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Abstract

Compressed sensing techniques make it possible to
exploit the sparseness of radar scenes to potentially im-
prove system performance. In this paper compressed
sensing tools are applied to MIMO radar to reconstruct
the scene in the azimuth-range-Doppler domain. Con-
ditions are derived for the radar waveforms and the
transmit and receive arrays so that the radar sensing
matrix has small coherence and sparse recovery be-
comes possible. Theoretical performance bounds are
presented and validated by numerical simulations.

1 Introduction

Two relatively recent developments in radar are
the development of MIMO (multi-input multi-output)
radar [9], and the application of compressed sensing to
radar signal processing [10].

MIMO radar is characterized by using multiple an-
tennas to simultaneously transmit diverse, usually or-
thogonal, waveforms in addition to using multiple an-
tennas to receive the reflected signals. MIMO radar
has the potential for enhancing spatial resolution and
improving interference and jamming suppression. The
ability of MIMO radar to shape the transmit beam
post facto allows for adapting the transmission based
on the received data in a way which is not possible in
“conventional” radar.

Most radar scenes are sparse in the sense that only a
small fraction of the range-azimuth or range-Doppler-
azimuth cells are occupied by objects of interest. In
fact in most situations this fraction is very small in-
deed. This sparsity assumption suggests to approach
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the MIMO radar problem using the framework of com-
pressed sensing (CS) [3, 5]. In this paper we develop
the basic theory needed to apply CS to MIMO radar.
Some initial empirical results on waveform design for
compressed sensing MIMO radar can be found in [4].

At the core of compressed sensing lies the discov-
ery that it is possible to reconstruct a sparse signal
x exactly from a underdetermined linear system of
equations Ax = y and that this can be done in a
computationally efficient manner via ℓ1-minimization,
cf. [2, 3, 5]. More specifically, assume x ∈ C

m is
a signal that is sparse, i.e., the number of its non-
zero components satisfies s := ‖x‖0 ≪ m (where
‖x‖0 := #{k : xk 6= 0}). Consider Ax = y, where
A is an n×m matrix of rank n with n < m. Since this
system is underdetermined, there are infinitely many
solutions. Due to the sparsity of x one could compute
x by solving the optimization problem

min
x

‖x‖0 s.t. Ax = y. (1)

However solving (1) is an NP-hard problem and thus
practically not feasible. Instead we consider its convex
relaxation (also known as Basis Pursuit)

min
x

‖x‖1 s.t. Ax = y, (2)

which can be solved efficiently via linear or quadratic
programming techniques. It is by now well-known that
under certain conditions on the matrix A and the spar-
sity of x, both (1) and (2) have the same unique solu-
tion [2, 3, 5, 6]. One such condition is the restricted
isometry property [2], which is satisfied for instance by
Gaussian random matrices or random partial Fourier
matrices. Another condition (utilized in this paper) is
based on the (in)coherence of A, which is defined as

µ(A) = max
1≤<k≤m

〈Aj , Ak〉
‖Aj‖2‖Ak‖2

, (3)

where Ai denotes the i-th column of A, see [6, 14].
Some examples for matrices with small coherence can
be found in [12].



In the radar setting, the sensing matrix A repre-
sents a physical process (the scattering of electromag-
netic waves), and therefore we cannot simply choose
A to be, say, a Gaussian random matrix or a random
partial Fourier matrix. Nevertheless, certain parame-
ters are under our control, such as the choice of the
radar transmit signals, as well as the positions of the
transmit and receive antennas. Therefore it is crucial
to analyze whether and how the parameters under our
control can be chosen such that that the MIMO radar
sensing matrix has small coherence.

2 The Signal Model

Consider a MIMO radar employing NT antennas at
the transmitter and NR antennas at the receiver. We
assume that the element spacing is sufficiently small
so that the radar return from a given scatterer is fully
correlated across the array. In other words, this is a
coherent propagation scenario.

