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Abstract—A stylized compressed sensing radar is proposed in
which the time-frequency plane is discretized into an N by N
grid. Assuming that the number of targets K is small (i.e.,
K � N2), then we can transmit a sufficiently “incoherent” pulse
and employ the techniques of compressed sensing to reconstruct
the target scene. A theoretical upper bound on the sparsity K is
presented. Numerical simulations verify that even better perfor-
mance can be achieved in practice. By comparing traditional
uncertainty principles with those of compressed sensing, this
novel approach reveals great potential for better resolution over
classical radar.

Index Terms—Compressed sensing, sparse recovery, Alltop
sequence.

I. INTRODUCTION

Radar, sonar and similar imaging systems are in high de-
mand in many civilian, military, and biomedical applications.
The resolution of these systems is limited by classical time-
frequency uncertainty principles. Using the concepts of com-
pressed sensing (CS), we propose a radically new approach to
radar. In this simplified version of a monostatic, single-pulse
radar system we assume that the targets are radially aligned
with the transmitter and receiver.

There are three key points to be aware of: (1) The transmit-
ted signal must be sufficiently “incoherent.” Our results rely on
the use of a deterministic signal (the Alltop sequence), how-
ever, transmitting white noise would yield a similar outcome.
(2) This approach does not use a matched filter. (3) The target
scene is recovered by exploiting the sparsity constraints.

This report is a first step in formalizing the theory of CS
radar and contains many assumptions. In particular, analog to
digital (A/D) conversion and related implementation details
are ignored.

Throughout this discussion we only consider functions
with finite energy; that is, if f ∈ L2(R), then ‖f‖2

2 =∫
R |f(t)|2dt < ∞. The cross-ambiguity function for two

functions f, g ∈ L2(R) is defined as [1]

Afg(τ, ω) =
∫

R
f(t + τ/2)g(t− τ/2)e−2πiωtdt (1)

where · denotes complex conjugation, and the upright Roman
letter i =

√
−1. The short-time Fourier transform (STFT) of f

with respect to g is Vgf(τ, ω) =
∫

R f(t)g(t− τ)e−2πiωtdt. A
simple change of variable reveals that within a complex factor,
the cross-ambiguity function is equivalent to the STFT

Afg(τ, ω) = eπiωτ Vgf(τ, ω). (2)
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When f = g we have the (self) ambiguity function Af (τ, ω).
The shape of the ambiguity surface |Af (τ, ω)| of f is bounded
above the time-frequency plane (τ, ω) by |Af (τ, ω)| ≤
Af (0, 0) = ‖f‖2

2.

The radar uncertainty principle [2] states that if∫∫
U

|Afg(τ, ω)|2dτdω ≥ (1− ε) ‖f‖2
2‖g‖2

2 (3)

for some support U ⊆ R2 and ε ≥ 0, then |U | ≥ (1 − ε).
Informally, this can be interpreted as saying that the area of an
ambiguity function’s “footprint” on the time-frequency plane
can only be made so small.

In classical radar, the ambiguity function of f is the main
factor in determining the resolution between targets [3]. There-
fore, the ability to identify two targets in the time-frequency
plane is limited by the essential support of Af (τ, ω) as dictated
by the radar uncertainty principle. The primary result of this
paper is that, under certain conditions, CS radar achieves better
target resolution than classical radar.

II. COMPRESSED SENSING

Recently, the signal processing/mathematics community has
seen a paradigmatic shift in the way information is represented,
stored, transmitted and recovered [4], [5], [6]. This area is
often referred to as Sparse Representations and Compressed
Sensing. Consider a discrete signal s of length M (note,
boldface variables denote vectors and matrices). We say that
it is K-sparse if at most K � M of its coefficients are
nonzero (perhaps under some appropriate change of basis).
With this point of view the true information content of s
lives in at most K dimensions rather than M . In terms of
signal acquisition it makes sense then that we should only
have to measure a signal N ∼K times instead of M . We do
this by observing N non-adaptive, linear measurements in the
form of y = Φs, where Φ is a dictionary of size N × M .
If Φ is sufficiently “incoherent,” then the information of s
will be embedded in y such that it can be perfectly recovered
with high probability. Current reconstruction methods include
using greedy algorithms such as orthogonal matching pursuit
(OMP) [6], and solving the convex problem: min ‖s′‖1 such
that Φs′ = y. The latter program is often referred to as Basis
Pursuit (BP) [4], [5]. A new algorithm, regularized orthogonal
matching pursuit (ROMP) [7], has recently been proposed
which combines the advantages of OMP with those of BP.
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III. MATRIX IDENTIFICATION VIA COMPRESSED SENSING

