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Eigenvalue Estimates and Mutual
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Abstract

We consider linear time-varying channels with additive white Gaussian noise. For a large
class of such channels we derive rigorous estimates of the eigenvalues of the correlation
matrix of the effective channel in terms of the sampled time-varying transfer function and,
thus, provide a theoretical justification for a relationship that has been frequently observed
in the literature. We then use this eigenvalue estimate to derive an estimate of the mutual
information of the channel. Our approach is constructive and is based on a careful balance
of the trade-off between approximate operator diagonalization, signal dimension loss, and
accuracy of eigenvalue estimates.

I. INTRODUCTION

A. Motivation
The linear, time-invariant (LTI) channel with impulse response h

r(t) =

∫
h(t− τ)s(τ)dτ (1)

and additive white Gaussian noise with variance σ2 has normalized capacity

1

2W

∫ W

−W
log

(
1 +
|ĥ(ω)|2

σ2

)
dω (2)

for signals band-limited to [−W,W ]. This classical result is, of course, due to Shan-
non [1], and is probably the most fundamental result in information theory. We refer
to [2] for the mathematical steps and the information-theoretic details for establish-
ing (2).

The linear, time-variant (LTV) channel is given by

r(t) =

∫
h(t, t− τ)s(τ)dτ. (3)
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Motivated by Shannon’s groundbreaking result, it has been a longstanding desire of
engineers and mathematicians to derive a characterization of the capacity of time-
varying channels in terms of the associated time-varying transfer function, analogous
to (2). While such a characterization seems still quite out of reach for the general case,
our aim in this paper is to get one step closer to this ambitious goal. The mathematical
foundation for Shannon’s famous result is the fact that in the time-invariant case the
(generalized) eigenvalues of the channel matrix are directly related to samples of the
transfer function. Thus it is natural to ask to what extent such a relationship carries
over to the time-varying case, which is what we plan to answer in this paper.

For information-theoretic studies of some special cases of time-varying channels we
refer the reader to [3] and its vast list of references. In this paper we focus on the
class of time-varying channels whose spreading function decays at an exponential rate
both in time and frequency. This channel class is motivated by physical properties of
channel propagation and includes for instance underspread channels [4], [5].

B. Contributions
A precise formulation of the results of this paper requires several steps of preparation.

Therefore we delay the rigorous presentation of our results to later sections, and instead
give an informal description of our contributions.

The main result of our paper shows that the eigenvalues of the correlation matrix of
the effective channel can be well approximated via sampling values of the autocorrela-
tion of the time-varying transfer function. We derive rigorous bounds for the accuracy
of this approximation. Our approach is constructive and is based on a careful balance of
the trade-off between approximate matrix diagonalization, signal dimension loss, and
accuracy of eigenvalue estimates. While the proof of the eigenvalue estimate is quite
delicate, this will come as no surprise to the expert in pseudodifferential operator
theory, since characterizing the spectrum of a pseudodifferential operator (which is
essentially an operator of the form (3)) via its symbol has always been a difficult task.

We then show how this eigenvalue estimate can be used to derive an estimate of
the mutual information of these channels. Recall that for the time-invariant case the
mutual information (and thus in turn the capacity) is precisely captured by the sampled
Fourier transform of the autocorrelation of the impulse response, as the time interval
is extended to infinity. Building on our eigenvalue estimates, we rigorously relate the
mutual information to samples of the Fourier transform of the “twisted auto-convolved”
spreading function.

C. Remarks on the proof strategy
A few comments on the proof strategy seem in order. Two different types of signal

sets will play an important role: Weyl-Heisenberg signals and prolate spheroidal wave
functions. The reader may wonder why we do not stick with just one of these two
types. The reason is that each of the two has some major advantages, but also some
significant limitations. Thus, by introducing both types, Weyl-Heisenberg signals and
prolate spheroidal wave functions (PSWFs), we can fully utilize the positive properties
of each set, while mitigating its negative properties with the other set.
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For the eigenvalue estimate we rely on a set of well localized Weyl-Heisenberg
signals whose span is close to the span of the PSWFs in a sense that will be formalized
in the proof. While the PSWFs are optimally localized in an L2-sense, their lack of
sufficient temporal decay (except for the first few PSWFs) prohibits us from linking the
eigenvalues of A∗A, the correlation matrix of the effective channel, to the associated
time-varying transfer function. The off-diagonal entries of the resulting matrix would
have at best linear decay, which is simply insufficient for any reasonable estimate. On
the other hand, the excellent localization properties of the Weyl-Heisenberg set yield
an approximate diagonalization of the channel, so that the off-diagonal entries of A∗A
decay exponentially, which allows us to obtain a rather tight eigenvalue estimate.

The mutual information will depend on the type and number of transmission signals.
We use a signaling set consisting of about 2TW mutually orthonormal W -bandlimited
signals which are “essentially localized” to a time interval of length T . The associated
signal space, rigorously defined in Definition 2.1, will be denoted by L2(T,W, ε). It is
not difficult to construct a linear independent, well-localized set of Weyl-Heisenberg
signals. However due to the infamous Balian-Low theorem (see Subsection III-A) such
a set will be necessarily incomplete in L2(R), which in turn implies that the number
of Weyl-Heisenberg signals inside L2(T,W, ε) is somewhat smaller than 2TW +1, the
approximate dimension of L2(T,W, ε). This dimension loss makes a direct estimate of
the mutual information somewhat cumbersome. And that is where PSWFs come into
play. We (approximately) represent L2(T,W, ε) via the PSWFs, and then quantify the
(small) dimension loss between the Weyl-Heisenberg set and the PSWFs. Combining
this estimate with our eigenvalue estimate enables us then to estimate the mutual
information in terms of the time-varying transfer function.