To simplify the presentation we assume that the two
arrays are co-located, i.e. this is a mono-static radar.
The extension to the bi-static case is straightforward as
long as the coherency assumption holds for each array.
The arrays are characterized by the array manifolds:
aR(θ) for the receive array and aT (θ) for the transmit
array, where θ is the direction relative to the array.
We assume that the arrays and all the scatterers are in
the same 2-D plane. The extension to the 3-D case is
straightforward and all of the following results hold for
that case as well.

Let Z(t; θ, r) be the NR ×Ns noise free received sig-
nal matrix from a unit strength target at direction θ
and range r, where Ns is the number of samples in
time. Then

Z(t; θ, r) = aR(θ)aT
T (θ)S(t − τ) (4)

where τ = 2r/c, with c denoting the speed of light,
and S(t − τ) is a NT × Ns matrix whose rows are the
circularly delayed signals si(t − τ). The i-th transmit
antenna transmits si(t) where t = 1, · · · , Ns.

Assuming uniformly spaced linear arrays (ULA), the
array manifolds are given by

aT (θ) =











1
ej2πdT sin(θ)

...
ej2πdT sin(θ)(NT −1)











(5)

and

aR(θ) =











1
ej2πdR sin(θ)

...
ej2πdR sin(θ)(NR−1)











(6)

where dT and dR are the normalized spacings (distance
divided by wavelength) between the elements of the
transmit and receive arrays, respectively.

It is known that the spatial characteristics of a
MIMO radar are closely related to that of a virtual
array with NT NR antennas, whose array manifold is
a(θ) = aT (θ) ⊗ aR(θ). It is known [8] that the follow-
ing choices for the spacing of the transmit and receive
array spacing will yield a uniformly spaced virtual ar-
ray with half wavelength spacing:

dR = 0.5, dT = 0.5NR; (7)

dT = 0.5, dR = 0.5NT . (8)

Both of these choices lead to a virtual array whose aper-
ture is 0.5(NT NR − 1) wavelengths. This is the largest
virtual aperture free of grating lobes. The choices (7)
and (8) will also show up again in our theoretical anal-
ysis, see Theorem 1.

Next let z(t; θ, r) = ~Z(t; θ, r) be the noise-free vec-
torized received signal. We set up a discrete range-
azimuth grid {(θi, rj)}, 1 ≤ i ≤ Nθ, 1 ≤ j ≤ Nr,
where ∆θ and ∆r denote the corresponding discretiza-
tion stepsizes. Using vectors z(t; θ, r) for all grid points
(θi, rj) we construct a complete response matrix A

whose columns are z(t; θi, rj) for 1 ≤ i ≤ Nθ and
1 ≤ j ≤ Nr. In other words, we have Nr range values
and Nθ azimuth values, so that A is a NRNs × NrNθ

matrix.
Assume that the radar illuminates a scene consisting

of K scatterers located on K points of the (θi, rj) grid.
Let x be a sparse vector whose non-zero elements are
the complex amplitudes of the scatterers in the scene.
The zero elements corresponds to grid points which
are not occupied by scatterers. We can then define the
radar signal received from this scene y by

y = Ax + v (9)

where y is a NRNs × 1 vector, x is a NrNθ × 1 sparse
vector, v is a NRNs×1 complex Gaussian noise vector,
and A is a NRNs × NrNθ matrix.

The discussion so far was for the case of a stationary
radar scene and a fixed radar, in which case there is no
Doppler shift. The extension of this signal model to
include the Doppler effect is conceptually straightfor-
ward, but leads to a significant increase in the problem
dimension.



The signal model for the return from a unit strength
scatterer at direction θ, range r, and Doppler fd (cor-
responding to its radial velocity with respect to the
radar) is given by

Z(t; θ, r, fd) = aR(θ)aT
T (θ)S(t − τ, fd) (10)

where τ = 2r/c, with c denoting the speed of light,
and S(t − τ) is a NT × Ns matrix whose rows are the
circularly delayed and Doppler shifted signals si(t −
τ)ej2πfdt.

