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Abstract. The linear inverse source and scattering problems are studied from the perspec-
tive of compressed sensing, in particular the idea that sufficient incoherence and sparsity
guarantee uniqueness of the solution. By introducing the sensor as well as target ensembles,
the maximum number of recoverable targets (MNRT) is proved to be at least proportional to
the number of measurement data modulo a log-square factor with overwhelming probability.

Important contributions include the discoveries of the threshold aperture, consistent with
the classical Rayleigh criterion, and the decoherence effect induced by random antenna
locations.

The prediction of theorems are confirmed by numerical simulations.

1. Introduction

We consider the imaging problem in the form of inverse source or scattering problem which
has wide-range applications such as radar, sonar and computed tomography. The imaging
problem is typically plagued by nonuniqueness and instability and hence mathematically
challenging. Traditional methods such as matched field processing [25] are limited in the
number of targets that can be reliably recovered at high resolution. They often fail to detect
a substantial number of targets, while at the same time they tend to produce artifacts
obscuring the real target images. These limitations are due to the presence of noise and the
fact that the imaging problem is in practice underdetermined. The standard regularization
methods can handle to some extent the problem with noise but are inadequate to remedy
the issue of nonuniqueness of the solution.

In this paper we utilize the fact that in many imaging applications the targets are sparse
in the sense that they typically occupy a small fraction of the overall region of interest (the
target domain). This sparsity assumption suggests to approach the imaging problem by
using the framework of compressed sensing.

At the core of compressed sensing lies the following problem (here we focus, as is common
in the compressed sensing community, on the discrete setting). Assume X ∈ Cm is a signal
that is sparse, i.e., the number of its non-zero components (measured by the `0-quasinorm
‖X‖0 which is simply the number of non-zero entries of X) satisfies s := ‖X‖0 � m.
Let Y ∈ Cn be the measurement data vector. We explore in this paper the linear inverse
problem which can be formulated as Y = AX where A is an n ×m matrix with n � m.
The goal is to recover X, given the data vector Y and the sensing matrix A of full rank. As
n� m, AX = Y is severely underdetermined and unique reconstruction of X is in general
impossible.
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However, due to the sparsity of X one can compute X by solving the optimization problem

(L0) min ‖X‖0 s.t. AX = Y.

Since (L0) is NP-hard and thus computationally infeasible, we consider instead its convex
relaxation, also known as Basis Pursuit (BP),

(L1) min ‖X‖1 s.t. AX = Y

which can be solved by linear and quadratic programming techniques. The amazing discovery
due to David Donoho was that under certain conditions on the matrix A and the sparsity
of X, both (L1) and (L0) have the same unique solution [14]. One such condition is the
Restricted Isometry Property (RIP) due to Candes and Tao [7], which requires essentially that
any n×s submatrix of A is an approximate isometry. This property is satisfied by a number
of matrices such as Gaussian random matrices or random partial Fourier matrices [7, 5, 24].
In that case, as long as s ≤ O(n/ log(m)), with high probability the solution of (L1) will
indeed coincide with the solution of (L0). Another conditon for which equivalence between
(L0) and (L1) can be proven is based on the incoherence of the columns of A, which refers to
the property that the inner product of any two columns of A is small [12, 17, 26]. Moreover,
the performance of BP is stable w.r.t. the presence of noise and error [6, 13, 27]. Finally the
computational complexity of BP can be significantly reduced by using the various greedy
algorithms in place of the linear programming technique [9, 21, 22, 26, 27]. The most basic
greedy algorithm relevant here is Orthogonal Matching Pursuit (OMP) which has been
thoroughly analyzed in [26].

For the imaging problem, the sensing matrix A represents a physical process (typically
wave propagation) and thus its entries cannot be arbitrarily chosen at our convenience.
Therefore we cannot simply assume that A satisfies any of the conditions that make com-
pressed sensing work. The few physical parameters that we have control over are the wave-
length λ of the probe wave, the locations and number n of sensors and the aperture A of
the probe array. This is one of the reasons that make the practical realization of compressed
sensing a challenging task.

The paper is organized as follows. In Section 2 we describe the physical setup, formulate
the imaging problem in the framework of compressed sensing and make qualitative state-
ments of our main results. In Section 3 we prove the main result for the inverse source
problem, in particular the coherence estimate (Section 3.1) and the spectral norm bound
(Section 3.2). In Section 4, we prove the main result for the inverse Born scattering problem
for the response matrix imaging (Section 4.1) and the synthetic aperture imaging (Section
4.2). In Section 5 and Appendix B, we discuss the numerical method and present simulation
results that confirm qualitatively the predictions of our theorems. In Appendix A we discuss
the RIP approach to our problems.