D. Connections to prior work
Our work is related to previous research on two aspects of time-varying channels.

Previous authors have discussed diagonalizing the channel and giving the capacity in
terms of singular values [6], [7], [8], and other authors have focused on determining
transmission signals with various useful properties [9], [10]. Our paper is probably
closest in spirit to [11], where the authors derive estimates for the non-coherent
capacity for certain time-varying channels by carefully combining signal design with
approximate diagonalization.

Much of the mathematical approach to time-varying channels from a time-frequency
analysis perspective originated with Kozek [9], [12], [13]. While he addresses issues
such as the composition and estimation of time-varying channel operators and the time-
frequency localization of transmission signals, his focus is a WSSUS model. Here we
work with a deterministic channel.

The remainder of the paper is organized as follows. At the end of this section
we introduce mathematical tools and notation used throughout the paper. Section II
describes our setup, the channel model and the signal model. We derive the eigenvalue
estimate in Section III and present the estimate of the mutual information in Section IV.
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E. Mathematical tools and notation
Let f be a function in L2(R). The modulation operator Mω is defined by

Mωf(t) = e2πiω·tf(t) (4)

and the translation operator Tx is defined by

Txf(t) = f(t− x) (5)

for all f ∈ L2(R). The Fourier transform of a function f ∈ L2(R) is given by

(Ff)(ω) =

∫
f(t)e−2πiωtdt. (6)

We also write f̂ for Ff . The Fourier transform of a function in two variables is
defined by extending (6) in the usual way to two dimensions. Sometimes we need to
take the Fourier transform of a function f(t1, t2) with respect to the first or the second
variable only. In this case we write F1f or F2f , respectively. When no interval is
given, integration is over all of R. For a complex-valued function f , we denote its
complex conjugate by f̄ . The eigenvalues of a matrix A are denoted by λj(A).

The Weyl pseudodifferential operator Lσ is defined as

Lσf(t) =

∫ ∫
σ̂(ω, x)e−πixωT−xMωf(t)dωdx. (7)

Here σ is called the symbol and its Fourier transform, σ̂, is called the spreading
function. We can express the composition of two pseudodifferential operators Lσ, Lτ

in terms of their symbols. There holds LσLτ = Lσ]τ , where σ]τ = F−1(σ̂\τ̂) denotes
the twisted product of σ and τ , and

(σ̂\τ̂)(ω, x) =
∫∫

σ̂(ω′, x′)τ̂(ω − ω′, x− x′)e−πi(xω
′−ωx′)dω′dx′

is called the twisted convolution of σ̂ and τ̂ , see [14]. This can be seen as a generaliza-
tion of the composition rule of two time-invariant operators via ordinary convolution.

We set S = σ]σ, which is the Fourier transform of the “twisted autocorrelation” of
σ̂. Since S takes values in R, S+(u, v) is defined by S+(u, v) = max(S(u, v), 0).

II. CHANNEL MODEL AND SIGNAL MODEL

We first derive an equivalent representation of the channel model (3). We set σ(t, ω) =
F2h(t, ·). Several manipulations and applications of the Fourier transform yield [14]∫

h(t, t− τ)s(τ)dτ =

∫ ∫
σ̂(ω, x)MωT−xs(t)dωdx. (8)

This allows us to equivalently express the linear time-varying channel as a pseudod-
ifferential operator

Lσs(t) =

∫ ∫
σ̂(ω, x)e−πixωT−xMωs(t)dωdx. (9)

The integral in equation (9) has the interpretation that the received signal is a weighted
sum of shifted and modulated copies of the original signal. Using the Weyl form allows
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us to express the channel as an operator that has further useful relationships to other
forms that will be helpful in our proof. See [14] for further background on such
operators.

Our model is now given by the following steps and is illustrated in equations (10-14).
First the random variable x ∈ CN , x ∼ NC(0, IN) is mapped to a set of orthonormal
transmission signals φi as coefficients (10). The signal passes through the channel
given by Lσ (11) and is corrupted by AWGN (12). The received signal is mapped to a
sequence of random variables y by taking the inner product with the detection signals
ψrk (13).

NC(0, IN) ∼ x
Φ→

N∑
i=1

xiφi (10)

Lσ→ Lσ

N∑
i=1

xiφi (11)

⊕ noise→ Lσ

N∑
i=1

xiφi + n (12)

C→ {〈Lσ

N∑
i=1

xiφi + n, ψrk〉}k∈Z (13)

= y. (14)

The reader will have noticed that we use a different set of signals at the transmitter
and the receiver. The mutual information between x and y, I(x, y) depends on the
transmission signals {φi}Ni=1 and the number of transmission signals, but as long as
{ψrk}k∈Z is an orthonormal basis for L2(R) or a tight frame, then I(x, y) is independent
of the receive signals. It is clear that the transmission signals {φi}Ni=1 should form a
linearly independent set. As already briefly indicated, later the Balian-Low theorem
will force us to select the linearly independent set of transmission signals from a set
of functions that is also incomplete in L2(R). Obviously, this implies a dimension
loss of the signal space which manifests itself in an additional error term in our main
estimate of the mutual information. An additional dimension loss would occur if we
also used an incomplete signaling set at the receiver. However, at the receiver we are
not restricted to linearly independent signaling sets (thus the Balian-Low theorem is
no longer an obstacle) and therefore we will use a different, and in fact overcomplete,
signaling set at the receiver.

Now we introduce and discuss our requirement on the transmission signals. We
require that they are L2-localized to a time-frequency rectangle, which we formalize
with the following definition.