As before we let z(t; θ, r, fd) = ~Z(t; θ, r, fd) be
the noise-free vectorized received signal. We ex-
tend the discrete range-azimuth grid by adding a dis-
cretized Doppler component (with stepsize ∆f and
corresponding Nf Doppler values) and obtain a uni-
form range-azimuth-Doppler grid {(θi, rj , fk)}. Using
vectors z(t; θ, r, fd) for all discrete (θi, rj , fk) we con-
struct a complete response matrix A whose columns
are z(t; θi, rj , fk) for 1 ≤ i ≤ Nθ, 1 ≤ j ≤ Nr,
1 ≤ k ≤ Nf .

Assume that the radar illuminates a scene consisting
of K scatterers located on K points of the (θi, rj , fk)
grid. Let x be a sparse vector whose non-zero ele-
ments are the complex amplitudes of the scatterers in
the scene. The zero elements corresponds to grid points
which are not occupied by scatterers. We can then de-
fine the radar signal received from this scene y by

y = Ax + v (11)

where y is a NRNs×1 vector, x is a NrNθNf ×1 sparse
vector, v is a NRNs×1 complex Gaussian noise vector,
and A is a NRNs × NrNθNf matrix.

3 Theoretical Results

Whether the system (11) is underdetermined or
not depends on the the choice of the parameters
∆θ,∆r,∆f . Clearly, we can always choose a very crude
discretization of the radar scene and in that way en-
sure that (11) is overdetermined. But since we aim for
high resolution in range, azimuth and Doppler, this is
not the way to go. However when we increase the res-
olution (by making ∆θ,∆r,∆f small), we increase the
number of columns of A and the linear system Ax = y

becomes more and more underdetermined. And at the
same time the coherence of A becomes worse, since
adjacent columns of A look more and more similar.
Eventually µ(A) will become too large and Basis Pur-
suit will just fail. Thus we are facing a fundamental
trade-off here and the key is to find the balance be-
tween maximal resolution and making sure that the

matrix A still satisfies the conditions under which Ba-
sis Pursuit will succeed.

The following theorem gives a flavor of the type of
theoretical results we have derived. It addresses the
case of a noise-free stationary radar scene. A simi-
lar, but slightly more involved, theorem holds for the
Doppler case.

Theorem 1 Assume we have NT transmit antennas
and NR receive antennas with corresponding array
manifolds given by (5) and (6). Assume further that we
send a different AWGN signal of length Ns from each
transmit antenna. Choose dR = 1

2 , dT = 1
2NR or dR =

1
2NT , dT = 1

2 , let −π/4 ≤ θ ≤ π/4, and set ∆τ = c
2B

(where c is the speed of light and B is the signal band-
width), ∆θ = 2

NRNT
. Denote N := max{NRNT , Ns}

and let ε, δ > 0. Then s uniformly at random dis-
tributed targets of sparsity up to

s <
C2NRNs

ln N
δ

ln N
ε

, C2 > 0 is a constant, (12)

can be recovered by Basis Pursuit with high probability
(depending on ε, δ).

The proof, which is too long to be included here,
will be presented in a forthcoming paper. The key
idea of the proof is to show that the coherence of A

is small, followed by applying Theorem B and The-
orem 14 in [14]. Concerning the coherence of A we
show that

µ(A) = O
(

min
{ 1√

NRNT

,
1√
Ns

})

. (13)

To obtain the coherence (13) one needs to choose the
values of dR, dT and ∆θ as indicated in the theo-
rem. Indeed, these choices are intimately related to
the beampattern displayed in Figure 1.

In the noisy case we can replace (2) either by

min
x

‖x‖1 s.t. ‖Ax − y‖2 ≤ ǫ (14)

or by the equivalent Lasso [13]

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1. (15)

A “noisy” analog of Theorem 1, using (15) instead
of (2) can be derived by combining our coherence esti-
mates for A with Theorem 1.2 in [1].