A. Problem Formulation

Consider an unknown matrix H ∈ CN×N ′
and an or-

thonormal basis (ONB) (Hi)i for CN×N ′
. Then there exist

coefficients (si)i such that

H =
NN ′−1∑

i=0

siHi. (4)

Our goal is to identify/discover the coefficients (si)i. Since
the basis elements are fixed, identifying (si)i is tantamount to
discovering H . We will do this by designing a test function
f = (f0, . . . , fN ′−1)T ∈ CN ′

and observing Hf ∈ CN .
Here, ( · )T denotes the transpose of a vector or a matrix.
Figure 1 depicts this from a systems point of view where H
is an unknown “block box.” Systems like this are ubiquitous
in engineering and the sciences. For instance, H may repre-
sent an unknown communication channel which needs to be
identified for equalization purposes.

f −→ H −→ y = Hf
Black Box

Fig. 1. Unknown system H with input probe f and output observation y.

For simplicity, from now on assume that N ′ = N . The
observation vector can be reformulated as

y =
N2−1∑
i=0

siHif =
N2−1∑
i=0

siϕi = Φs (5)

where the ith atom ϕi = Hif is a column vector of length N ,
the concatenation of the atoms Φ = ( ϕ0 |ϕ1 | · · · |ϕN2−1 )
is an N × N2 matrix, and s = ( s0, s1, · · · , sN2−1 )T is a
column vector of length N2. The system of equations in (5) is
clearly highly underdetermined. If s is sufficiently sparse, then
there is hope of recovering s from y. To use the reconstruction
methods of CS we need to design f so that the dictionary Φ
is sufficiently incoherent.

B. The Coherence of a Dictionary

We are interested in how the atoms of a general dictionary
Φ = (ϕi)i ∈ CN×M (with N ≤ M ) are “spread out” in CN .
This can be quantified by examining the magnitude of the inner
product between its atoms. The coherence µ(Φ) is defined
as the maximum of all of the distinct pairwise comparisons
µ(Φ) = maxi 6=i′ |〈ϕi,ϕi′〉|. Assuming that each ‖ϕi‖2 = 1
the coherence is bounded [8], [9] by√

M −N

N(M − 1)
≤ µ(Φ) ≤ 1. (6)

When a dictionary can be expressed as the union of 2 or more
ONBs, this lower bound becomes 1/

√
N [10].

C. The Basis of Time-Frequency Shifts

Let the N × N matrices T and M respectively
denote the unit shift and modulation operators where
T (f0, . . . , fN−2, fN−1)T = (fN−1, f0, . . . , fN−2)T, M =
diag{ω0

N , . . . , ωN−1
N }, and ωN = e2πi/N is the N th root of

unity. The ith time-frequency basis element is defined as

Hi = M i mod N · T bi/Nc (7)

where b·c is the floor function. A simple calculation shows
that the family (Hi)N2−1

i=0 forms an ONB with respect to the
Frobenius norm. Furthermore, under this basis it is known that
some practical systems H with meaningful applications have a
sparse representation s [11], [12], [13]. This fact complements
the theorems developed in the subsequent sections.

A finite collection of length-N vectors which are time-
frequency shifts of a generating vector, and which spans
the space CN is called a (discrete) Gabor frame [2].
Since (Hi)N2−1

i=0 forms an ONB, it follow that our dictio-
nary Φ is a Gabor frame. Without loss of generality assume
‖f‖2 = 1. Because each Hi is a unitary matrix we have that
‖ϕi‖2 = 1 for i = 0, . . . , N2 − 1. We can also express Φ as
the concatenation of N blocks

Φ =
(
Φ(0) |Φ(1) | · · · |Φ(N−1)

)
(8)

where the kth block Φ(k) = Dk · WN with Dk =
diag{fk, . . . , fN−1, f0, . . . , fk−1} and WN = (ωpq

N )N−1
p,q=0.

D. The Probing Test Function f

We now introduce a candidate probe function f which
results in remarkable incoherence properties for the dictio-
nary Φ. Consider the Alltop sequence fA = (fn)N−1

n=0 for some
prime N ≥ 5 where [14]

fn =
1√
N

e2πin3/N . (9)

Let ΦA denote the Gabor frame generated by the Alltop
sequence (9). Since its atoms are already grouped into N ×N
blocks in (8), we will maintain this structure by denoting the
jth atom of the kth block as ϕ

(k)
j . Note that ‖fA‖2 = 1, so we

have 0 ≤ |〈ϕ(k)
j ,ϕ

(k′)
j′ 〉| ≤ 1 for any j, j′, k, k′ = 0, . . . , N−1.

