.10)

where Constα,η is as before and ‖A−1‖ is determined solely by the set of translates,
{Tn}Nn=1.

Remark. (i) The truncation error bound in (4.10) is overly pessimistic in the
factor ‖A−1‖ due to inherent structure in the system of equations AR(k)c(k) =

eN−k+1. The (N − k + 1)th row of this system simplifies to
∑N

n=1 ck,n = 1
for each k, imposing the additional structure on the atoms that the sum of
the filters is the sum of the partitions,

N∑
n=1

Ψn(w) =

N∑
n=1

κ∑
j=1

cn,kj
Φkj

(w) =

κ∑
j=1

Φkj
(w),(4.11)

which is by construction a smooth function satisfying condition (2.2) with a
modified bandwidth Ω. Applying the Fourier transform to (4.11), this struc-
ture implies that the atoms sum to a fixed function, independent of the set
of translates. As a result, even when the translates are such that the ma-
trix A is ill conditioned, a substantial amount of cancellation between the
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atoms significantly reduces its effect on the truncation error. To see this
more quantitatively, first group those translates that are near one another,
say {Tn}n∈λ. Then let xλ be the overall amount of eN−k+1 contained in the
space spanned by the associated columns of AR(k). We observe in (4.3) that
due to the linear dependence of the columns in AR(k) associated with n ∈ λ
the coefficients {ck,n}n∈λ are often large in magnitude. Nonetheless, the sum
of these coefficients is dictated by xλ, which by construction is order one, not
by the individual translates. For this reason, although the individual atoms
associated with n ∈ λ may have large magnitude, determined by {ck,n}n∈λ

rather than xλ, their sum will not. Combined with the values of f(lT − Tn)
for n ∈ λ being nearly equal results in a substantial amount of cancellation
between the associated atoms. To capture the effect of this cancellation quan-
titatively, rather than pass the absolute value onto each element as in (4.9),
the bound can be left as

εb(t, L, T ) ≤ T
∑
|l|>L

∣∣∣∣∣
N∑

n=1

f(lT − Tn)ψn(t− (lT + Tn))

∣∣∣∣∣ ,(4.12)

where for each l, the atoms corresponding to near translates possess sub-
stantial cancellation. The numerical example in Figure 5.3 illustrates this
effect, where the error near the sampling boundaries does not increase sub-
stantially for highly ill conditioned matrices A, but rather roundoff error in
the cancellations pollutes the high resolution near the origin.
(ii) To improve the robustness of the proposed method even further we could
multiply each uniform sampling set by some weight, similar to the general
nonuniform sampling case discussed in [7]. In fact, by introducing properly
chosen weights we can obtain estimates for the condition number of A, since
the Toeplitz matrix A∗A is of the same form as the Toeplitz matrix appearing
in [10]. We leave the details to the reader.

We now turn our attention to constructing intervals and smooth Gα partitioning
functions satisfying condition (4.5) where the number of undersampled sets is sufficient
to achieve a density similar to oversampling, N > r, with an effective oversampling
rate of N/r > 1.

For minimal oversampling, N = 
r� > r, the recovered regions only overlap with
their immediate neighbors, i.e., Ik∩Ij = ∅ for |k−j| > 1, and the full set of recovered
zones {Ik}Nk=1 is required to cover the interval [−σ, σ]. Moreover, for each Ik there
is a subset that is not contained in the other intervals; consequently, the condition∑

k Φk(w) = 1 for |w| ≤ σ implies that the partitioning functions must satisfy

Φk(w) =

{
1, w ∈ [max(−σ, (k − 1)T−1 − σ),min(σ, (−N + k)T−1 + σ)],
0, w /∈ Ik.