2. Problem formulations and main results

In this paper, we study the inverse source and scattering problems both in the linear
regime to suit the current framework of compressed sensing. For simplicity and definiteness
we consider the three dimensional space and assume that all targets are in the transverse
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plane {z = z0} and all sensors are in another transverse plane {z = 0}. The exact Green
function for the Helmholtz equation which governs the monochromatic wave propagation is

G(r, a) =
eiω|r−a|

4π|r− a|
, r = (x, y, z0), a = (ξ, η, 0).(1)

We assume that the phase speed c = 1 so that the frequency ω equals the wavenumber.
We consider the Fresnel diffraction regime where the distance z0 between the targets and

the sensors is much larger than the wavelength of the probe wave and the linear dimensions
of the domains [3]

z0 � A+ L, z0 � λ(2)

where L is the linear dimension of the target domain. This is the remote sensing regime.
Under (2) the Green function (1) can be approximated by the universal parabolic form [3]

G(r, a) =
eiωz0

4πz0

eiω|x−ξ|
2/(2z0)eiω|y−η|

2/(2z0),(3)

which is called the paraxial Green function. This follows from the truncated Taylor expansion
of the function |r− a|

|r− a| ≈ z0 +
|x− ξ|2

2z0

+
|y − η|2

2z0

under (2).
In the case of the inverse source problem, the corresponding sensing matrix A is essen-

tially made of the paraxial Green function for various points in the sensor array and the
target domain. In this set-up, the entries (3) of the paraxial sensing matrix have the same
magnitude so without loss of generality the column vectors of A are assumed to have unit
`2-norm.

A key idea in our construction of a suitable sensing matrix is to randomize the locations
aj = (0, ξj, ηj), j = 1, ..., n of the n sensors within a fixed aperture (a square of size A for
example). Indeed, we assume ξj, ηj are independent uniformly distributed in [0, A]. We
assume that the antenna elements are independently uniformly distributed in a square array
[0, A]× [0, A] in the plane {z = 0}. Define the sensor ensemble to be the sample space of n
i.i.d. uniformly distributed points in [0, A]2.

We consider the idealized situation where the locations of the targets are a subset of a
square lattice. More precisely, letM be a regular square sub-latticeM = {ri : i = 1, ...,m}
of mesh size ` in the transverse plane {z = z0}. Hence the total number of grid points m is
a perfect square. We defer the discussion on extended targets to the concluding section.

Let S = {rjl : l = 1, ..., s} be the set of target locations and σjl , l = 1, ..., s be the (source
or scattering) amplitudes of the targets. Set σi = 0, i 6∈ {j1, ..., js}. Define the target vector
X to be X = (σj) ∈ Cm. We consider the target ensemble consisting of target vectors
with at most s non-zero entries whose phases are independently, uniformly distributed in
[0, 2π] and whose support indices are independently and randomly selected from the index
set {1, 2, ...,m}. The number s = ‖X‖0 is called the sparsity of the target vector.
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For source inversion the targets emit the paraxial waves described by (3) which are then
recorded by the sensors. The measurement vector Y can be written as

Y = AX(4)

where the matrix A = [Aij] ∈ Cn×m have the entries

Aij = G(ai, rj), ∀i = 1, ..., n, j = 1, ...,m.(5)

The first main result proved in this paper can be stated roughly as follows (see Theorem
2 and Remark 3 for the precise statement).

Result A. Suppose

`A

λz0

≡ 1

ρ
∈ N.(6)

For the product ensemble of targets and sensors, sources of sparsity up to O(n/(lnm)2) can
be exactly recovered by BP with overwhelming probability.

When only the sensor ensemble is considered, all sources of sparsity up to O(
√
n) can be

exactly recovered by BP and OMP with overwhelming probability.

The relation (6) indicates the existence of the threshold, optimal aperture given by λz0/`
corresponding to ρ = 1 (see Remark 2 for more discussion on this point). Since the meshsize
` has the meaning of resolution, ρ = 1 is consistent with the classical Rayleigh criterion [3]

` ≥ λz0

A
.(7)

Our numerical simulations (Figure 1) indeed indicate that (7) is sufficient to realize the
performance stated in Result A.

Next we consider two imaging settings where the targets are scatterers instead of sources.
For point scatterers of amplitudes σjl located at rjl , l = 1, 2, 3, ...s, the resulting Green

function G̃, including the multiple scattering effect, obeys the Lippmann-Schwinger equation

G̃(r, ai) = G(r, ai) +
s∑
l=1

σjlG(r, rjl)G̃(rjl , ai), i = 1, ..., n.

The exciting field G̃(rjl , ai) is part of the unknown and can be solved for from the so called
Foldy-Lax equation (see e.g. [15] for details).

Hence, the inverse scattering problem is intrinsically nonlinear. However, often linear
scattering model is a good approximation and widely used in, e.g. radar imaging in the
regimes of physical optics and geometric optics [2, 8] (see [29] for a precise formulation of
the condition).

One such model is the Born approximation (also known as Rayleigh-Gans scattering in
optics) in which the unknown exciting field is replaced by the incident field resulting in

G̃(r, ai)−G(r, ai) =
s∑
l=1

σjlG(r, rjl)G(rjl , ai), i = 1, ..., n.(8)
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The left hand side of (8) is precisely the scattered field when the incident field is emitted from
a point source at ai. The Born approximation linearizes the relation between the scatterers
and the scattered field. The goal of inverse scattering is to reconstruct the targets given the
measurements of the scattered field.

For the response matrix (RM) imaging [15, 16], we use the real array aperture as in the
inverse source problem discussed above except the array is also the source of n probe waves.
One by one, each antenna of the array emits an impulse and the entire array receives the
echo. Each transmitter-receiver pair gives rise to a datum and there are altogether n2 data
forming a datum matrix called the response matrix. These data represent the responses of
the targets to the interrogating waves.

From (8) we see that the corresponding sensing matrix ARM has the entries

ARM
lj = G(ai, rj)G(rj, ak), l = 1, .., n2, j = 1, ...,m

where l is related to i, k as

l = i(n− 1) + k.