Within the same block (i.e., k = k′) we have

Property 1: |〈ϕ(k)
j ,ϕ

(k)
j′ 〉| =

{
0, if j 6= j′

1, if j = j′.

Thus, each Φ(k) is an ONB for CN . Moreover, for different
blocks (i.e., k 6= k′) we have

Property 2: |〈ϕ(k)
j ,ϕ

(k′)
j′ 〉| =

1√
N

for all j, j′ = 0, . . . , N −1. This means that there is a mutual
incoherence between the atoms of different blocks Trivially, it
follows that µ(ΦA) = 1/

√
N . Furthermore, with M = N2 in

(6) we see that the lower bound of 1/
√

N + 1 is practically
attained. (See [15] for more details on this, mutually unbiased
bases (MUBs), and equiangular line sets.)
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E. Identifying Matrices via Compressed Sensing: Theory

Having established the incoherence properties of the
dictionary ΦA we can now move on to apply the concepts
and techniques of CS. It is worth pointing out that most CS
scenarios deal with a K-sparse signal s (for some fixed K),
and one is tasked with determining how many observations
are necessary to recover the signal. Our situation is markedly
different. Due to the fact that ΦA is constrained to be N×N2,
we know y = ΦAs we will contain exactly N observations.
With N fixed, our CS dilemma is to determine how sparse s
should be such that it can be recovered from y. We hope to
recover any K-sparse signal s with K ≤ C · N/ log N for
some C > 0. The following two theorems [15] summarize
the recovery of N ×N matrices via CS when identified with
the Alltop sequence with prime N ≥ 5.

Theorem 1: Suppose H =
∑

i siHi ∈ CN×N has a K-
sparse representation under the time-frequency ONB, with
K < 1

2 (
√

N + 1), and that we have observed y = HfA.
Then we are guaranteed to recover s either via BP or OMP.

The sparsity condition in Theorem 1 is rather strict. Instead
of the requirement of guaranteed perfect recovery, we can ask
to achieve it with only high probability. This more modest
expectation provides us with a much more realistic sparsity
condition. Throughout this paper a random signal refers
to a vector or matrix with nonzero coefficients which are
independent with a Gaussian distribution of zero mean and
unit variance, and which are located according to a uniform
distribution.

Theorem 2: Suppose random H =
∑

i siHi ∈ CN×N

has a K-sparse representation under the time-frequency ONB
where K ≤ N/16 log (N/ε) with ε ≤ 1/

√
2, and that

we have observed y = HfA. Then BP will recover s with
probability greater than 1 − 2ε2 − K−ϑ for some ϑ ≥ 1 s.t.√

ϑ log N/ log (N/ε) ≤ c where c is an absolute constant.

F. Identifying Matrices via Compressed Sensing: Simulation

Numerical simulations were performed and indicate that the
theory above is actually quite pessimistic. The simulations
were conducted as follows. The values of prime N ranged
from 5 to 127, and the sparsity K ranged from 1 to N . For
each ordered pair (N,K) a K-sparse vector s of length N2

was randomly generated. With this random s the observation
y = ΦAs was generated. Then, y and ΦA were input to a
linear program [16] to solve min ‖s′‖1 s.t. ΦAs′ = y. This
procedure was repeated 15 times and averaged.

Figure 2 shows how the numerical simulations compare
to Theorems 1 and 2. The error ‖s − s′‖2 as a function
of (N,K) is shown as solid, gray-black contour lines. The
dashed, red line represents K = N/ log N . The zone of
“perfect reconstruction” lies below this line. In this region
random N × N matrices with 1 ≤ K ≤ N/ log N nonzero
entries can be perfectly recovered with high probability. This is
empirical evidence that the denominator of K in Theorem 2
can be relaxed from log (N/ε) to just log N , and that the
proportionality constant C = 1. However, it is still an open
mathematical problem to prove this for the Alltop sequence.

Furthermore, the overly strict constraint of Theorem 1 can
be seen by the lower dash-dotted, blue line representing
K = 1

2 (
√

N + 1).

Fig. 2. Matlab simulation of solving min ‖s′‖1 s.t. ΦAs′ = ΦAs where s
is random. The solid, gray-black lines are the contours of the error ‖s−s′‖2
vs. the N -K domain. The dashed, red line shows that Theorem 2 is overly
pessimistic. The region below this is the zone of “perfect reconstruction.” The
lower dash-dotted, blue line illustrates how Theorem 1 is too strict.