(4.13)
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An example of Gα partitioning functions satisfying conditions (4.13) and
∑

k Φk(w) =
1 for |w| ≤ σ is

Φk1(w) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, w ≤ σ + (k1 − 1)T−1,

ρ
(

−w−σ
−(k1−1)T−1−2σ

)
, σ + (k1 − 1)T−1 < w < −σ,

1, −σ ≤ w ≤ σ + (k2 − 1)T−1,

ρ
(

w−(σ+(k2−1)T−1)
(k1−k2+N+1)T−1−2σ

)
, σ + (k2 − 1)T−1 < w < (k1 + N − 1)T−1 − σ,

0, (k1 + N − 1)T−1 − σ ≤ w,

(4.14)

for the leftmost partition,

Φkj
(w) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w ≤ σ + (kj − 1)T−1,

1 − ρ
(

w−(σ+(kj−1)T−1)
(kj−1−kj+N+1)T−1−2σ

)
, σ + (kj − 1)T−1 < w

< (kj−1 + N − 1)T−1 − σ,

1, (kj−1 + N − 1)T−1 − σ ≤ w
≤ σ + (kj+1 − 1)T−1,

ρ
(

w−(σ+(kj+1−1)T−1)
(kj−kj+1+N+1)T−1−2σ

)
, σ + (kj+1 − 1)T−1 < w

< (kj+1 + 1)T−1 − σ,

0, (kj+1 + 1)T−1 − σ ≤ w,

(4.15)

for interior regions j = 2, 3, . . . , κ− 1, and

(4.16)

Φkκ(w) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w ≤ σ + (kκ − 1)T−1,

1 − ρ
(

w−(σ+(kκ−1)T−1)
(kκ−1−kκ+N+1)T−1−2σ

)
, σ + (kκ − 1)T−1 < w

< (kκ−1 + N)T−1 − σ,

1, (kκ−1 + N)T−1 − σ ≤ w ≤ σ,

ρ
(

w−σ
(kκ+N)T−1−2σ

)
, σ < w < (kκ + N)T−1 − σ,

0, (kκ + N)T−1 − σ ≤ w,

for the rightmost partition, where kj := j −N for j = 1, 2, . . . , N and ρ(·) is defined
as in (2.10).

For more general effective oversampling rates, N > r, the recovered zones Ik
often overlap many of their neighbors, and as such constructing the full set of N
partitioning functions satisfying

∑
k Φk(w) = 1 for |w| ≤ σ becomes substantially

more complicated. However, for such higher effective oversampling, a smaller number
of partitions, κ ≤ N , is required to cover the support of F (w). The ideal subset of
intervals and partitioning functions selected through {kj}κj=1 possess minimal slope,
requiring that the intervals have equal size of internal and boundary overlaps, i.e.,
length(Ikj ∩ Ikj+1

) = length(Ik1
/[−σ, σ]) = length(Ikκ

/[−σ, σ]). Combined with the

fixed length of Ik the optimal subset for a given κ is selected as k∗j := jN+1
κ+1 − N

for j = 1, 2, . . . κ. The overlap length for κ sets with kj as defined before is T−1(1 −
r − κN−1

κ+1 ). The minimum number of partitions κ necessary to cover the bandwidth
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[−σ, σ] is then determined by requiring the overlap interval to be nonnegative, yielding
κmin := 
 r

N+1−r �.
For computational purposes using the minimum number of partitions, κmin re-

sults in unnecessarily steep partitions. Alternatively, a reasonable balance between
simplicity of construction and minimizing the partitions slope is achieved by using
the maximum number of partitions subject to the constraint that the intervals only
interact with their immediate neighbors, yielding κ∗ := min(N, �N+1+r

N+1−r �). The above
results for bunched sampling are summarized in the following theorem.

Theorem 4.1. A bandlimited signal f ∈ Bσ can be expressed in terms of its
samples on the N > 
r� uniform meshes {lT + Tn}l∈Z, where {Tn}Nn=1 are distinct
and T := r/2σ. Reminiscent of the classical Shannon sampling theorem, the signal is
decomposed into the translates of N atoms, ψn(·), each of which are associated with
a particular uniform sampling mesh,

f(t) = T
N∑

n=1

∞∑
l=−∞

f(lT − Tn)ψn(t− (lT + Tn)).

