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General Deviants: An Analysis of Perturbations
in Compressed Sensing
Matthew A. Herman and Thomas Strohmer

Abstract

We analyze the Basis Pursuit recovery of signals with general perturbations. Previous studies have only con-
sidered partially perturbed observations Ax + e. Here, x is a signal which we wish to recover, A is a full-rank
matrix with more columns than rows, and e is simple additive noise. Our model also incorporates perturbations E
to the matrix A which result in multiplicative noise. This completely perturbed framework extends the prior work of
Candès, Romberg and Tao on stable signal recovery from incomplete and inaccurate measurements. Our results show
that, under suitable conditions, the stability of the recovered signal is limited by the noise level in the observation.
Moreover, this accuracy is within a constant multiple of the best-case reconstruction using the technique of least
squares. In the absence of additive noise numerical simulations essentially confirm that this error is a linear function
of the relative perturbation.

I. INTRODUCTION

Employing the techniques of compressed sensing (CS) to recover signals with a sparse representation has enjoyed
a great deal of attention over the last 5–10 years. The initial studies considered an ideal unperturbed scenario:

b = Ax. (1)

Here b ∈ Cm is the observation vector, A ∈ Cm×n is a full-rank measurement matrix or system model (with
m ≤ n), and x ∈ Cn is the signal of interest which has a sparse, or almost sparse, representation under some fixed
basis. More recently researchers have included an additive noise term e into the received signal [1]–[4] creating a
partially perturbed model:

b̂ = Ax + e (2)

This type of noise typically models simple errors which are uncorrelated with x.
As far as we can tell, practically no research has been done yet on perturbations E to the matrix A.1,2 Our

completely perturbed model extends (2) by incorporating a perturbed sensing matrix in the form of

Â = A + E.

It is important to consider this kind of noise since it can account for precision errors when applications call for
physically implementing the measurement matrix A in a sensor. In other CS scenarios, such as when A represents
a system model, E can absorb errors in assumptions made about the transmission channel. This can be realized
in radar [7], remote sensing [8], telecommunications, source separation [5], [6], and countless other problems.
Further, E can also model the distortions that result when discretizing the domain of analog signals and systems;
examples include jitter error and choosing too coarse of a sampling period.
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strohmer}@math.ucdavis.edu).
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1A related problem is considered in [5] for greedy algorithms rather than `1-minimization, and in a multichannel rather than a single

channel setting; it mentions using different matrices on the encoding and decoding sides, but its analysis is not from an error or perturbation
point of view.

2At the time of revising this manuscript we became aware of an earlier study [6] which discusses the error resulting from estimating the
mixing matrix in source separation problems. However, it only covers strictly sparse signals, and its analysis is not as in depth as presented
in this manuscript.
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In general, these perturbations can be characterized as multiplicative noise, and are more difficult to analyze than
simple additive noise since they are correlated with the signal of interest. To see this, simply substitute A = Â−E
in (2);3 there will be an extra noise term Ex.

The rest of this section establishes certain assumptions and notation necessary for our analysis. Section II first
gives a brief review of previous work on the partially perturbed scenario in CS, and then presents our main
theoretical and numerical results on the completely perturbed scenario. Section III provides proofs of the theorems,
and Section IV compares the CS solution with classical least squares. Concluding remarks are given in Section V,
and a brief discussion on different kinds of perturbation E which we often encounter can be found in the Appendix.

A. Assumptions and Notation

Throughout this paper we represent vectors and matrices with boldface type. Without loss of generality, assume
that the original data x is a K-sparse vector for some fixed K, or that it is compressible. Vectors which are K-
sparse contain no more than K nonzero elements, and compressible vectors are ones whose ordered coefficients
decay according to a power law (i.e., |x|(k) ≤ Cpk

−p, where |x|(k) is the kth largest element of x, p ≥ 1, and Cp is
a constant which depends only on p). Let vector xK ∈ Cn be the best K-term approximation to x, i.e., it contains
the K largest coefficients of x with the rest set to zero. We occasionally refer to this vector as the “head” of x.
Note that if x is K-sparse, then x = xK . With a slight abuse of notation denote xKc = x−xK as the “tail” of x.

The symbols σmax(Y ), σmin(Y ), and ‖Y ‖2 respectively denote the usual maximum, minimum nonzero singular
values, and spectral norm of a matrix Y . Our analysis will require examination of submatrices consisting of an
arbitrary collection of K columns. We use the superscript (K) to represent extremal values of the above spectral
measures. For instance, σ

(K)
max(Y ) denotes the largest singular value taken over all K-column submatrices of Y .