IV. RADAR

A. Classical Radar Primer

Consider the following simple (narrowband) 1-dimensional,
monostatic, single-pulse radar model. Monostatic refers to
the setup where the transmitter (Tx) and receiver (Rx) are
collocated. Suppose a target located at range x is traveling
with constant velocity v and has reflection coefficient sxv .
Figure 3 shows such a radar with one target. After transmitting
signal f(t), the receiver observes the reflected signal

r(t) = sxvf(t− τx)e2πiωvt (10)

where τx = 2x/c is the round trip time of flight, c is the
speed of light, ωv ≈ −2ω0v/c is the Doppler shift, and ω0 is
the carrier frequency. The basic idea is that the range-velocity
information (x, v) of the target can be inferred from the
observed time delay-Doppler shift (τx, ωv) of f in (10). Hence,
a time-frequency shift operator basis is a natural representation
for radar systems [17].

|=
( f

-- ⊕
r

mm

Tx/Rx Target

Fig. 3. Simplified radar model. Tx transmits signal f , and Rx receives the
reflected (or echoed) signal r according to (10).

Using a matched filter at the receiver, the reflected signal r
is correlated with a time-frequency shifted version of the
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transmitted signal f via the cross-ambiguity function (1)

|Arf (τ, ω)| =
∣∣∣∫

R
r(t)f(t− τ)e−2πiωtdt

∣∣∣
= |sxvAf (τ − τx, ω − ωv)|. (11)

From this we see that the time-frequency plane consists of
the ambiguity surface of f centered at the target’s “loca-
tion” (τx, ωv) and scaled by its reflection coefficient |sxv|.
Extending (11) to include multiple targets is straightforward.
Figure 4 illustrates an example of the time-frequency plane
with five targets; two of these have overlapping uncertainty
regions. The uncertainty region is a rough indication of the
essential support of Af in (3). Targets which are too close
will have overlapping ambiguity functions. This may blur the
exact location of a target, or make uncertain how many targets
are located in a given region in the time-frequency plane. Thus,
the range-velocity resolution between targets of classical radar
is limited by the radar uncertainty principle.

B. Compressed Sensing Radar

We now propose our stylized CS radar which under ap-
propriate conditions can “beat” the classical radar uncertainty
principle! Consider K targets with unknown range-velocities
and corresponding reflection coefficients. Next, discretize the
time-frequency plane into an N × N grid as depicted in
Figure 4. Recognizing that each point on the grid represents
a unique time-frequency shift Hi (7) (with a corresponding
reflection coefficient si), it is easy to see that every possible
target scene can be represented by some matrix H (4). If the
number of targets K � N2, then the time-frequency grid
will be sparsely populated. By “vectorizing” the grid, we can
represent it as an N2× 1 sparse vector s.

Assume that the Alltop sequence is sent by the transmitter1.
The received signal now is of the form in (5). If the number of
targets obey the sparsity constraints in Theorems 1 and 2, then
we will be able to reconstruct the original target scene using
CS techniques. In reality, we are not actually “beating” the
classical uncertainty principle as claimed above. Rather, we
are just transferring to a different mathematical perspective.
The new CS uncertainty principle is dictated by the sparsity
constraints of Theorems 1 and 2.

It is interesting to note that Alltop specifically mentions
the applicability of his sequence to spread-spectrum radar.
The cubic phase in (9) is known in classical radar as a
discrete quadratic chirp, which is similar to what bats use
to “image” their environment (although bats use a continuous
sonar chirp). The use of a chirp is an effective way to transmit
a wide-bandwidth signal over a relatively short time duration.
However, here in CS radar we make use of the incoherence
property of the Alltop sequence, which is due to specific
properties of prime numbers. Recall the three key points of this
novel approach: (1) the transmitted signal must be incoherent,
(2) there is no matched filter, (3) instead, CS techniques are
used to recover the sparse target scene.

1The transmitter in Fig. 3 sends analog signals. We assume here that there
exists a continuous signal which when discretized is the Alltop sequence (9).

0 N−1
τ →

N−1

ω
↑ •

•
•

•
•��

��

��
��

��
��

��
��

��
��

Fig. 4. The time-frequency plane discretized into an N×N grid. Shown are
five targets with their associated uncertainty regions. Classical radar detection
techniques may fail to resolve the two targets whose regions are intersecting.
In contrast, CS radar will be able to distinguish them as long as the total
number of targets is much less then N2.