A particularly simple construction of filters is achieved by solving the system of equa-
tions (4.3) for k∗j = round(j N+1

κ∗+1 −N), where κ∗ = min(N, �N+1+r
N+1−r �). The N filters

are then given by

Ψn(w) :=

κ∗∑
j=1

ck∗
j ,n

Φk∗
j
(w),

where the coefficient ck∗
j ,n

are determined by solving (4.3) for {k∗j }κ
∗

j=1, and the parti-

tioning functions are given by (4.14), (4.15), (4.16).
Before developing a dual space implementation for truncated bunched sampling,

we illustrate partitions and representative atoms for bunched samples in the case of
minimal oversampling, N = 
r� > r.

Example 1. The partitions for r = 2.4 as expressed in (4.14), (4.15), (4.16) for
the case N = 
r� > r are shown in Figure 4.1, where ρ(w) := exp[β(w−1)−1e−1/w] ∈
G2, with β = e2/3. It should be noted that the partitioning does not depend on the
translates {Tn}Nn=1, rather solely on the number of undersampled sets, N .

The atoms, {ψn}Nn=1, associated with r = 2.4, N = 3, and random translates
Tn/T = {−0.4484, 0.3419,−0.0984} are given in Figure 4.2. This distribution of
shifts is near the distribution that would correspond to uniform oversampling, Tn/T =
{−1/3, 0, 1/3} at the rate N/r = 1.25, and as such the atoms for this bunched
sampling are qualitatively similar to the atom associated with uniform oversampling
at the rate N/r = 1.25. Figure 4.3 illustrates the atoms for the set of translates
Tn/T = {−1/3, 0, 10−6}, where cond(A) = 5.5 × 105. Having constructed the parti-
tions Φk from ρ(·) ∈ G2, the atoms possess root-exponential localization.

4.1. Direct dual space implementation for bunched sampling. Just as in
the case of the single oversampled set, the approximation of f(·) on the zero inserted
grid {hq}|q|≤pL, where h = T/p, can be implemented directly in the dual space. Define
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Fig. 4.1. The partitions for r = 2.4 and N = 3 as described in (4.14), (4.15), (4.16); the end
partitions Φ1, Φ3 (solid line) and the center partition Φ2 (dot-dashed line).
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Fig. 4.2. The atoms {ψn}Nn=1 associated with r = 2.4, N = 3, and random translates Tn/T =
{−0.4484, 0.3419,−0.0984} shown from left to right, respectively. The atoms are qualitatively similar
due to the low condition number cond(A) = 1.8939.

the approximation on this mesh from the bunched sampling as

Approxψ,Bf(hq) := T

N∑
n=1

∑
|k|≤L

f(kT − Tn)ψn(hq − (kT + Tn))

= T

N∑
n=1

∑
|j|≤pL

f0(jh− Tn)ψn(h(q − j)Tn),(4.17)

where f0(x) is zero unless x = kT −Tn for k = −L, . . . , L. Replacing the point values
in (4.17) with their pseudo-Fourier transform, we can express the evaluation in terms
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Fig. 4.3. The atoms {ψn}Nn=1 associated with r = 2.4, N = 3, and translates Tn/T =
{−1/3, 0, 10−6} shown from left to right, respectively. The first atom is similar to those in Fig-
ure 4.2, and although the remaining atoms have significant amplitude, due to the relatively large
condition number cond(A) = 5.5 × 105, they are nearly the negative of each other, allowing for
significant cancellation.

of the sampling sets pseudo-Fourier transforms,

Approxψ,Bf(hq) = T

N∑
n=1

∑
|j|≤pL

f0(jh− Tn)ψn(h(q − j)Tn)

=
2πT

h2(2pL + 1)2

N∑
n=1

∑
|j|≤pL

⎛
⎝ ∑

|l|≤pL

F̃0(wl)e
2πiwl(jh−Tn)