Similar definitions apply to ‖Y ‖(K)
2 and rank(K)(Y ), while σ

(K)
min(Y ) is the smallest nonzero singular value over

all K-column submatrices of Y . With these, the perturbations E and e can be quantified with the following relative
bounds

‖E‖2

‖A‖2
≤ εA,

‖E‖(K)
2

‖A‖(K)
2

≤ ε
(K)
A ,

‖e‖2

‖b‖2
≤ εb, (3)

where ‖A‖2, ‖A‖(K)
2 , ‖b‖2 6= 0. In real-world applications we often do not know the exact nature of E and e and

instead are forced to estimate their relative upper bounds. This is the point of view taken throughout most of this
treatise. In this study we are only interested in the case where εA, ε

(K)
A , εb < 1.

II. CS `1 PERTURBATION ANALYSIS

A. Previous Work

In the partially perturbed scenario (i.e., E = 0) we are concerned with solving the Basis Pursuit (BP)
problem [9]:

z? = argmin
ẑ

‖ẑ‖1 s.t. ‖Aẑ − b̂‖2 ≤ ε′ (4)

for some ε′ ≥ 0.4

The restricted isometry property (RIP) [10] for any matrix A ∈ Cm×n defines, for each integer K = 1, 2, . . .,
the restricted isometry constant (RIC) δK , which is the smallest nonnegative number such that

(1− δK)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δK)‖x‖2
2 (5)

holds for any K-sparse vector x. In the context of the RIC, we observe that ‖A‖(K)
2 = σ

(K)
max(A) ≤ √

1 + δK , and
σ

(K)
min(A) ≥ √

1− δK .

3It essentially makes no difference whether we account for the perturbation E on the “encoding side” (2), or on the “decoding side” (7).
The model used here was chosen so as to agree with the conventions of classical perturbation theory which we use in Section IV.

4Throughout this paper absolute errors are denoted with a prime. In contrast, relative perturbations, such as in (3), are not primed.
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Assuming δ2K <
√

2− 1 and ‖e‖2 ≤ ε′, Candès has shown ([1], Thm. 1.2) that the solution to (4) obeys

‖z? − x‖2 ≤ C0K−1/2‖x− xK‖1 + C1ε′ (6)

for some constants C0, C1 ≥ 0 which are reasonably well-behaved and can be calculated explicitly.

B. Incorporating nontrivial perturbation E

Now assume the completely perturbed situation with E, e 6= 0. In this case the BP problem of (4) can be
generalized to include a different decoding matrix Â:

z? = argmin
ẑ

‖ẑ‖1 s.t. ‖Âẑ − b̂‖2 ≤ ε′A,K,b (7)

for some ε′A,K,b ≥ 0. The following two theorems summarize our results.

Theorem 1 (RIP for Â). Fix K = 1, 2, . . .. Given the RIC δK associated with matrix A in (5) and the relative
perturbation ε

(K)
A associated with (possibly unknown) matrix E in (3), fix the constant

δ̂K,max :=
(
1 + δK

)(
1 + ε

(K)
A

)2
− 1. (8)

Then the RIC δ̂K for matrix Â = A + E is the smallest nonnegative number such that

(1− δ̂K)‖x‖2
2 ≤ ‖Âx‖2

2 ≤ (1 + δ̂K)‖x‖2
2 (9)

holds for any K-sparse vector x where δ̂K ≤ δ̂K,max.

Remark 1. Properly interpreting Theorem 2 is important. It is assumed that the only information known about
matrix E is its worst-case relative perturbation ε

(K)
A , and therefore the bound of δ̂K,max in (8) represents a worst-

case deviation of δ̂K . Notice for a given ε
(K)
A that there are infinitely many E which satisfy it. In fact, it is possible

to construct nonzero perturbations which result in δ̂K = δK! For example, suppose Â = AU for some unitary
matrix U 6= I where I is the identity matrix. Clearly here E = A(U −I) 6= 0 and yet since U is unitary we have
δ̂K = δK . In this case using ε

(K)
A to calculate δ̂K,max could be a gross upper bound for δ̂K . If more information

on E is known,5 then much tighter bounds on δ̂K can be determined.