C. Compressed Sensing and Classical Radar Simulations

Figures 5 and 6 show the result of Matlab radar simulations.
For purposes of normalization the grid spacing in these figures
is 1/

√
N . Hence, the numbers shown on the axes represent

multiples of 1/
√

N . A random time-frequency scene with
K = 10 targets and N = 47 is presented in Figure 5(a).
Targets which are darker indicate a larger reflection coefficient.
The CS radar simulation [16] used the Alltop sequence to
identify the targets. In Figure 5(b) it is clear that CS was
able to perfectly reconstruct the target scene when there was
no added noise. Based on the grid of the discretized time-
frequency plane in Figure 5 it is obvious that we can resolve
targets located at adjacent grid points. Thus, CS radar has a
resolution of 1/2

√
N .

Figure 5(c) illustrates how CS starts to suffer in the presence
of additive white Gaussian noise (AWGN). Here the signal-
to-noise ratio (SNR) is 15 dB. Some faint false positives have
appeared, yet the target scene has still been identified. The
performance with 5 dB SNR is shown in Figure 5(d). Several
targets were lost and many false positives have appeared,
which is clearly undesirable. It remains an open problem in
the CS community how to deal with such noisy situations.

As a comparison to CS Figure 6 presents classical radar
reconstruction (which uses a matched filter as described
in Section IV-A) with two different transmitted pulses. The
ambiguity surfaces associated with these two waveforms
demonstrate, in some sense, two extremes of traditional radar
performance. In the first case, the ambiguity surface is a
relatively wide Gaussian pulse, whereas in the second case
the ambiguity surface is a highly concentrated “thumbtack”
function. We stress that these are not necessarily the final
results of traditional target reconstruction, and are included
only for rough comparison. In practice, radar engineers use
extremely advanced techniques to determine target range and
velocity.

Figures 6(a), 6(c), and 6(e) show the original target scene
of Figure 5(a) reconstructed using a Gaussian pulse. The (self)
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Fig. 5. Radar simulation with K = 10 targets on a 47× 47 time-frequency
grid. (a) Original target scene. CS reconstruction of original target scene with
SNR: (b) ∞ dB, (c) 15 dB, (d) 5 dB. Notice CS perfectly recovers (a) in the
case of no noise (b).

ambiguity function associated with a Gaussian pulse is a two-
dimensional Gaussian pulse as a result of the STFT in (2).
Therefore, according to (11) we see that the radar scenes in
these figures consist of a 2D Gaussian pulse centered at each
target in the time-frequency plane. In each of these it is clear
that some of the targets are contained within the Heisenberg
boxes of neighboring targets. Depending on the sophistication
of subsequent algorithms some of the targets (e.g., the two
closest in the center) may be unresolvable. It is also clear
that Figures 6(c) and 6(e) suffer from added noise, and this
compounds the problem of accurate resolution [3].

As a consequence of the grid spacing, the Heisenberg box
associated with the Gaussian pulse’s ambiguity surface has
been normalized to a square of unit area. This is empirically
verified in Figures 6(a), 6(c), and 6(e) where we see that the
diameter of the uncertainty region around each target spans ap-
proximately seven grid points. Since the grid spacing is 1/

√
N

we confirm that the base and height of the Heisenberg box
are each approximately 7/

√
47 ≈ 1. Therefore, we have a

rough measure of the target resolution of a Gaussian pulse:
here classical radar yields a resolution of 1/2. Comparing
the resolution of classical radar with that of CS we see that
1/2 > 1/2

√
N for N ≥ 2. Thus, we claim that CS radar

can achieve better resolution than classical radar. Moreover,
by increasing N the time-frequency plane will be discretized
into a finer grid and this will increase CS’s resolution. Of
course, there are practical limits on how large N can be (e.g.,
implementation details such as A/D conversion and related
hardware issues which we ignore in this paper).

In contrast to a Gaussian pulse we now examine a waveform
whose associated ambiguity surface is thumbtack-like. A func-
tion is “thumbtack-like” if all of its values are are close to zero
except for a unique large spike. Due to Properties 1 and 2 of
the Alltop sequence in Section III-D we see that its ambiguity

Fig. 6. Traditional radar reconstruction of Fig. 5(a)’s original target scene.
With no noise: (a) Gaussian pulse, (b) Alltop sequence. With SNR = 15 dB:
(c) Gaussian pulse, (d) Alltop sequence. With SNR = 5 dB: (e) Gaussian
pulse, (f) Alltop sequence.

surface has this thumbtack feature. Other thumbtack-like am-
biguity surfaces include those associated with the waveforms
which generate the equiangular line sets found in [18].