In the second setting, called the synthetic aperture (SA) imaging, the real, physical array
consists of only one antenna. The imaging aperture is synthesized by the antenna taking
different transmit-receive positions ai, i = 1, ..., n [16].

The SA imaging considered here is motivated by synthetic aperture radar (SAR) imaging.
SAR is a technique where a substantial aperture can be synthesized by moving a transmit-
receive antenna along a trajectory and repeatedly interrogating a search area by firing re-
peated pulses from the antenna and measuring the responses. This can greatly leverage a
limited probe resource and has many applications in remote sensing. The image formation is
typically obtained via the matched filter technique and analyzed in the Born approximation
[8].

Here we consider a simplified set-up, neglecting the Doppler effect associated with the
relative motion between the antenna and targets. In this case, the sensing matrix ASA has
the entries

ASA
ij = G2(ai, rj), i = 1, ..., n, j = 1, ...,m.(9)

In other words, ASA
ij = ARM

lj with l = i(n − 1) + i. A crucial observation about SA imaging
is that

G2(ai, rj;ω) ∼ G(ai, rj; 2ω)(10)

modulo a z0-dependent factor which does not matter.
The following is a rough statement for inverse Born scattering (Theorems 7, 8 and Remarks

4, 5) proved in Section 4.

Result B. (i) For RM imaging, assume the aperture condition (6).
For the product ensemble of sensor and target, scatterers of sparsity up to O(n2/(lnm)2)

can be reconstructed exactly by BP with overwhelming probability.
When only the sensor ensemble is considered, all scatterers of sparsity up to O(n) can be

exactly recovered by BP and OMP with overwhelming probability.
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(ii) For SA imaging, assume the aperture condition

2/ρ ∈ N(11)

which is weaker than (6).
For the product ensemble of sensor and target, scatterers of sparsity up to O(n/(lnm)2)

can be reconstructed exactly by BP with overwhelming probability.
When only the sensor ensemble is considered, all scatterers of sparsity up to O(

√
n) can

be exactly recovered by BP and OMP with overwhelming probability.

As a result of the SA aperture condition (11), the corresponding optimal aperture is
half of that for the inverse source and RM imaging. In other words, SA can produce the
qualitatively optimal performance with half of the aperture. This two-fold enhancement of
resolving power in SA imaging has been previously established for the matched-field imaging
technique [16].

Our numerical simulations (Section 5) confirm qualitatively the predictions of Result A
and B, in particular the threshold aperture and the asymptotic number of recoverable targets.

Currently there are two avenues to compressed sensing [4]: the incoherence approach and
the RIP (restricted isometry property) approach. When the RIP approach works, the results
are typically superior in that all targets under a slightly weaker sparsity constraint can be
uniquely determined by BP without introducing the target ensemble. We demonstrate the
strength of the RIP approach for our problems in Appendix A (see Theorem 11 and Theorem
12 for stronger results than Result A and Result B (ii), respectively). However, Result
B(i) seems unattainable by the RIP approach at present, particularly the quadratic-in-n
behavior of the sparsity constraint. On the other hand, the incoherence approach gives a
unified treatment to all three results and therefore is adopted in the main text of the paper.

3. Source inversion

Let G(r, a) be the Green function of the time-invariant medium and let G be the Green
vector

G(r) = [G(r, a1), G(r, a2), ..., G(r, an)]t(12)

where t denotes transpose. For the matrix (5) define the coherence of the matrix A by

µ(A) = max
i 6=j

|G∗(pi)G(pj)|
‖G(pi)‖‖G(pj)‖

.

The following theorem is a reformulation of results due to Tropp [28] and the foundation
of the imaging techniques developed in this paper.

Theorem 1. Let X be drawn from the target ensemble. Assume that

µ2s ≤
(

8 ln
m

ε

)−1

, ε ∈ (0, 1)(13)

and that for p ≥ 1

3

(
p ln s

2 ln m
ε

)1/2

+
s

m
‖A‖22 ≤

1

4e1/4
.(14)
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Then X is the unique solution of BP with probability 1 − 2ε − s−p. Here ‖A‖2 denotes the
spectral norm of A.

We explain the connection of the theorem with [28] in Appendix B.

Theorem 2. Let the target vector be randomly drawn from the target ensemble and the
antenna array be randomly drawn from the sensor ensemble and suppose

`A

λz0

≡ 1

ρ
∈ N.(15)

If

m ≤ δ

2
eK

2/2, δ,K > 0.(16)

then the targets of sparsity up to

s <
n

64 ln 2m
δ

ln m
ε

(17)

can be recovered exactly by BP with probability greater than or equal to[
1− 2δ − ρn(n− 1)3/2

m1/2

]
×
[
1− 2ε− s−p

]
, p =

lnm− ln ε

288
√
e ln s

.(18)

Proof. The proof of the theorem hinges on the following two estimates.

Theorem 3. Assume (15) and

m ≤ δ

2
eK

2/2(19)

for some positive δ and K. Then the coherence of A satisfies

µ(A) ≤
√

2K/
√
n(20)

with probability greater than (1− δ)2.

Remark 1. The general lower bound for coherence [10, 30]√
m− n
n(m− 1)

≤ µ ≤ 1

implies that the coherence bound (20) is optimal modulo a constant factor.