Remark 2. The flavor of the RIP is defined with respect to the square of the operator norm. That is, (1− δK) and
(1 + δK) are measures of the square of the minimum and maximum singular values of K-column submatrices
of A, and similarly for Â. In keeping with the convention of classical perturbation theory however, we defined ε

(K)
A

in (3) just in terms of the operator norm (not its square). Therefore, the quadratic dependence of δ̂K,max on ε
(K)
A

in (8) makes sense. Moreover, in discussing the spectrum of K-column submatrices of Â, we see that it is really
a linear function of ε

(K)
A .

Before introducing the next theorem let us define the following constants due to matrix A

κ
(K)
A :=

√
1 + δK√
1− δK

, αA :=
‖A‖2√
1− δK

. (10)

The first quantity bounds the ratio of the extremal singular values of all K-column submatrices of A

σ
(K)
max(A)

σ
(K)
min(A)

≤ κ
(K)
A .

Actually, for very small δK we have κ
(K)
A ≈ 1, which implies that every K-column submatrix forms an approxi-

mately orthonormal set.
Also introduce the ratios

rK :=
‖xKc‖2

‖xK‖2
, sK :=

‖xKc‖1

‖xK‖2
(11)

5See the appendix for more discussion on the different forms of perturbation E which we are likely to encounter.
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which quantify the weight of a signal’s tail relative to its head. When x is K-sparse we have xKc = 0, and so
rK = sK = 0. If x is compressible, then these values are a function of the power p (i.e., the rate at which the
coefficients decay), and the cardinality K of the group of its largest entries. For reasonable values of p and K, we
expect that rK , sK ¿ 1.

Theorem 2 (Stability from completely perturbed observation). Fix the relative perturbations εA, ε
(K)
A , ε

(2K)
A and εb

in (3). Assume the RIC for matrix A satisfies6

δ2K <

√
2

(
1 + ε

(2K)
A

)2 − 1, (12)

and that general signal x satisfies

rK +
sK√
K

<
1

κ
(K)
A

. (13)

Set the total noise parameter

ε′A,K,b :=
(

ε
(K)
A κ

(K)
A + εAαArK

1− κ
(K)
A

(
rK + sK/

√
K

) + εb

)
‖b‖2. (14)

Then the solution of the BP problem (7) obeys

‖z? − x‖2 ≤ C0√
K
‖x− xK‖1 + C1ε′A,K,b, (15)

where

C0 =
2

(
1 +

(√
2− 1

) [(
1 + δ2K

) (
1 + ε

(2K)
A

)2 − 1
])

1 − (√
2 + 1

) [(
1 + δ2K

) (
1 + ε

(2K)
A

)2 − 1
] , (16)

C1 =
4
√

1 + δ2K

(
1 + ε

(2K)
A

)

1 − (√
2 + 1

) [(
1 + δ2K

) (
1 + ε

(2K)
A

)2 − 1
] . (17)

Remark 3. Theorem 2 generalizes Candès’ results in [1]. Indeed, if matrix A is unperturbed, then E = 0 and
εA = ε

(K)
A = 0. It follows that δ̂K = δK in (8), and the RIPs for A and Â coincide. Moreover, assumption (12)

in Theorem 2 reduces to δK <
√

2− 1, and the total perturbation (see (23)) collapses to ‖e‖2 ≤ ε′b := εb‖b‖2 (so
that assumption (13) is no longer necessary); both of these are identical to Candès’ assumptions in (6). Finally, the
constants C0, C1 in (16) and (17) reduce to the same as outlined in the proof of [1].

The assumption in (13) demands more discussion. Observe that the left-hand side (LHS) is solely a function
of the signal x, while the right-hand side (RHS) is just a function of the matrix A. For reasonably compressible
signals, it is often the case that the LHS is on the order of 10−2 or 10−3. At the same time, the RHS is always of
order 100 due to assumption (12). Therefore, there should be a sufficient gap to ensure that assumption (13) holds.
Clearly this condition is automatically satisfied whenever x is strictly K-sparse.

In fact, more can be said about Theorem 2 for the case of a K-sparse input. Notice then that the terms related
to xKc in (14) and (15) disappear, and the accuracy of the solution becomes

‖z? − x‖2 ≤ C1

(
κ

(K)
A ε

(K)
A + εb

)
‖b‖2.