⎞
⎠

×

⎛
⎝ ∑

|k|≤pL

Ψ̃n(wk)e
2πiwk(h(q−j)−Tn)

⎞
⎠

= T
√

2π

N∑
n=1

∑
|l|≤pL

( √
2π

h(2pL + 1)
F̃0(wl)e

2πiwl(hq−Tn)

)
Ψ̃n(wl)e

−2πiTnwl .(4.18)

The last line can be viewed as an algorithm, where first each undersampled set is zero
inserted of order p, its pseudo-Fourier transform is computed, and it is multiplied by
the appropriately modulated filter, Ψ̃n(·), to remove the overlapping periodization.
These filtered dual space representations are then summed and their inverse pseudo-
Fourier transform computed to achieve an approximation of the bandlimited signal
at the set of point {hq}|q|≤pL. Just as in the case of the uniform oversampled dual
space representation it is computationally advantageous to avoid the construction of
ψn(·) in order to compute Ψ̃n; rather for a fast algorithm the true filters {Ψn(·)}Nn=1

should be applied directly. Again we note that the atom’s pseudo-Fourier transform
is the pL order spectral projection of the atom’s associated filter, (3.7). As such their
difference is exponentially small,∣∣∣Ψn(wl) − Ψ̃n(wl)

∣∣∣ ≤ Const · ‖A−1‖e−α(ηnLT )1/α , Ψn(·) ∈ Gα,(4.19)

if the zero padding is sufficient to expend the dual axis beyond the support of the
filter, p ≥ 2N − r.
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In addition to the usual truncation error, this additional error gives a threshold
below which the error does not fall, determined by the condition number of A as
dictated by the set of translates. Unlike the truncation error, the structure in A does
not result in cancellation to reduce the effects of ‖A−1‖; however, the bound does not
depend on t and is well below the truncation error for all but the most ill conditioned
sets of translates. We summarize the above results in the following theorem.

Theorem 4.2. Let f(t) ∈ Bσ be sampled at the points {kT + Tn}|k|≤L with
sampling rate T−1 := 2σ/r and translate |Tn| ≤ T/2. From N > r such distinct
sampling sets, and filters {Ψn}Nn=1 ∈ Gα constructed as in Theorem 4.1, the signal
can be approximated on the set {kT/N}|k|≤pL, with p ≥ 2N − r, within the bound

|f(t) −ApproxBf(hk)|

≤ Const
N2

σ
‖f‖L∞‖A−1‖ · e−α(η((L−1)T−|t|))1/α ,

where ApproxBf(hk) is computed by the following algorithm:
1. Zero insert each of the uniform sampling sets {kT +Tn}|k|≤L to the fine mesh

{kh + Tn}|k|≤pL, where p ≥ 2N − r and h = T/p, yielding {fo,n}Nn=1.
2. Compute the pseudo-Fourier transform, as defined in (3.4), of each set of zero

inserted samples from step 1, labeled {F̃o,n(wl)}Nn=1, and pointwise multiply
by exp(−2πiTnwl), respectively.

3. Pointwise multiply each of the pseudo-Fourier transforms from step 2, F̃o,n(wl),
by their corresponding filters, Ψn(wl), and sum over N , yielding an approxi-

mation of F (w), F̃A(wl) :=
∑N

n=1 e
−2πiTnwl F̃o,n(wl)Ψn(wl).

4. Compute the inverse pseudo-Fourier transform of F̃A formed in step 4, and
multiply by p.

Similar to the remark following Theorem 4.1, the signal can be recovered on a
shifted mesh, {kT/N + s0}|k|≤pL, by multiplying F̃A(wl) with exp(2πis0wl) between
steps 3 and 4 of the algorithm in Theorem 4.2.