Remark 2. Since the coherence of the sensing matrix should decrease as the aperture in-
creases and since the analysis in Section 3.1 shows that the coherence is of the same order
of magnitude as n−1/2 whenever (15) holds, simple interpolation leads to the conclusion that
the coherence should be roughly constant for

A ≥ λz0

`
(21)

corresponding to ρ ≤ 1. The right hand side of (21), corresponding to ρ = 1, defines the
optimal aperture.
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Theorem 4. The matrix A has full rank and its spectral norm satisfies the bound

‖A‖22 ≤ 2m/n(22)

with probability greater than

1− ρn(n− 1)3/2

m1/2
, ρ =

λz0

`A
.(23)

Remark 3. By the theorems of Donoho, Elad [12] and Tropp [26], the targets of sparsity

s <
1

2
(1 +

1

µ(A)
)

can be recovered exactly by BP as well as by Orthogonal Matching Pursuit (OMP).
Theorems 3 and 4 imply that with probability greater than

1− 2δ − ρn(n− 1)3/2

m1/2

of the sensor ensemble, all targets of sparsity

s <
1

2
(1 +

√
n√

2K
)

can be recovered exactly by BP as well as OMP.

Condition (17) implies the existence of K such that

2 ln
2m

δ
< K2 <

n

32s ln m
ε

.(24)

As a consequence (19) and (13) are satisfied with probability greater than 1−2δ by Theorem
3.

Now the norm bound (22) implies (14) if

3

(
p ln s

2 ln m
ε

)1/2

+
2s

n
≤ 1

4e1/4
, p > 1,(25)

which in turn follows from (17) and the condition

ln
2m

δ
ln
m

ε
≥ 1

96

(
1

2e1/4
−
(
p ln s

2 ln m
ε

)1/2
)−1

.

Hence for m� s (and hence n� s) we can choose p in (14) to be

p =
lnm− ln ε

72
√
e ln s

.

Since Theorems 3 and 4 hold with probability greater than

1− 2δ − ρn(n− 1)3/2

m1/2
.
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and since the target ensemble is independent of the sensor ensemble we have the bound (18)
for the probability of exact recovery.

�

3.1. Proof of Theorem 3: coherence estimate.

Proof. Summing over al, l = 1, ..., n we obtain

n∑
l=1

A∗liAlj = eiω(x2
j+y2j−x2

i−y2i )/(2z0) 1

n

n∑
l=1

eiξlω(xi−xj)/z0eiηlω(yi−yj)/z0 .(26)

Define the random variables Xl, Yl, l = 1, ..., n, as

Xl = cos [(ξl(xi − xj) + ηl(yi − yj))ω/z0](27)

Yl = sin [(ξl(xi − xj) + ηl(yi − yj))ω/z0](28)

and their respective sums

Sn =
n∑
l=1

Xl, Tn =
n∑
l=1

Yl.

Then the absolute value of the right hand side of (26) is bounded by

1

n
|Sn + iTn| ≤

1

n
(|Sn − ESn|+ |Tn − ETn|+ |E(Sn + iTn)|) .(29)

To estimate the right hand side of (29), we recall the Hoeffding inequality [20].

Proposition 1. Let X1, ..., Xn be independent random variables. Assume that Xl ∈ [al, bl], l =
1, ..., n almost surely. Then we have

P [|Sn − ESn| ≥ nt] ≤ 2 exp

[
− 2n2t2∑n

l=1(bl − al)2

]
(30)

for all positive values of t.

We apply the Hoeffding inequality to both Sn and Tn. To this end, we have al = −1, bl =
1,∀l and set

t = K/
√
n, K > 0.

Then we obtain

P
[
n−1 |Sn − ESn| ≥ K/

√
n
]
≤ 2e−K

2/2(31)

P
[
n−1 |Tn − ETn| ≥ K/

√
n
]
≤ 2e−K

2/2.(32)

Note that the quantities Sn, Tn depend on xi − xj, yi − yj, i.e.

Sn = Sn(xi − xj, yi − yj), Tn = Tn(xi − xj, yi − yj).
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We use (31)-(32) and the union bound to obtain

P
[
max
i 6=j

n−1 |Sn(xi − xj, yi − yj)− ESn(xi − xj, yi − yj)| ≥ K/
√
n

]
(33)

≤ 2(m− 1)e−K
2/2

P
[
max
i 6=j

n−1 |Tn(xi − xj, yi − yj)− ETn(xi − xj, yi − yj)| ≥ K/
√
n

]
(34)

≤ 2(m− 1)e−K
2/2

Hence, if (19) holds for any small number δ > 0, then the right hand side of (33)-(34) is
less than δ.

The third term on the right hand side of (29) can be calculated as follows. By the mutual
independence of ξl and ηl we have

1

n
|E(Sn + iTn)| =

1

n

∣∣∣∣∣
n∑
l=1

E(Xl + iYl)

∣∣∣∣∣
=

1

n

∣∣∣∣∣
n∑
l=1

E
(
eiξlω(xi−xj)/z0

)
E
(
eiηlω(yi−yj)/z0

)∣∣∣∣∣
=

∣∣E (eiξlω(xi−xj)/z0
)

E
(
eiηlω(yi−yj)/z0

)∣∣
since ξl, ηl, l = 1, ..., n are independently identically distributed.