Definition 2.1: We define the space L2(T,W, ε) by

L2(T,W, ε) ={
f ∈ L2(R) :

∫ T

0

|f(t)|2dt ≥ (1− ε2)‖f‖L2(R) and
∫ W

−W
|f̂(ω)|2dω ≥ (1− ε2)‖f‖L2(R)

}
.
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Given the intervals [0, T ], [−W,W ] we denote by {ϕn}∞n=0 the associated PSWFs
similar to [15], [25]1. Let P be the orthogonal projection onto the span of ϕ0, . . . , ϕ2TW .
By Theorem 12 in [15] for every f ∈ L2(T,W, ε),

‖f −Pf‖2 ≤ 7ε‖f‖2. (15)

In other words, L2(T,W, ε) is well approximated by the first 2TW + 1 elements of
the PSWFs and L2(T,W, ε) is essentially (2TW + 1)-dimensional.

There are several reasons for restricting our transmission signals to this space. Firstly,
any real-world communication signal has finite duration and (essentially) finite band-
width. The above model is a standard way to describe this property in a mathematically
meaningful way [15]. Secondly, for time-varying channels it is more insightful to have
expressions for eigenvalue estimates or mutual information for finite time intervals (and
of course finite bandwidth) than for infinite time, as is also reflected in the papers [2],
[6], [11]. Thus it is useful to require some form of time-frequency localization of
the transmission signals. We note that we could have chosen the signal space with
somewhat different localization conditions, such as for instance using exactly time-
limited signals. However, our symmetric localization condition in Definition 2.1 lends
itself to a somewhat shorter proof (admittedly, in spite of the overall length of our
proof, the reader might find that using the term “shorter” is not appropriate here).

III. EIGENVALUE ESTIMATES FOR TIME-VARYING CHANNELS

A. Weyl-Heisenberg systems, time-frequency localization and mutual information
We assume that the reader is familiar with frame theory and refer to [14] for

background.
Definition 3.1: For a given function φ ∈ L2(R) (the window function) and given

parameters a, b > 0, we denote the associated Gabor system or Weyl-Heisenberg system
by (φ, a, b) := {MblTakφ}k,l∈Z, a, b ∈ R+. The redundancy of this system is 1

ab
. (Note

that ab ≤ 1 is necessary for (φ, a, b) to be a frame for L2(R) [14].)
Proposition 3.2: Let gs(t) = (2s)−1/4e−

π
s
t2 , and set ψs = S−1/2gs, where S is the

frame operator corresponding to (gs,
a
ρ
, b
ρ
). Then (ψs,

ρ
b
, ρ
a
) = (ψs, ρa, ρb) (ab = 1 and

ρ > 1) is an orthonormal system and there exist constants C > 0 and 0 < D < 1 such
that

|ψs(t)| ≤ Ce−D
π
s
|t| ∀ t ∈ R

|ψ̂s(ω)| ≤ Ce−Dπs|ω| ∀ ω ∈ R.

Proof: A fundamental theorem due to Lyubarskii, Seip and Wallsten states that
(gs,

b
ρ
, a
ρ
) is a frame for L2(R) if and only if ab

ρ2
< 1 [17], [18], [19]. By Theorem 5.1.6

and Corollary 7.3.2 in [14], (S−1/2gs,
b
ρ
, a
ρ
) = (ψs,

b
ρ
, a
ρ
) is a tight frame for L2(R) with

frame constant ρ2. Now we use the Weyl-Heisenberg biorthogonality relations [20],
[21], [22], which state that if Sg,γ =

∑
k,l∈Z〈 · ,MβlTαkg〉MβlTαkγ = I on L2(R),

then 〈γ,Ml/αTk/βg〉 = αβδk,0δl,0. A ready consequence of this essential theorem is
that (ψs,

ρ
a
, ρ
b
) = (ψs, ρb, ρa) (ab = 1) is an orthonormal set [14]. Note that (ψs, ρb, ρa)

1The minor and trivial difference to [15], [25] is that we consider [0, T ] and not [−T, T ].
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does not span L2(R)). By Theorem 5 in [23], up to a factor 0 < D < 1, the exponential
decay of gs and ĝs is preserved in ψs and ψ̂s. Finally, Theorem IV.2 in [24] implies
that if ψ1 is the window function for the orthonormal set based on the initial window
g1, then ψs is the corresponding window function for gs.

Let ψs, a and b be as in the previous proposition. We construct our signals by setting
a = β

α
, b = α

β
and s = (α

β
)2. The signals are then defined by:

D1) ψt = ψ(α
β

)2

D2) ψr = 1
ρ
ψ(α

β
)2

D3) ψrk,l = M 1
ρ
blT 1

ρ
β
α
kψ

r

D4) ψtk,l = Mρα
β
lTρ β

α
kψ

t

Here t stands for “transmit” and r stands for “receive”.
Definition 3.3: A function f ∈ L2(R) is exponentially localized to the region [0, T ]×

[−W,W ] if there exist constants c1, C1, c2 and C2 such that

|f(t)| ≤ C1e
−c1|t| and |f̂(ω)| ≤ C2e

−c2|ω| (16)

for all t /∈ [0, T ] and all ω /∈ [−W,W ].
The Balian-Low theorem [14] precludes the existence of an orthonormal Weyl-

Heisenberg basis (φ, a, b) for L2(R) with well-localized window function. In particular,
φ and φ̂ could never have exponential decay. On the other hand (as for instance
Proposition (3.2) shows) it is not difficult to construct an orthonormal system that is
incomplete in L2(R) or an overcomplete system (φ, a, b) with a φ that is exponentially
well localized in time and frequency. Thus, the Balian-Low theorem is the reason why
we use a signaling set at the transmitter drawn from an incomplete system for L2(R)
(implying ρ > 1) and an overcomplete signaling set at the receiver.