The direct implementation for uniform oversampling has a computational cost
limited by the FFT, proportional to L log(L), where L is the number of samples
used in the reconstruction. For the algorithm described in Theorem 4.2 for bunched
sampling, the computational cost is again limited by the overall FFT evaluations. To
allow for a direct comparison to the uniform oversampling let each of the N sampling
sets contain L/N samples for a similar total number of samples being available for
the algorithm. Each of the N FFTs then requires L

N log(pL/N), where p is the level
of zero insertion required to be proportional to the number of sampling sets, p ≈ N .
The overall computational cost for the algorithm in Theorem 4.2 is then NL log(L),
where L is the total number of samples used in the approximation. In principle we
also have to take into account the costs for inverting the matrix A in (4.3). Since A is
a Vandermonde matrix and A∗A is a Toeplitz matrix, there are plenty of fast standard
algorithms for the solution of the system in (4.3) at our disposal. Moreover, in practice
N is small compared to L, and thus the computational costs of this step have little
impact on the overall complexity of the proposed method. In summary, the bunched
sampling algorithm requires an additional factor of N in the total computational cost,
when compared to uniform sampling at the same effective sampling rate and number
of available samples.

5. Numerical examples. We illustrate the convergence rates and algorithms
for the results presented in Theorems 3.1 and 4.2 for characteristic bandlimited sig-
nals. For the approximation of an arbitrary bandlimited signal, we form a test signal
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Fig. 5.1. The error with oversample rate r−1 = 1.43 in recovering the signal in B1 whose
real portion is shown in Figure 2.1. With the log axis, note the log convergence exhibited by the
reconstruction using the raised cosine (dotted line), as compared to the root convergence obtained
by the dual space implementation using ΨG2 (solid line). The approximations were computed with
zero insertion rate p = 2 on the grid translated by s0 = T/

√
5.

whose Fourier transform is composed of one hundred characteristic functions with
random complex valued amplitudes normalized to unit l2 norm, and with random
widths and centers, normalized so that the largest magnitude bandwidth is σ. The
resulting numerics shown are characteristic of arbitrary complex valued bandlimited
signals. The dual space representation, real portion, of such a function can be seen
in Figure 2.1. Before illustrating the main results of Theorem 4.2 we briefly contrast
the exponential convergence of Gevrey class filters with the polynomial order conver-
gence of classical finite regular filters. To compare representative filters with finite
and infinite regularity, we use the canonical raised cosine filter (2.6) and the Gevrey
order two filter given in (2.10), respectively; see Figure 5.1.

Much of the success of the raised cosine filter is due to the optimally small first
two regularity constants, ‖Ψ‖Cs for s = 1, 2, which result in rapid initial localization.
Infinitely regular filters possess bounded regularity constants for all s, but at the cost
of necessarily larger regularity constants for small s. However, a great deal of freedom
exists in the selection of Gα regular filters, for example the constant β used in the filter
of (2.10). A good approximation of the β which minimizes the first regularity constant
in ΨG2 can be obtained by selecting β such that the filter’s points of inflection are at
the middle of the region connecting zero and one, i.e., Ψ(2)(±σ/r) = 0. As such, for
the numerical experiments involving the filter ΨG2, we use β := 1

3e
2 which satisfies

ρ(2)( 1
2 ) = 0.
Various properties of Theorem 4.2 are demonstrated in the following numerical

examples. First we begin with the simplest case of bunched sampling where only
just sufficiently many sampling sets are available for effective oversampling, N :=