Simple calculation with the uniform distribution on [0, A]× [0, A] yields∣∣E (eiξlω(xi−xj)/z0
)

E
(
eiηlω(yi−yj)/z0

)∣∣ =

∣∣∣∣eiφij − 1

φij

∣∣∣∣ ∣∣∣∣eiψij − 1

ψij

∣∣∣∣
= 4

∣∣∣∣∣sin
φij

2

φij

∣∣∣∣∣
∣∣∣∣∣sin

ψij

2

ψij

∣∣∣∣∣(35)

with
φij = Aω(xi − xj)/z0, ψij = Aω(yi − yj)/z0.

The optimal condition is to choose A such that

φij = ψij ∈ 2πZ,(36)

under which (35) vanishes. Condition (36) can be fulfilled for an equally spaced grid as is
assumed here. Let

` = min
i 6=j
|xi − xj| = min

i 6=j
|yi − yj|.

The smallest ` satisfying condition (36) is given by

` =
z0λ

A
, λ = 2π/ω(37)

which can be interpreted as the resolution of the imaging system and is equivalent to the
classical Rayleigh criterion.
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In this case, E(Sn + iTn) = 0 and hence

µ(A) ≤
√

2K/
√
n

with probability (1− δ)2 under the condition (19).
�

3.2. Proof of Theorem 4: spectral norm bound.

Proof. For the proof, it suffices to show that the matrix A satisfies

‖ n
m

AA∗ − In‖2 < 1(38)

where In is the n × n identity matrix with the corresponding probability bound. By the
Gershgorin circle theorem, (38) would in turn follow from

µ

(√
n

m
A∗
)
<

1

n− 1
(39)

since the diagonal elements of n
m

AA∗ are unity.
Since (ξi, ηi), i = 1, ..., n are uniformly distributed in [0, A] × [0, A], ξi 6= ξj, ηi 6= ηj with

probability one.
Summing over rl, l = 1, ...,m we obtain

n

m

m∑
l=1

AjlA
∗
li =

1

m
eiω(ξ2j +η2

j−ξ2i−η2
i )/(2z0) e

iω(ξi−ξj)(x1+
√
m`)/z0 − eiω(ξi−ξj)x1/z0

1− eiω(ξi−ξj)`/z0

×e
iω(ηi−ηj)(y1+

√
m`)/z0 − eiω(ηi−ηj)y1/z0

1− eiω(ηi−ηj)`/z0
.(40)

Thus,

n

m

∣∣∣∣∣
m∑
l=1

AjlA
∗
li

∣∣∣∣∣ ≤ 1

m

∣∣∣∣∣sin
√
mω(ξi−ξj)`

2z0

sin
ω(ξi−ξj)`

2z0

∣∣∣∣∣
∣∣∣∣∣sin

√
mω(ηi−ηj)`

2z0

sin
ω(ηi−ηj)`

2z0

∣∣∣∣∣ ,(41)

where we have used the identity ∣∣1− eiθ∣∣ = 2

∣∣∣∣sin θ2
∣∣∣∣.(42)

Let

κ = min
i 6=j

min
k∈Z

{∣∣∣∣`(ξi − ξj)λz0

− k
∣∣∣∣ , ∣∣∣∣`(ηi − ηj)λz0

− k
∣∣∣∣} ≤ 1/2(43)

which is nonzero with probability one. For i 6= j the random variables

`(ξi − ξj)
λz0

,
`(ηi − ηj)

λz0
11



have the symmetric triangular distribution supported on [−ρ−1, ρ−1] with height ρ = λz0/(`A).
Note that ρ−1 is an integer by the choice (36). Hence the probability that {κ > α} for small
α > 0 is larger than

(1− 2ρα)n(n−1) > 1− 2ρn(n− 1)α, ρ =
λz0

`A

where the power n(n − 1) accounts for the number of different pairs of random variables
involved in (43).

Using the inequality that
sinπκ > 2κ, κ ∈ (0, 1/2),

(41) and the choice

1

2

√
n− 1

m
= α

we deduce with probability larger than

1− 2ρn(n− 1)α = 1− ρn(n− 1)3/2

m1/2

the decoherence estimate

µ

(√
n

m
A∗
)
<

1

4mα2

implying (39). �

4. Inverse Born scattering

In this section, we consider two imaging settings where the targets are scatterers instead
of sources under the Born approximation (8).

4.1. Response matrix (RM) imaging. For the coherence calculation, we have

n2∑
l=1

ARM∗
li ARM

lj =
n∑

p,q=1

G(ap, rj)G(rj, aq)G
∗(ap, ri)G

∗(ri, aq)(44)

=

[
n∑
p=1

G(ap, rj)G
∗(ap, ri)

]2

and thus
µ
(
ARM

)
= µ2(A).

In view of (44) and Theorem 3 the following theorem is automatic.

Theorem 5. Under the assumptions (15) and (19) the coherence of A satisfies

µ(ARM) ≤ 2K2/n

with probability greater than (1− δ)2.

We now proceed to establish the counterpart of Theorem 4.
12



Theorem 6. The matrix ARM has full rank and its spectral norm satisfies the bound

‖ARM‖22 ≤ 2m/n2(45)

with probability greater than or equal to

1− ρn2(n2 − 1)3/2

m1/2
, ρ =

λz0

`A
.