It seems likely, and is also indicated by our numer-
ical simulations, that one can remove the requirement
in Theorem 1 that the targets have to be randomly
distributed.



4 Numerical Results

To illustrate the performance of the compressed
sensing MIMO radar we present here a few “toy” ex-
amples. A more complete performance evaluation is
beyond the scope of this paper and will be presented in
a forthcoming paper. In these examples we use trans-
mit and receive arrays with NT = NR = 10 elements
and a spacing of dR = 0.5, dT = 0.5NR. The number
of azimuth-range samples are Nθ = 30, Ns = Nr = 30.

Figure 1 depicts the beampattern of the virtual ar-
ray which is seen to have a 3dB beamwidth of 1 deg
which matches closely the reciprocal of the array aper-
ture 0.5NT NR. The width of the mainlobe from null-
to-null is 2.3 deg. This array does not appear explicitly
in the compressed sensing radar, but its beampattern is
related to the achievable coherence of A, and thus pro-
vides an indication of the expected spatial resolution
of this radar system.
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Figure 1. Beampattern of the virtual array,
NT = NR = 10 elements, dR = 0.5, dT =
0.5NR spacing, no windowing.

Figure 2 depicts a radar scene consisting of 13 unit
amplitude scatterers in a particular geometric arrange-
ment. Note that in this example the targets are not
randomly distributed. The sub-figure titled X shows
the noise free radar scene. The sub-figure titled X̂

shows the estimated scene using the compressed sens-
ing algorithm described above, using noisy data with
noise standard deviation σ = 3. The third sub-figure
is included for reference and shows the scene estimated
using a matched filter, Xmf . More precisely, Xmf is
the reshaped version of the vector xmf ,

xmf = WHx (16)

where W is the matched filter matrix whose columns
are the columns of A normalized to unit norm.
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Figure 2. A radar scene X with 13 scatter-
ers, the estimated scene using the com-
pressed sensing algorithm X̂ and using
a matched filter Xmf .

Figure 3 depicts a radar scene consisting of 25 scat-
terers placed randomly and having amplitudes ran-
domly distributed between 0 and 1. The sub-figure
titled X shows the noise free radar scene. The sub-
figure titled X̂ shows the estimated scene using the
compressed sensing algorithm described above, using
noisy data with noise standard deviation σ = 3. The
third sub-figure is included for reference and shows the
scene estimated using a matched filter, Xmf .

Next we studied experimentally the level of spar-
sity at which the compressed sensing algorithm breaks
down. As was shown in Theorem 1, the upper
bound for the admissible sparsity s for x is roughly
O(NRNs/ ln N). We generated random noise-free
radar scenes for a given number of scatterers s and
computed the average of the estimation error over these
random scenes. The estimation error was defined as
the Frobenius norm of X − X̂. The experiment was
repeated for different values of s and the results are
depicted in figure 4. Note that the error is small for
s < 106 and then increases rapidly for larger values of
s. This behavior is in line with the well-known phase
transition phenomenon for Gaussian and other com-
pressed sensing matrices [7].
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Figure 3. A random radar scene X with
25 scatterers, the estimated scene using
the compressed sensing algorithm X̂ and
using a matched filter Xmf .

90 92 94 96 98 100 102 104 106 108 110
0

1

2

3

4

5

6

7

8

9

Ns

er
r

Estimation error vs. number of scatterers

Figure 4. The average estimation error
‖X − X̂‖ for different numbers of scat-
terers s.

5 Conclusions

We have presented an initial theoretical and numeri-
cal framework for exploiting sparseness of radar scenes
for MIMO radar. Based on results from compressed
sensing we derive bounds on the achievable range- and
azimuth resolution and the number of recoverable tar-

gets. Our theoretical and numerical findings indicate
strong potential for using tools from sparse representa-
tions and compressive sensing for MIMO radar.
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