r� > r; in particular for r = 2.4 and a random set of well separated translates with
corresponding atoms presented in Figure 4.2, and the exponentially small error shown
in Figure 5.2. To illustrate the computational robustness, Figure 5.3 shows the error
as two sampling sets approach one another, resulting in a poorly conditioned matrix A
in system (4.3). However, as noted in the Remark following (4.10), the ill conditioning
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Fig. 5.2. The error with N = 3 undersampled sets with effective sampling rate N/r = 1.25
in recovering the signal in B1 whose real portion is shown in Figure 2.1. The translates were
Tn/T = {−0.4484,−0.0984, 0.3419} with cond(A) = 1.8939 and atoms illustrated in Figure 4.2.
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Fig. 5.3. The error with N = 3 undersampled sets and effective sampling rate N/r = 1.25
in recovering the signal in B1 whose real portion is shown in Figure 2.1. The translates used,
Tn/T = {−1/3, 0, 10−3j} for j = 1, 2, 3, result in systems (4.3) with respective condition numbers
cond(A) = 5.5×103j−1. Note that although the condition number becomes very large, the error near
the boundaries does not suffer. Rather, the minimal error is increased due to roundoff errors. The
atoms associated with the set of translations, j = 2, are shown in Figure 4.3.

of the matrix does not increase the entire error by the factor ‖A−1‖ as stated in the
pessimistic bound of Theorem 4.2; rather, the ill conditioning results in a rounding
error that limits the achievable error for a given precision arithmetic.

A more general example of Theorem 4.2 is shown in Figure 5.4 where N = 17
uniform sampling sets with random translates undersampled at the rate r = 12.4 are
given for an effective sampling rate of N/r ≈ 1.37. The resulting error is typical for
the algorithm of Theorem 4.2 when the system (4.3) has a relatively modest condition
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Fig. 5.4. The error in recovering a random signal in B1 from N = 17 undersampled sets
of random translation with effective sampling rate N/r = 1.37. The filters were composed of five
partitions, κ∗ = 5, and the system of the random translates had condition number cond(A) =
1.4 × 104.

number.
Before concluding the numerical examples we illustrate the algorithm’s perfor-

mance for a particular application discussed in the introduction. Due to feedback
interactions between sampling and processing chips in close proximity, it is advanta-
geous to use a sampling structure that includes relatively large sampling gaps, when
the signal processing can be applied and not interact with the sampling. However,
the introduced sampling gap could potentially introduce stability problems. The ex-
traordinary robustness of the algorithm in Theorem 4.2 overcomes any stability issues,
even for relatively large sampling gaps. For example, Figure 5.5 shows the approx-
imation error with eight sets interleaved over a third of the effective sampling rate,
i.e., Tn := T (n/24) for n = 1, 2, . . . , 8.

6. Final remarks. We have derived a fast algorithm for reconstructing a band-
limited signal from its periodic nonuniform samples that achieves root-exponential
accuracy with respect to the given number of samples. Due to its high accuracy the
method can be easily realized in practice via finite impulse response (FIR) filters. Fur-
thermore, since the numerically most expensive steps are FFTs the proposed method
lends itself to a simple implementation on standard DSP processors. Furthermore, the
high accuracy provided by the algorithms derived in this paper will not be lost in the
subsequent reconstruction of the signal from its quantized samples due to the recently
developed highly accurate algorithms for recovering a quantized bandlimited signal;
cf. [4].

Another application where periodic nonuniform sampling arises is image process-
ing. For instance, in astronomical imaging one is confronted with images that are
blurred and notoriously undersampled. The goal is to combine these blurred low-
resolution images to one high-resolution image. This problem is also referred to as
superresolution; see, e.g., [6]. The low-resolution images contain (blurred, noisy) sam-
ples of the high-resolution image where the sampling sets can be thought of as a union
of arbitrarily shifted (and/or rotated) uniform sampling sets. One step in reconstruct-
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Fig. 5.5. The error in recovering a random signal in B1 from N = 8 undersampled sets with
effective sampling rate N/r = 1.82. The filters were composed of two partitions, κ∗ = 2, and the
translates, Tn := T (n/24) for n = 1, 2, . . . , 8, had condition number cond(A) = 3.1 × 104.

ing a high-resolution image is thus the conversion of the periodic nonuniform image
samples to a uniform sampling set at a fine sampling grid. In our future research we
will address two-dimensional reconstruction algorithms and their effect on deblurring
and noise.
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