Remark 4. As in Remark 3, Theorems 5 and 6 imply that with probability greater than

1− 2δ − ρn2(n2 − 1)3/2

m1/2

of the sensor ensemble, all targets of sparsity

s <
1

2
(1 +

n

2K2
)

can be recovered exactly by BP as well as OMP.

Proof. We proceed as in the proof of Theorem 4. As before, we seek to prove

µ

(
n√
m

ARM∗
)
<

1

n2 − 1
.(46)

For the RM setting, (26) becomes

n2

m

m∑
j=1

ARM
jl A

RM∗
jl′ =

1

m
eiω(ξ2k+η2

k+ξ2i +η2
i−ξ2k′−η2

k′−ξ2i′−η
2
i′ )/(2z0)

×e
iω(ξi+ξk−ξi′−ξk′ )(x1+

√
m`)/z0 − eiω(ξi+ξk−ξi′−ξk′ )x1/z0

1− eiω(ξi+ξk−ξi′−ξk′ )`/z0

×e
iω(ηi+ηk−ηi′−ηk′ )(y1+

√
m`)/z0 − eiω(ηi+ηk−ηi′−ηk′ )y1/z0

1− eiω(ηi+ηk−ηi′−ηk′ )`/z0
(47)

where l = i(n− 1) + k, l′ = i′(n− 1) + k′.
We apply the same analysis as (26) here. Let

κ = min
l 6=l′

min
k∈Z

{∣∣∣∣`(ξi + ξk − ξi′ − ξk′)

λz0

− k
∣∣∣∣ , ∣∣∣∣`(ηi + ηk − ηi′ − ηk′)

λz0

− k
∣∣∣∣} .(48)

which is nonzero with probability one. For l 6= l′ the probability density functions (PDF)
for the random variables

`(ξi + ξk − ξi′ − ξk′)

λz0

,
`(ηi + ηk − ηi′ − ηk′)

λz0

are either the symmetric triangular distribution or its self-convolution supported on [−2ρ−1, 2ρ−1].
In either case, their PDFs are bounded by ρ (indeed, by 2ρ/3). Hence the probability that
{κ > α} for small α > 0 is larger than

(1− 2ρα)n
2(n2−1) > 1− 2ρn2(n2 − 1).

13



With the choice
1

2

√
n2 − 1

m
= α

we deduce that

µ

(√
n2

m
ARM∗

)
<

1

n2 − 1

with probability larger than

1− 2ρn2(n2 − 1)α = 1− ρn2(n2 − 1)3/2

m1/2
.

�

As before, the above estimates yield the following result.

Theorem 7. Consider the response matrix imaging with the target vector randomly drawn
from the target ensemble and the antenna array randomly drawn from the sensor ensemble.
If (15) and (16) hold then the targets of sparsity up to

n2

64 ln 2m
δ

ln m
ε

(49)

can be recovered exactly by BP with probability greater than or equal to (18).

4.2. Synthetic aperture (SA) imaging. In view of (10), we obtain

µ
(
ASA(ω)

)
= µ(A(2ω)).

The following result is an immediate consequence of the correspondence (9)-(10) between
SA imaging and inverse source setting.

Theorem 8. Let the target vector be randomly drawn from the target ensemble and the
antenna array be randomly drawn from the sensor ensemble. If

2

ρ
∈ N(50)

and (16) hold then the targets of sparsity up to
n

64 ln 2m
δ

ln m
ε

(51)

can be recovered exactly by BP with probability greater than or equal to (18).

Remark 5. As in Remark 3, conditions (19) and (50) imply that with probability greater
than

1− 2δ − ρn(n− 1)3/2

m1/2

of the sensor ensemble, all targets of sparsity

s <
1

2
(1 +

√
n√

2K
)

can be recovered exactly by BP as well as OMP.
14



5. Numerical simulations

In the simulations, we set z0 = 10000 and for the most part λ = 0.1 to enforce the second
condition of the paraxial regime (2). The computational domain is [−250, 250]× [−250, 250]
with mesh-size ` = 10. The threshold, optimal aperture according to Theorem 3 is A = 100.
As a result, the first condition of the paraxial regime (2) is also enforced. Note that the
Fresnel number for this setting is

(A+ L)2

z0λ
= 360� 1

indicating that this is not the Fraunhofer diffraction regime and the Fourier approximation
of the paraxial Green function is not appropriate [3].

We use the true Green function (1) in the direct simulations and its paraxial approxi-
mation for inversion. In other words, we allow model mismatch between the propagation
and inversion steps. The degradation in performance can be seen in the figures but is still
manageable as the simulations are firmly in the Fresnel diffraction regime. The stability
of BP with linear model mismatch has been analyzed in [19] for the case when the matrix
satisfies the Restricted Isometry Property (RIP), see Appendix A.

In the left plot of Figure 1, the coherence is calculated with aperture A ∈ [10, 200] and
n = 100 for the sensing matrices with the exact Green function (red-solid curve) as entries
and its paraxial approximation (black-asterisk curve). The coherence of the exact sensing
matrix at the borderline of the paraxial regime with z0 = 1000, λ = 1 is also calculated
(blue-dashed curve). All three curves track one another closely and flatten near and beyond
A = 100 in agreement with the theory (Theorem 3), indicating the validity of the optimal
aperture throughout the paraxial regime.