Figures 6(b), 6(d), and 6(f) depict the original target scene
traditionally reconstructed using the Alltop sequence. Take
note of the distinction with compressed sensing radar pre-
sented in Section IV-B which also uses this function. Here, the
classical approach transmits the Alltop sequence, and then uses
a matched filter to correlate the received signal with a time-
frequency shifted Alltop sequence as in (11). The radar scene
will now consist of a thumbtack function centered at each
target. In theory, this radar would provide target resolution
similar to our CS version (i.e., the target is represented as
a point source in time-frequency plane rather than a “spread
out” uncertainty region).

However, the situation is not so simple. The non-zero
portions of the ambiguity function can accumulate to create
undesirable effects. This is shown in Figure 6(b) where it is
apparent, even in the ideal case of no added noise, that there
is a great deal of interference. Moreover, this type of “noise”
is deterministic and cannot be remedied by averaging over
multiple observations. Notice that the interference seems to be
distributed over a wide range of amplitudes. In fact, referring
to the original target scene in Figure 5(a), it appears that some
of of the weaker targets have been buried in this noise. Even
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if a reasonable threshold could be determined, perhaps only
the four or five strongest targets would be detected and many
false positives would remain.

We present these results to emphasize that naive application
of traditional radar techniques with the Alltop sequence will
fail if the radar scene contains more than just a few strong
targets. The outcome will be similar if other low-correlation
sequences are used.

Regardless of whether a transmitted waveform has an am-
biguity surface which is spread or narrow, interference from
adjacent targets will necessarily occur in classical radar, and
this will result in undesirable effects. In contrast, CS radar does
not experience this interference since it completely dispenses
with the need for a matched filter. Therefore, there are no
issues with the ambiguity function of the transmitted signal.

V. DISCUSSION

We have provided a sketch for a high-resolution radar
system based on CS. Assuming that the number of targets
obey the sparsity constraint in Theorem 2, the Alltop sequence
will perfectly identify the radar scene with high probability
using CS techniques. Numerical simulations confirm that this
sparsity constraint is too strict and can be relaxed to K ≤
N/ log N , although this has yet to be proven mathematically.

It must be emphasized that our model presents radar in an
overly simplified manner. In reality, radar engineers employ
highly sophisticated methods to identify targets. For example,
rather than a single pulse, a signal with multiple pulses is often
used and information is averaged over several observations.
We also did not address how to discretize the analog signals
used in both CS and classical radar. A more detailed study
addressing these issues is the topic of another paper.

Related to the discretization issue is the fact that CS radar
does not use a matched filter at the receiver. This will directly
impact A/D conversion, and has the potential to reduce the
overall data rate and to simplify hardware design. These
matters are discussed in [19], although it does not consider
the case of moving targets. In our study the major benefit of
relinquishing the matched filter is to avoid the target uncer-
tainty and interference resulting from the ambiguity function.

Since many of the implementation details of our CS radar
have yet to be determined, and since classical radar can also be
implemented in many ways we were only able to make a rough
comparison between their respective resolutions. Regardless,
the radar uncertainty principle lies at the core of traditional
approaches and limits their performance. We contend that CS
provides the potential to achieve higher resolution between
targets. The radar simulations presented confirm this claim.

It must be stressed again that the success of this stylized CS
radar relied on the incoherence of the dictionary ΦA resulting
from the Alltop sequence. There exist other probing functions
with similar incoherence properties. Numerical simulations
with f as a random Gaussian signal, as well as a constant-
envelope random-phase signal indicate similar behavior to
what we have reported for the Alltop sequence. At the time
of writing this paper we became aware of a similar study
[20] where the properties of these functions are analyzed in

the context of CS. There is also the possibility of combining
classical radar techniques with `1 recovery. Initial tests show
that while we get good reconstruction, the results are not
guaranteed, even in the case of no noise.

Narrowband radar is by no means the only application to
which the techniques presented here can be used. Wideband
radar admits a received signal which is well-represented by
a wavelet basis, and the dictionary Φ could be reformulated
accordingly. There are also applications to many other linear
time-varying systems such as sonar, estimation of underwa-
ter acoustic communication channels [12], and blind source
separation [13].
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[2] K. Gröchenig, Foundations of time-frequency analysis. Boston:
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