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Abstract

We settle a conjecture of Joseph Renes about the existence and construction of
certain equiangular tight frames.
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1 Introduction

An equiangular tight frame is a family of vectors {fk}n
k=1 in Ed (where E = R

or C) that satisfies the conditions (10)

‖fk‖2 = 1 for k = 1, . . . , n, (1)

|〈fk, fl〉| = c, for all k 6= l and some constant c, (2)

d

n

n∑
k=1

〈f, fk〉fk = f, for all f ∈ Em. (3)

In fact, conditions (2) and (3) together imply that

|〈fk, fl〉| =

√
n− d

d(n− 1)
, for all k 6= l, (4)

which is the smallest possible value for c for a set of n equiangular unit-norm
vectors in Ed, cf. (4; 10).

Due to their rich theoretical properties and their numerous practical appli-
cations, equiangular tight frames are arguably the most important class of
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finite-dimensional frames, and they are the natural choice when one tries to
combine the advantages of orthonormal bases with the concept of redundancy
provided by frames (10).

Yet, despite their importance, we are far from having a complete understand-
ing about the existence of equiangular tight frames. Some results can be found
in (12; 8; 4; 3; 13; 10; 6; 1; 7; 9; 11).

A popular method to construct equiangular tight frames is based on conference
matrices (8; 3; 10). Before we proceed to this construction and the statement
of Renes’ conjecture, we need to introduce some notation. For general back-
ground on frames we refer to (2). Given a frame {fk}n

k=1 for Ed, the frame
operator S is defined by

Sf =
n∑

k=1

〈f, fk〉fk.

Note that the frame operator of a tight frame is a multiple of the identity
operator. The tight frame canonically associated to {fk}n

k=1 is {S− 1
2 fk}n

k=1.
We will write (n, d)-ETF for an equiangular tight frame {fk}n

k=1 in Ed.

Now, recall that an n×n conference matrix C has zeros along its main diagonal,
±1 as its other entries. and satisfies CC∗ = (n − 1)In (In denotes the n × n
identity matrix). Given an n × n conference matrix with n = 2d, one can
construct a (2d, d)-ETF {fk}n

k=1 via its Gram matrix R = {〈fl, fk〉}n
k,l=1. If

C is symmetric, one computes R =
√

n− 1C + In, if C is skew-symmetric
(i.e., C = −CT ) one computes R = i

√
n− 1C + In. One can then extract the

(2d, d)-ETF {fk}n
k=1 from R via a singular value decomposition, see (10).

In (9), Joseph Renes conjectured that, given an (2d, d)-ETF {fk}n
k=1 associated

with a skew-symmetric conference matrix, one can always construct a (2d −
1, d)-ETF by removing an arbitrary frame element from {fk}n

k=1 and then
computing the tight frame canonically associated with the remaining frame
elements. This conjecture is supported by numerical simulations as well as by a
proof by Renes for the special case when d satisfies the property 2d−1 = pk = 3
mod 4, where p is a prime number. Renes’ proof relies on Zauner’s construction
of (2d, d)-ETFs and specific properties of finite fields and Gauss sums.

In the following we settle Renes’s conjecture for general d. Our proof uses only
elementary linear algebra.

Theorem 1.1 Let {fk}n
k=1 be an equiangular tight frame for Cd with n = 2d

and assume that

〈fk, fl〉 = ±i

√
1

n− 1
, for all k 6= l. (5)

Define the frame {ϕ(l)
j }n−1

j=1 := {fk}n
k 6=l,k=1 and denote the frame operator asso-
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ciated with {ϕ(l)
j }n−1

j=1 by Sl. Set

gj =

√
n− 1

d
S
− 1

2
l ϕ

(l)
j , for j = 1, . . . , n− 1,

then {gj}n−1
j=1 is an equiangular tight frame for Cd.