Figure 1 (right plot) displays the numerically found maximum number of recoverable
source points as a function of n with A = 100 by using the exact (red-solid curve) and
paraxial (black-asterisk curve) sensing matrices. The maximum number of recoverable tar-
gets (MNRT) is in principle a random variable as our theory is formulated in terms of the
target and sensor ensembles. To compute MNRT, we start with one target point and apply
the sensing scheme. If the recovery is (nearly) perfect a new target vector with one additional
support is randomly drawn and the sensing scheme is rerun. We iterate this process until
the sensing scheme fails to recover the targets and then we record the target support in the
previous iterate as MNRT. This is an one-trial test and no averaging is applied. The linear
profile in the right plot of Figure 1 is consistent with the prediction (17) of Theorem 2.

To reduce the computational complexity of the compressed sensing step, we use an iterative
scheme called Subspace Pursuit (SP) [9]. It has been shown to yield the BP solution under
RIP [9] (see Remark 6 in Appendix A).

In the scattering simulation, we use the Foldy-Lax formulation accounting for all the
multiple scattering effect [15]. Hence there are two mismatches (the paraxial approximation
and the Born approximation) in the simulation.

In the left plot of Figure 2 the compressed sensing image with RM set-up is shown for
A = 100 and n = 20. The size of the sensing matrix is 400 × 2500 and 35 targets are

15
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Figure 1. (Left) The red-solid and black-asterisk curves are, respectively,
the coherence for the exact and paraxial sensing matrices for z0 = 10000, λ =
0.1, n = 100 as a function of aperture. The blue-dashed curve is the coherence
for the exact sensing matrix for z0 = 1000, λ = 1, n = 100; (Right) the em-
pirical, maximum number of recoverable sources with |σ| = 1 v.s. the number
n of antennas for A = 100, λ = 1 by using the paraxial (black-asterisk) and
exact (red-solid) sensing matrices.
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Figure 2. (Left) 35 scatterers are perfectly recovered by compressed sensing
technique with 20 antennas. The red circles represent the true locations of the
targets. The plot on the right is produced by the conventional matched field processing.

(nearly) exactly recovered. For comparison, the image obtained by the linear processor of
the traditional matched field processing is shown on the right. In Appendix C, we outline
the rudiments of matched field processing.
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Figure 3. The empirical maximum number of recoverable scatterers (left for
RM, right for SA) with |σ| = 0.001 v.s. the number n of antennas (or antenna
locations) for A = 100. The data for n ∈ [10, 30] in the RM plot is fitted with
the parabola (blue-dashed curve): −16.4950 + 0.1366 ∗ x2. The wavelength is
0.1 for the RM case. The SA plot depicts the number of recoverable scatterers
in four settings: paraxial sensing matrix with λ = 0.1 (black-asterisk), paraxial
sensing matrix with λ = 0.2 (blue-dashed), exact sensing matrix with λ = 0.1
(red-solid) and exact sensing matrix with λ = 0.2 (green-circled)

In Figure 3 the numerically found maximum number of recoverable scatterers is depicted
as a function of the number of antennas for A = 100 and for both RM and SA imaging set-
ups by using the paraxial and exact sensing matrices. Clearly, both curves are qualitatively
consistent with the predictions (49) and (51).

6. Conclusions

In this paper, we have studied the imaging problem from the perspective of compressed
sensing, in particular the idea that sufficient incoherence and sparsity guarantee uniqueness
of the solution. Moreover, by adopting the target ensemble following [28] and the sensor
ensemble, the maximum number of recoverable targets is proved to be at least proportional to
the number of measurement data modulo a log-square factor with overwhelming probability.

We have analyzed three imaging settings: the inverse source, the inverse scattering with
the response matrix and with the synthetic aperture. Important contributions of our analysis
include the discoveries of the decoherence effect induced by random antenna locations and
the threshold aperture defined by ρ = 1 for source and RM imaging and ρ = 1/2 for SA
imaging where ρ = λz0/(A`).

In this paper we have considered the localization of point targets and the determination of
their amplitudes. A natural next step is to consider extended targets. However our approach
does not extend in a straightforward manner to imaging of extended targets, as can be easily
seen. Assume that we model an extended target approximately as an ensemble of point
targets that are spaced very close together. Clearly, this requires the mesh size ` to be so
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small as to render ρ � 1. To apply our theorems would then require that the aperture
and the number of antennas increase without bound. Clearly this is not a feasible way to
image extended targets via compressed sensing. Therefore a somewhat different approach,
on which we plan to report in our future work, is required for extended targets.

Appendix A. Restricted isometry property (RIP)

A fundamental notion in compressed sensing under which BP yields the unique exact
solution is the restrictive isometry property due to Candès and Tao [7]. Precisely, let the
sparsity s of the target vector be the number of nonzero components of X and define the
restricted isometry constant δs to be the smallest positive number such that the inequality

(1− δs)‖Z‖22 ≤ ‖AZ‖22 ≤ (1 + δs)‖Z‖22
holds for all Z ∈ Cm of sparsity at most s.

Now we state the fundamental result of the RIP approach.

Theorem 9. [7] Suppose the true target vector X has the sparsity at most s. Suppose the
restricted isometry constant of A satisfies the inequality

δ3s + 3δ4s < 2.(52)

Then X is the unique solution of BP.

Remark 6. Greedy algorithms have significantly lower computational complexity than linear
programming and have provable performance under various conditions. For example under
the condition δ3s < 0.06 the Subspace Pursuit (SP) algorithm is guaranteed to exactly recover
X via a finite number of iterations [9].