While mutual information is not the main topic of this section, we take the oppor-
tunity to address a non-trivial aspect associated with mutual information that arises
from using a tight frame instead of an orthonormal basis as receive functions. If we
used an orthonormal basis at the receiver, then the noise covariance matrix, CNC∗N
in the proof below, would be a multiple of the identity, and this proposition would
be simple and standard. Using a unit-norm tight frame rather than an orthonormal
basis does not change the eigenvalues, but it does make the property addressed in the
proposition below more delicate. The exponential localization at the receiver and the
L2(T,W, ε)-property at the transmitter, however, deliver the necessary approximations
for this proposition to hold.

Proposition 3.4: Let {φkl}(k,l)∈J , |J | < ∞, be orthonormal transmission signals
contained in L2(T,W, ε), and let {ψrkl}k,l∈Z be a tight frame of exponentially localized
receiver signals (with frame bound 1). Let x ∼ NC(0, I|J |) and

ykl = 〈Lσ

∑
k′l′∈J

xk′l′φk′l′ + n, ψrkl〉, for k, l ∈ Z,

where n(t) is AWGN of variance η2. Denote

Aklk′l′ = 〈Lσφk′l′ , ψ
r
kl〉. (17)
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Then

I(x; y) =

|J |∑
i=1

log

(
1 +

λi(AA∗)

η2

)
. (18)

Proof: Let Φ : L2(R)→ L2(R) be the orthogonal projection onto span{φkl}(k,l)∈J ,
and let C : L2(R)→ l2(Z2) and CN : L2(R)→ C(2N+1)2 be the coefficient operators
given by Cf = {〈f, ψrkl〉}k,l∈Z and CNf = {〈f, ψrkl〉}|k|,|l|≤N for N ∈ N. The mutual
information I(x; y) is

I(x; y)

= lim
N→∞

{log det(CNLσΦL∗σC
∗
N + η2CNC∗N)− log det(η2CNC∗N)}.

Assume ΦLσL
∗
σΦ has rank k, and arrange all eigenvalues in non-increasing order.

We must show that

lim
N→∞

λi(CNLσΦL∗σC
∗
N + CNC∗N) = λi(CLσΦLσC

∗) + 1

for i = 1, ..., k. Note that CLσΦL∗σC
∗ and ΦLσL

∗
σΦ have the same nonzero eigenval-

ues.
Since σ̂ decays exponentially in both variables and each φk′l′ ∈ L2(T,W, ε), using

the Cauchy-Schwartz inequality shows that each Lσφk,l is exponentially localized a
time-frequency rectangle slightly larger than [0, T ]× [−W,W ]. Thus the range of LσΦ
is exponentially localized in time and frequency, and so any eigenvectors of LσΦL∗σ
corresponding to nonzero eigenvalues, since they belong to the range of LσΦ, are
similarly exponentially localized, which holds as well for CNLσΦL∗σC

∗
N for all N . In

particular, for all f in the range of LσΦ, there exist positive constants c, C such that

‖C∗NCNf − f‖L2(R) ≤ Ce−cN .

Let u(N)
i be an eigenvector of CNLσΦL∗σC

∗
N corresponding to the nonzero eigenvalue

λi. Then u(N)
i = CNf

(N)
i for some f (N)

i in the range of LσΦ. Now,

lim
N→∞

(CNf
(N)
i )∗CNC∗N(CNf

(N)
i ) = lim

N→∞
〈f (N)
i ,CNC∗NCNC∗Nf

(N)
i 〉 (19)

= lim
N→∞

〈f (N)
i , f

(N)
i 〉 (20)

= 1.

The convergence in lines (19) and (20) is exponential. While exponential convergence is
not necessary, without sufficient localization of all the functions involved, convergence
at all does not hold a priori for (19) and (20). For i = 1, ..., k,

lim
N→∞

λi(CNLσΦL∗σC
∗
N + η2CNC∗N) = lim

N→∞
λi(CNLσΦL∗σC

∗
N) + η2

The remaining eigenvectors of CNC∗N are in the kernel of CNLσΦL∗σC
∗
N . Thus,

lim
N→∞

{ (2N+1)2∑
i=1

log(λi(CNLσΦL∗σC
∗
N + η2CNC∗N))−

(2N+1)2∑
i=1

log(λi(η
2CNC∗N))

}
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= lim
N→∞

k∑
i=1

log(λi(CNLσΦL∗σC
∗
N) + η2)− lim

N→∞

k∑
i=1

log(λi(η
2CNC∗N)) (21)

= lim
N→∞

k∑
i=1

log(1 +
λi(CNLσΦL∗σC

∗
N)

η2
) (22)

=
k∑
i=1

log(1 +
λi(Φ

∗L∗σLσΦ∗)

η2
)

=
k∑
i=1

log(1 +
λi(A

∗A)

η2
)

=

|J |∑
i=1

log(1 +
λi(A

∗A)

η2
),

where lines (21) and (22) are consequences of the first half of the proof.

B. Eigenvalue Estimates
We are ready to give a rigorous formulation of our main result, which states that

the eigenvalues of the correlation matrix A∗A can be well approximated by samples
of S, the twisted autocorrelation of the time-varying transfer function.

Theorem 3.5 (Eigenvalue estimate): Assume the same setup as in Proposition 3.4.
Furthermore, suppose that

|σ̂(ω, x)| ≤ Ce−β|ω|−α|x|. (23)

Let S = σ]σ. Then for j = 1, ..., |J |, there exists an index pair (k, l) such that∣∣∣∣λj(A∗A)− S(ρ
β

α
k, ρ

α

β
l)

∣∣∣∣ ≤ O(e− ρ2 (β+α) +
1

(αβD)2

)
. (24)

Remark: Our decay condition (23) on the spreading function comprises the standard
conditions of exponential decay of delay spread and compact support of the Doppler
spread [5]. Moreover, we could have imposed an underspread condition on the spread-
ing function, see [16] for various notions of underspread channels. It is not hard to see
that condition (39) includes (or can be easily adapted to) several forms of underspread
channels. This would result in somewhat different constants in the error estimate at
the cost of a slightly longer proof, but the essence of the theorem would remain the
same. Furthermore, one can replace the exponential decay condition by some form
of (practically less justified) polynomial decay and show that the error term in (24)
would then decrease at a corresponding polynomial rate.