Proof: Without loss of generality we let l = n and set ϕk := ϕ
(1)
k = fk, for

k = 1, . . . , n − 1 (i.e., we remove the last element of the frame {fk}n
k=1). We

denote by F the d× n matrix containing the frame vectors fk, k = 1, . . . , n as
columns and similarly Φ and G are d× (n− 1) matrices having the ϕk and gk

as their columns, respectively. There holds

G∗G =
n− 1

d
Φ∗(ΦΦ∗)−

1
2 (ΦΦ∗)−

1
2 Φ =

n− 1

d
Φ∗(ΦΦ∗)−1Φ. (6)

We apply the Sherman–Morrison–Woodbury formula (5) and compute

(ΦΦ∗)−1 = (FF ∗ − fnf
∗
n)−1 =

d

n

(
Id −

fnf
∗
n

1− n
d

)
=

1

2

(
Id + fnf

∗
n

)
, (7)

where we have used that {fk}n
k=1 is a tight frame. We insert (7) into (6) and

obtain

G∗G =
n− 1

n

(
Φ∗Φ + Φ∗fnf

∗
nΦ

)
.

Now consider (G∗G)k,l for k, l = 1, . . . , n− 1; k 6= l:

(G∗G)k,l =
n− 1

n

(
〈fl, fk〉+ 〈fl, fn〉〈fn, fk〉

)
. (8)

By assumption 〈fk, fl〉 = ±i
√

1
n−1

for all k, l = 1, . . . , n with k 6= l. Hence

(G∗G)k,l =
n− 1

n

(
± i

√
1

n− 1
± 1

n− 1

)
, (9)

and therefore

|(G∗G)k,l| =
1√
2d

, (10)

for all k, l = 1, . . . , n− 1; k 6= l, which completes the proof.

Remark: Since the off-diagonal entries of the Gram matrix of a (2d, d)-ETF
associated with a skew-symmetric conference matrix always satisfy condi-
tion (5), Theorem 1.1 proves Renes’ conjecture.

Corollary 1.2 A necessary condition for the Gram matrix of an (n, d)-ETF
to satisfy

〈fk, fl〉 = ±i

√
n− d

d(n− 1)
, for all k 6= l, (11)
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is that n = 2d.

Proof: We repeat the steps of the proof of Theorem 1.1 for arbitrary n ∈ N
with n > d. Denoting α = n/d, we have

〈fk, fl〉 = ±i

√√√√ d(α− 1)

d(αd− 1)
, for all k 6= l. (12)

The right-hand side of equation (10) now becomes√
αd(α− 1)− α + 2

αd
. (13)

Equating (13) with (4) and solving for α gives as only feasible solution α = 2.

Corollary 1.3 If {fk}n
k=1 is a real-valued (n, d)-ETF, then the canonical tight

frame associated with the frame obtained by removing an arbitrary element
from {fk}n

k=1 can never be equiangular, except for the trivial case n = d + 1.

Proof: Let R denote the Gram matrix of a real-valued (n, d)-ETF. We claim
that the entries Rk,l, k 6= l cannot all have the same sign unless n = d + 1.
To see this we first recall that R has d eigenvalues that are equal to n/d and
n− d eigenvalues equal to 0, cf. (10).

Now assume that sign(Rk,l) = −1 for all k 6= l. In this case R is a cir-
culant matrix and its eigenvalues are given by the Discrete Fourier Trans-
form r̂ of the first column r of R. Since r = [1,−c,−c, . . . ,−c]T , where

c =
√

(n− d)/(dn− d), it follows that

r̂ = [−
√

nc + (1 + c)/
√

n, (1 + c)/
√

n, (1 + c)/
√

n, . . . , (1 + c)/
√

n]T .

Clearly, r̂ can have at most its first entry equal to zero, and this can happen
only if n = d+1. In case sign(Rk,l) = 1 for all k 6= l, r̂ would have only strictly
positive entries, contradicting the fact that R must have n−d > 0 eigenvalues
equal to zero.

We now repeat the steps of the proof of Theorem 1.1 for real-valued frames,
and with n = αd for some α > 1 such that n ∈ N. Equation (9) becomes

(G∗G)k,l =
n− 1

n

(
±

√
α− 1

n− 1
± α− 1

n− 1

)
. (14)

From above we know that the off-diagonal entries of G∗G cannot all have the
same sign, except if n = d+1, which leads to the trivial case G∗G = Id. Thus,
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in order to have an equiangular frame for n > d + 1 we must have

∣∣∣∣1 +

√
α− 1

n− 1

∣∣∣∣ =
∣∣∣∣1−

√
α− 1

n− 1

∣∣∣∣ (15)

which is not possible. This completes the proof.
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