In this appendix we show that the sensing matrix for source inversion satisfies RIP. This
can be readily seen by rewriting the paraxial Green function (3)

G(r, a) =
eiωz0

4πz0

eiω(x2+y2)/(2z0)e−iωxξ/z0e−iωyη/z0eiω(ξ2+η2)/(2z0),(53)

for r = (x, y, z0), a = (ξ, η, 0).
Now the sensing matrix (5) can be written as the product of three matrices

A = D1ΦD2

where
D1 = diag(eiω(ξ2j +η2

j )/(2z0)), D2 = diag(eiω(x2
l +y2l )/(2z0))

are unitary and
Φ = n−1/2

[
e−iωξjxl/z0e−iωηjyl/z0

]
.

Assume without loss of generality that xl = yl = l`, l = 0, ...,m − 1 and suppose that
(ξj, ηj), j = 1, ..., n are independently and uniformly distributed in [0, A]× [0, A] with

A`

λz0

= 1,(54)

cf. (15).
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The result essential for our problem is due to Rauhut [23].

Theorem 10. [23] If
n

lnn
≥ Cs ln2 s lnm ln

1

ε
for ε ∈ (0, 1) and some absolute constant C, then the restricted isometry condition (52) is
satisfied with probability at least 1− ε.

See [5, 24] for similar results for sensors located in a particular discrete subset of [0, A]×
[0, A].

Since D1 and D2 are diagonal and unitary, A satisfies (52) if and only if Φ satisfies the
same condition.

Theorem 11. Let the sensor array be randomly drawn from the sensor ensemble satisfying
(54). If

n

lnn
≥ Cs ln2 s lnm ln

1

ε
for ε ∈ (0, 1) and some absolute constant C, then with probability at least 1 − ε all source
amplitudes of sparsity less than s can be uniquely determined from BP.

From the relationships (9), (10) it follows immediately that ASA also satisfies (52) if

A`

λz0

=
1

2
,(55)

cf. (50).

Theorem 12. Let the sensor array be randomly drawn from the sensor ensemble satisfying
(55). If

n

lnn
≥ Cs ln2 s lnm ln

1

ε
for ε ∈ (0, 1) and some absolute constant C, then with probability at least 1 − ε all scatter
amplitudes of sparsity less than s can be uniquely determined from BP.

The superiority of the RIP approach, if it works, over that of the incoherence taken in
the main text of the paper, is that the uniqueness for BP is guaranteed for all targets of
sparsity at most s and the target ensemble needs not be introduced. Moreover, the stability
of solution w.r.t. noise is guaranteed [6, 19]. However, Theorem 7 for the response matrix
imaging does not seem amenable to the RIP approach.

Appendix B. Proof of Theorem 1

Theorem 1 is an easy consequence from the following two theorems due to Tropp [28].

Proposition 2. [28] Let A be a n×m matrix with full rank. Let As be a submatrix generated
by randomly selecting s columns of A. The condition

6
(
pµ2s ln (1 + s/2)

)1/2
+

s

m
‖A‖22 ≤

α

2e1/4
, p ≥ 1(56)
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implies that

P (‖A∗sAs − Is‖2 < α) ≥ 1−
(

2

s

)p
.(57)

Proposition 3. [28] Let X be drawn from the target ensemble. If

µ2s ≤
(

8 ln
m

ε

)−1

, ε ∈ (0, 1)(58)

and if the least singular value

σmin(As) ≥ 2−1/2, |S| = s(59)

then X is the unique solution of BP (L1), except with probability 2ε.

First of all, (13) and (14) together imply (56) and (58) with α = 1/2. Moreover, by
Proposition 2 (59) holds with probability greater than or equal to the right hand side of
(57). Hence we need only to derive the claimed bound for the probability of the event E
that X is the unique solution of BP. This follows from the estimate

P(E) ≥ P(E
∣∣‖A∗sAs − Is‖2 < 2−1)P(‖A∗sAs − Is‖2 < 2−1)

≥ (1− 2ε)(1− (2/s)p)

≥ 1− 2ε− (2/s)p.

Appendix C. Matched field processing

Matched field processing (MFP) has been used extensively for source localization in un-
derwater acoustics and is closely related to the matched filter in signal processing.

The conventional MFP uses the Bartlett processor with the ambiguity surface

B(r) =
G∗(r)Y Y ∗G(r)

‖G(r)‖22
(60)

[25]. The Bartlett processor is motivated by the following optimization problem: Maximize
the quantity

W ∗Y Y ∗W(61)

subject to the constraint:
W ∗W = 1.

The solution
W = Y/‖Y ‖2

is the weight vector for the matched filter. In the case of one point source of amplitude σ1

located at x1,
Y = σ1G(r1)

hence

W =
σ1G(r1)

|σ1|‖G(r1)‖2
.(62)
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Extending (62) to an arbitrary field point r by substituting r for r1 we obtain the Bartlett
processor from (61).

In general, Y is the n-dimensional measurement vector consisting the received signals
of the array. For inverse scattering in the RM set-up, there are n measurement vectors
corresponding to n probe signals. The ambiguity surface in this case is the sum of the n
ambiguity surfaces for the n probe signals.

In contrast to the conventional matched field processor, the compressed sensing processor
utilizing the `1-minimization [6, 11] or various greedy algorithms [9, 21, 22, 26] are nonlinear.
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