To prove Theorem 3.5 we cannot use PSWFs, but instead introduce exponentially
localized signals. The reason is that the PSWFs decay linearly [25] and, thus, do not
permit the bounds obtained in the main two lemmas of this section. This is heuristically
explained by the fact that the PSWFs are the approximate eigenfunctions of the
operator that restricts in time and frequency, which is a much different operator than
a time-varying channel, for which the exponentially localized signals are approximate
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eigenfunctions. This is seen formally in the off-diagonal decay in the matrix A in
Proposition 3.7 below. However, since both sets of signals are localized, the spaces that
they span are close, which is a point that we formalize later in the proof of Theorem 4.1.
Thus, the general idea is the standard linear algebra approach of working with the same
space, but switching to a basis that allows for approximate diagonalization.

We first need an auxiliary result.
Lemma 3.6: For f, g ∈ L2(R), letW(f, g) and A(f, g) denote their cross-ambiguity

and cross-Wigner distributions [14]. If |ψ(x)| ≤ Ce−c1|x| and |ψ̂(ω)| ≤ Ce−c2|ω| for
c1, c2 > 0, then

|W(ψ, ψ)(x, ω)| ≤ C2e−
1
4

(c1|x|+c2|ω|)

and
|A(ψ, ψ)(x, ω)| ≤ C2e−

1
4

(c1|x|+c2|ω|).

Proof: The proof is contained in the proof of Theorem 2.4 in [26], when one
views both distributions as short-time Fourier transforms, as explained in [14].

A key ingredient in our proof of Theorem 3.5 is the following lemma, which shows
that the entries of the matrix A defined in (26) decay exponentially fast as we move
away from the main diagonal. The approximate diagonalization of A via a properly
designed Weyl-Heisenberg systems is well known in a qualitative sense [13], [27], [11].
What is new in the following lemma is that we give a precise quantitative formulation
of this statement. This quantitative version is important in the subsequent steps, where it
will give rise to explicit and rigorous bounds on the approximation of the eigenvalues of
A∗A by samples of the twisted autocorrelation S of the time-varying transfer function.

Lemma 3.7: Assume that

|σ̂(ω, x)| ≤ Ce−β|ω|−α|x|, (25)

that the signals are given according to properties D1−D4 above and that

Aklk′l′ = 〈Lσψ
t
k′l′ , ψ

r
kl〉. (26)

Then

|Aklk′l′| ≤ C(e
−αρ| 1

ρ2
l−l′|

+ e
−π

4
D(α

β
)2ρ| 1

ρ2
l−l′|

)

×(e
−βρ| 1

ρ2
k−k′|

+ e
−π

4
D( β

α
)2ρ| 1

ρ2
k−k′|

).

Proof: The following two essential identities hold for pseudodifferential operators,
cf. [14]:

〈Lσf, g〉 = 〈σ,W(g, f)〉 (27)

|〈LσTuMηf, TvMγg〉| = |(σ̂ ∗ A(f, g))(u− v, η − γ)| . (28)

The system is given by ψ(α
β

)2 = S−1/2g(α
β

)2 , where g(α
β

)2(t) = (2(α
β
)2)−1/4e−π( β

α
)2t2 ,

and by Proposition (3.2)
|ψ(α

β
)2(t)| ≤ Ce−π( β

α
)2D|t| (29)

|ψ̂(α
β

)2(ω)| ≤ Ce−π(α
β

)2D|ω|. (30)
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Lemma 3.6 implies

|A(ψ(α
β

)2 , ψ(α
β

)2)(x, ω)| ≤ Ce−
π
4
D(α

β
)2|x|−π

4
D( β

α
)2|ω|. (31)

|Ak,l,k′,l′ | = |〈Lσψ
t
k′l′ , ψ

r
kl〉| = |〈LσMρα

β
l′Tρ β

α
k′ψ,M 1

ρ
α
β
lT 1

ρ
β
α
kψ〉|

= |(σ̂ ∗ A(ψ, ψ))(
β

α
(
1

ρ
k − ρk′), α

β
(
1

ρ
l − ρl′))|

= |
∫∫

σ̂(ω, x)A(ψ, ψ)

(
β

α
(
1

ρ
k − ρk′)− x, α

β
(
1

ρ
l − ρl′)− ω)dxdω|

≤ C

∫∫
e−β|ω|−α|x|

e−
π
4

( β
α

)2D| β
α

( 1
ρ
k−ρk′)−x|−π

4
(α
β

)2D|α
β

( 1
ρ
l−ρl′)−ω|dωdx

= C

∫
e−β|ω|−

π
4

( β
α

)2D|α
β

( 1
ρ
l−ρl′)−ω|dω

×
∫
e−α|x|−

π
4

(α
β

)2D| β
α

( 1
ρ
k−ρk′)−x|dx

≤ C(e
−αρ| 1

ρ2
l−l′|

+ e
−π

4
α
β
Dρ| 1

ρ2
l−l′|

)

×(e
−βρ| 1

ρ2
k−k′|

+ e
−π

4
β
α
Dρ| 1

ρ2
k−k′|

),

where we have used the bound:∫
e−c1|y|e−c2|X−y|dy ≤ C(e−c1|X| + e−c2|X|).

The following lemma shows that the eigenvalues of A∗A are well approximated by
its diagonal entries.

Lemma 3.8: Assume again the hypotheses of Proposition 3.7. Then for j = 1, ..., |J |,
there exists an index pair (k, l) such that

|λj(A∗A)− (A∗A)klkl)| ≤ O(e−
ρ
2

(β+α)). (32)

Proof:

(A∗A)klk′l′ =
∑
j,j′∈Z

Ajj′klAjj′k′l′

=
∑
j,j′∈Z

〈Lσψtkl, ψ
r
jj′〉〈Lσψ

t
k′l′ , ψ

r
jj′〉

=
∑
j,j′∈Z

〈Lσψtkl, ψ
r
jj′〉〈ψrjj′ ,Lσψtk′l′〉

= 〈Lσψ
t
k′l′ ,Lσψ

t
kl〉
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= 〈LSψtk′l′ , ψtkl〉,
where S = σ]σ was defined in Section II. Using the estimate from the proof of
Lemma 3.7, we have that |Ŝ(ω, x)| ≤ C

αβ
e−β|ω|−α|x|. Using the identity in equation (28),

|〈LSψtk′l′ , ψtkl〉|

= |(Ŝ ∗ A(ψt, ψt))(ρ
β

α
(k′ − k), ρ

α

β
(l′ − l))|

≤ C(e−αρ|l−l
′| + e−

π
4
α
β
Dρ|l−l′|)

×(e−βρ|k−k
′| + e−

π
4
β
α
Dρ|k−k′|).

Next ∑
k=−K,...,K,k 6=k′
l=−L,...,L,l 6=l′

|(A∗A)klk′l′|

≤ C
∑

k=−K,..,K,k 6=k′
(e−βρ|k−k

′| + e−
π
4
D β
α
ρ|k−k′|)

×
∑

l=−L,..,L,l 6=l′
(e−αρ|l−l

′| + e−
π
4
Dα
β
ρ|l−l′|)

= O

((
e−βρ

1− e−βρ
+

e−
π
4
D β
α
ρ

1− e−π4D β
α
ρ

)

×

(
e−αρ

1− e−αρ
+

e−
π
4
Dα
β
ρ

1− e−
π
4
Dα
β
ρ

))
. (33)

= O

(
e−ρ(β+α)

(1− e−π4D β
α
ρ)(1− e−

π
4
Dα
β
ρ)

)
= O

(
e−

ρ
2

(β+α)
)
. (34)

We now have an estimate on the off-diagonal sums of the matrix A∗A and may apply
the Gershgorin disc theorem to obtain the claim.

Having established that the spectrum of A∗A is very close to its diagonal entries,
we next show that in turn the diagonal of A∗A is well approximated by the samples
of the associated twisted autocorrelation S.

Lemma 3.9: Assume again the hypotheses of Proposition 3.4 and that

|σ̂(ω, x)| ≤ Ce−β|ω|−α|x|.

Let S = σ]σ. Then

|(A∗A)klkl − S(ρ
β

α
k, ρ

α

β
l)| = O

(
1

(αβD)2

)
.

Proof: We first look at (A∗A)klkl. The diagonal entries of A∗A are

(A∗A)klkl =
∑
k′l′∈Z2

|〈Lσψ
t
kl, ψ

r
k′l′〉|2 (35)
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= ‖Lσψ
t
kl‖2

2, (36)

since (ψ, 1
ρ
a, 1

ρ
b) is a tight Weyl-Heisenberg frame (Proposition (3.2)).

‖Lσψ
t‖2

2 = 〈Lσψ
t
kl,Lσψ

t
kl〉 (37)

= 〈σ]σ,W(ψtkl, ψ
t
kl)〉 (38)

=

∫
R2

S(x, ω)W(ψt, ψt)(x− ρβ
α
k, ω − ρα

β
l)dωdx

Setting S ′ = ∂x∂ωS, by the Riemann-Lebesgue Lemma,

‖S ′‖∞ ≤
∫∫
|Ŝ(ω, x)|dωdx

≤ C

∫∫
1

αβ
e−

β
2
|ω|−α

2
|x|dωdx

=
C

(αβ)2
.

We use Lemma 3.6 and the fact that
∫∫

W (ψ, ψ)(ω, x)dωdx = ‖ψ‖2
2 = 1, cf. [14].

|‖Lσψ
t‖2

2 − S(ρ
β

α
k, ρ

α

β
l)|

= |
∫

R2

S(x, ω)W(ψ, ψ)(x− ρβ
α
k, ω − ρα

β
l)dωdx

−S(ρ
α

β
l, ρ

β

α
k)|

= |
∫

R2

S(x+ ρ
β

α
k, ω + ρ

α

β
l)W(ψ, ψ)(x, ω)dωdx

−S(ρ
α

β
l, ρ

β

α
k)|

= |
∫

R2

[S(x+ ρ
β

α
k, ω + ρ

α

β
l)− S(ρ

α

β
l, ρ

β

α
k)]

W(ψ, ψ)(x, ω)dωdx)|

≤ ‖S ′‖∞
∫

R2

(|x|+ |ω|)W(ψ, ψ)(x, ω)|dωdx

≤ C
1

(αβ)2

∫
R2

(|x|+ |ω|)e−
πsD

4
|x|− π

4s
D|ω|dωdx

= C
1

(αβD)2

These two bounds prove the lemma.
Proof of Theorem 3.5: The estimate (24) follows now readily by applying the tri-

angle inequality to the left-hand-side of (24), and then using Lemma 3.8 and Lemma 3.9.

Remark: In the proof of this theorem we rely on using Weyl-Heisenberg systems.
Instead we could have resorted to orthonormal Wilson bases [14], which do not suffer
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from the Balian-Low Theorem. However it would have resulted in a less elegant rela-
tionship between eigenvalues and samples of S. In particular, equations (27) and (28)
would have to be replaced by more complicated expressions.

IV. FROM ESTIMATING EIGENVALUES TO ESTIMATING MUTUAL INFORMATION

For the time-invariant case, the mutual information is precisely captured by samples
of the Fourier transform of the autocorrelation of the impulse response when one allows
T →∞. At the core of this relationship is the fact that the (generalized) eigenvalues of
the channel are directly linked to samples of the transfer function. It turns out that for
our class of time-varying channels a similar connection is true in an approximate sense.
Using the eigenvalue estimate from the previous section we will show that one can
obtain an estimate of the mutual information via samples of the Fourier transform of
the “twisted auto-convolved” spreading function. This is the contents of the following
theorem.

Theorem 4.1 (Mutual information estimate): Assume that the spreading function σ̂
in the system model satisfies

|σ̂(ω, x)| ≤ Ce−β|ω|−α|x|, (39)

and the AWGN n(t) has variance η2. Let ΦT,W = {φk}Nk=1 be a set of orthonormal
functions contained in L2(T,W, ε), where N = (1 − δ)(2TW + 1) for some 0 ≤
δ < 1. Let IΦT,W (x, y) denote the resulting mutual information of the system given in
lines (10-14). Then there exist constants 0 < D, 1 < ρ and small constants 0 ≤ δ1, δ2

such that∣∣∣∣∣IΦT,W (x, y)−
K,L∑

k=0,l=−L

log

(
1 +
S+(ρβ

α
k, ρα

β
l)

η2

)∣∣∣∣∣ (40)

≤ (2TW + 1) log(1 +O(e−
ρ
2

(β+α) +
1

(αβD)2
)) (41)

+(2TW + 1) log

(
1 +

(
14ε

η2
+

(14ε+ δ)

η2

)
‖S‖L∞(R)

)
(42)

+(2TW + 1) log

(
1 +

(
14ε

η2
+

1− (1−49ε2)
ρ2

+ δ1
ρ
β
α

+ δ2
ρ
α
β

η2

)
‖S‖L∞(R)

)
(43)

where K = T
ρ
α
β
−δ1 and L = 2W

ρ
β
α
−δ2. The parameters D and ρ have the relationship

that D → 0 as ρ → 1 and ρ → ∞ as D → 1. The numbers δ1 and δ2 depend on the
parameters α, β and ε, but remain small as T and W increase.

Before we proceed to the proof of this theorem, it seems prudent to comment on
the statement of this theorem and the various elements that come into play here.

Remark 1: In a nutshell our theorem shows that

IΦT,W (x, y) ≈
K,L∑

k=0,l=−L

log
(

1 +
S+(ρβ

α
k, ρα

β
l)

η2

)
,
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and quantifies rigorously in which sense this approximation is true. The error due
to estimating the mutual information from the samples is given in (41) and is the
conceptually more important one for this paper. The error in (42) results from the
transition from the system ΦT,W in L2(T,W, ε) to the PSWFs, and the error (43) is
due to the fact that the number of the constructed Weyl-Heisenberg signals used is
less than the number of PSWFs corresponding to the time-frequency region.

Remark 2: The factor ρ is necessary for our construction and is greater than 1, see
Proposition 3.2 and the subsequent discussion. While taking ρ very close to 1 would
make the error in equation (43) very small, it would increase the error in equation (41).
We can, however, take ρ to be fairly close to 1, such as ρ = 5/4. This issue of the
trade-off between time-frequency localization and loss of dimensions in signal space
has also been pointed out in [11].

We need the following lemma for the proof of Theorem 4.1.
Lemma 4.2: Let S = σ]σ and S+(x, ω) = (S(x, ω))+. Then∣∣∣∣log(1 + λk,l(A

∗A))− log(1 + S+(ρ
β

α
k, ρ

α

β
l))

∣∣∣∣
= log

(
1 +O

(
e−

ρ
2

(β+α) +
1

(αβD)2

))
Proof: Using Lemmas 3.8 and 3.9,∣∣∣∣log(1 + λk,l(A

∗A))− log(1 + S+(ρ
β

α
k, ρ

α

β
l))

∣∣∣∣
≤ |log(1 + λk,l(A

∗A))− log(1 + (A∗A)klkl)|

+

∣∣∣∣log(1 + (A∗A)klkl)− log(1 + S+(ρ
β

α
k, ρ

α

β
l))

∣∣∣∣
= log

(
1 +O

(
e−

ρ
2

(β+α) +
1

(αβD)2

))

Proof of Theorem 4.1: Let P denote the projection of L2(R) onto the span of
the 2TW + 1 PSWFs corresponding to [0, T ]× [−W,W ]. From (15) we obtain

‖Pf‖2
L2(R) ≥ 1− 49ε2‖f‖2

L2(R) (44)

for all f ∈ L2(T,W, ε). We write PΦ for the projection onto the set {φ1, . . . , φN} and
G for the Gram matrix of {Pφ1, ...,PφN}, i.e.

Gi,j = 〈Pφj,Pφi〉 i, j = 1, ..., N. (45)

Then rank(PPΦ) = rank(G). Note that the diagonal entries of G are positive and, since
{φ1, ..., φN} are orthonormal, that the eigenvalues of G have absolute value at most 1.
By inequality (44)

N∑
j=1

Gj,j =
N∑
j=1

‖Pφj‖2
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≥ N(1− 49ε2),

so that rank(G) ≥ N(1− 49ε2). Therefore,

rank(P⊥PΦ) ≤ rank(P)− rank(PPΦ)

≤ (2TW + 1)− (1− 49ε2)N,

and

‖PΦPLσL
∗
σPPΦ − PLσL

∗
σP‖HS

= ‖ − P⊥ΦPLσL
∗
σPPΦ + PLσL

∗
σPPΦ − PLσL

∗
σP‖HS

= ‖ − P⊥ΦPLσL
∗
σPPΦ + PLσL

∗
σP− PLσL

∗
σPP⊥Φ − PLσL

∗
σP‖HS

≤ ‖P⊥ΦPLσL
∗
σPPΦ‖HS + ‖PLσL

∗
σPP⊥Φ‖HS

≤ 2‖P⊥ΦP‖HS‖Lσ‖2

≤ 2 rank(P⊥ΦP)‖Lσ‖2

≤ 2((2TW + 1)− (1− 49ε2)N)‖Lσ‖2.

If 2TW + 1 > N , then set λj(PΦLσL
∗
σPΦ) = 0 for N < j ≤ 2TW + 1. Let π be a

permutation of the integers 1, ..., 2TW + 1. Then∣∣∣ 2TW+1∑
j=1

log
(
1 +

λj(PΦLσL∗σPΦ)
η2

)
−

2TW+1∑
j=1

log
(
1 +

λπ(j)(PLσL∗σP)
η2

)∣∣∣
≤

2TW+1∑
j=1

log
(

1 +
|λj(PΦLσL∗σPΦ)− λπ(j)(PLσL∗σP)|

η2

)

≤
2TW+1∑
j=1

log
(

1 +
|λj(PΦLσL∗σPΦ)− λj(PΦPLσL∗σPPΦ)|+ |λj(PΦPLσL∗σPPΦ)− λπ(j)(PLσL∗σP)|

η2

)
.

We consider the first eigenvalue difference in the expression above. Applying Theo-
rem A.46 in [28] we obtain

|λj(PΦPLσL
∗
σPPΦ)− λj(PΦPLσL

∗
σP)| ≤ ‖PΦLσL

∗
σPΦ − PΦPLσL

∗
σPPΦ‖. (46)

Let PΦf = u+ v where u ∈ range P and v ∈ range P⊥. Then

‖(PΦLσL
∗
σPΦ − PΦPLσL

∗
σPPΦ)f‖ = ‖PΦLσL

∗
σ(u+ v)− PΦPLσL

∗
σu‖

≤ ‖(PΦLσL
∗
σ − PΦPLσL

∗
σ)u‖+ ‖PΦLσL

∗
σv‖

= ‖PΦP⊥LσL
∗
σu‖+ ‖PΦLσL

∗
σv‖

≤ ‖PΦP⊥‖‖Lσ‖2‖u‖+ ‖PΦLσL
∗
σP⊥PΦf‖

≤ 7ε‖Lσ‖2‖f‖+ 7ε‖Lσ‖2‖f‖
≤ 14ε‖Lσ‖2‖f‖,

where we have used (15) in the penultimate step. Hence

|λj(PΦPLσL
∗
σPPΦ)− λj(PΦPLσL

∗
σP)| ≤ 14ε‖Lσ‖2. (47)
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Concerning the second difference of eigenvalues recall that according to Theo-
rem A.37 of [28] there exists a permutation π such that

2TW+1∑
j=1

|λj(PΦPLσL
∗
σPPΦ)− λπ(j)(PLσL

∗
σP)|2

≤ PΦPLσL
∗
σPPΦ − PLσL

∗
σP‖2

HS

≤ 4((2TW + 1)− (1− 49ε2)N)2‖Lσ‖4. (48)

So, using (47), (48) and the concavity of the log function we compute
2TW+1∑
j=1

log
(

1 +
|λj(PΦLσL∗σPΦ)− λj(PΦPLσL∗σPPΦ)|+ |λj(PΦPLσL∗σPPΦ)− λπ(j)(PLσL∗σP)|

η2

)

≤
2TW+1∑
j=1

log
(

1 +
14ε‖Lσ‖2

η2
+
|λj(PΦPLσL∗σPPΦ)− λπ(j)(PΦPLσL∗σP)|

η2

)

≤
2TW+1∑
j=1

log
(

1 +
14ε‖Lσ‖2

η2
+

2((2TW + 1)− (1− 49ε2)N)‖Lσ‖2

η2(2TW + 1)

)
(49)

We will return to (49) twice, taking N to be the cardinality of ΦT,W and of our
constructed set.

We look at the system {ψtk,l} from Section III-A. The signal ψtk,l is exponentially
localized around the point (ρα

β
l, ρβ

α
k). We select those signals that are contained in

L2(T,W, ε). For some positive constants δ1 and δ2, these are those signals with indices
0 ≤ k ≤ T

ρ
α
β
− δ1 and 0 ≤ |l| ≤ W

ρ
β
α
− δ2. We set K = T

ρ
α
β
− δ1 and L = W

ρ
β
α
− δ2. We

denote by PK,L the projection operator from L2(R) onto the span of {ψtk,l}
K,L
k=0,l=−L.

Now we use (49) twice: once with N = (1− δ)(2TW + 1) for the cardinality of the
set ΦT,W , as assumed in the statement of the theorem, and once for ΨK,L, where the
cardinality satisfies

K(2L+ 1) ≥ 2TW + 1

ρ2
− δ1

2W

ρ

β

α
− δ2

T

ρ

α

β
.

The arguments above then yield∣∣∣ 2TW+1∑
j=1

log(1 +
λj(PΦLσL

∗
σPΦ)

η2
)−

2TW+1∑
j=1

log(1 +
λπ(j)(PK,LLσL

∗
σPK,L)

η2
)
∣∣∣

≤ (2TW + 1) log

(
1 +

(
14ε

η2
+

2(49ε2 + δ)

η2

)
‖Lσ‖2

)
+(2TW + 1) log

(
1 +

(
14ε

η2
+

2(1− (1−49ε2)
ρ2

+ δ1
ρ
β
α

+ δ2
ρ
α
β
)

η2

)
‖Lσ‖2

)
(50)

The estimation of the eigenvalues PK,LLσL
∗
σPK,L is given by the Lemmas 3.8 and 4.2.

Applying these two lemmas together with inequality (50) complete the proof of the
theorem.
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