This form of the stability of the BP solution is helpful since it highlights the effect of the perturbation E on the K
most important elements of x, as well as the influence of the additive noise e. Clearly in the absence of any
perturbation, a K-sparse signal can be perfectly recovered by BP.

It is also interesting to examine the spectral effects due to the first assumption of Theorem 2. Namely, we want
to be assured that the maximum rank of submatrices of A is unaltered by the perturbation E.

6Note for δ2K ≥ 0, (12) requires that ε
(2K)
A < 4

√
2− 1.
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Lemma 1. Assume condition (12) of Theorem 2 holds. Then for any k ≤ 2K

σ(k)
max(E) < σ

(k)
min(A), (18)

and therefore
rank(k)(Â) = rank(k)(A).

We apply this fact in the least squares analysis of Section IV.

The utility of Theorems 1 and 2 can be understood with two simple numerical examples. Suppose that matrix A
in (2) represents a system that a signal passes through which in reality has an RIC of δ2K = 0.100. Assume
however, that when modeling this system we introduce a worst-case relative error of ε

(2K)
A = 5% so that we think

that the system behaves as Â = A+E. From (8) we can verify that matrix Â has an RIC δ̂2K,max = 0.213 which
satisfies (12). Thus, if (13) is also satisfied, then Theorem 2 guarantees that the BP solution will have accuracy
given in (15) with C0 = 4.47 and C1 = 9.06. Note from (16) and (17) we see that if there had been no perturbation,
then C0 = 2.75 and C1 = 5.53.

Consider now a different example. Suppose instead that δ2K = 0.200 with ε
(2K)
A = 1%. Then δ̂2K,max = 0.224,

C0 = 4.76 and C1 = 9.64. Here, if A was unperturbed, then we would have had C0 = 4.19 and C1 = 8.47.
These numerical examples show how the stability constants C0 and C1 of the BP solution get worse with

perturbations to A. It must be stressed however, that they represent worst-case instances. It is well-known in the
CS community that better performance is normally achieved in practice.

C. Numerical Simulations

Numerical simulations were conducted in MATLAB as follows. In each trial a new matrix A of size 128× 512
was randomly generated with independent normally distributed entries N (0, σ2) where σ2 = 1/128 (so that the
expected `2-norm of each column was unity), and the spectral norm of A was calculated. Next, for each relative
perturbation εA = 0, 0.01, 0.05, 0.1 a different perturbation matrix E with independent normally distributed entries
was generated, and then scaled so that ‖E‖2 = εA · ‖A‖2.7 A random vector x of sparsity K = 1, . . . , 64 was
then randomly generated with nonzero entries uniformly distributed N (0, 1), and b̂ = Ax in (2) was created (note,
we set e = 0 so as to focus on the effect of perturbation E). Finally, given b̂ and the Â = A + E associated with
each εA, the BP program (7) was implemented with cvx software [11] and the relative error ‖z?−x‖2/‖x‖2 was
recorded. One hundred trials were performed for each value of K.

Figure 1 shows the relative error averaged over the 100 trials as a function of K for each εA. As a reference, the
ideal, noise-free case can be seen for εA = 0. Now fix a particular value of K ≤ 30 and compare the relative error
for the three nonzero values of εA. It is clear that the error scales roughly linearly with εA. For example, when
K = 10 the relative errors corresponding to εA = 0.01, 0.05, 0.1 respectively are 9.7×10−3, 4.9×10−2, 9.7×10−2.
We see here that the relative errors for εA = 0.05 and 0.1 are approximately five and ten times the the relative
error associated with εA = 0.01. Therefore, this empirical study essentially confirms the conclusion of Theorem 2:
the stability of the BP solution scales linearly with ε

(K)
A .

Note that improved performance in theory and in simulation can be achieved if BP is used solely to determine
the support of the solution. Then we can use least squares to better approximate the coefficients on this support.
This is similar to the the best-case, oracle least squares solution discussed in Section IV. However, this method of
recovery was not pursued in the present analysis.

III. PROOFS

A. Proof of Theorem 1

Recall that we are tasked with determining the maximum δ̂K given δK and ε
(K)
A . Temporarily define lK and uK

as the smallest nonnegative numbers such that

(1− lK)‖x‖2
2 ≤ ‖Âx‖2

2 ≤ (1 + uK)‖x‖2
2 (19)

7We used εA in these simulations since calculating ε
(K)
A explicitly is extremely difficult. Notice that εA ≈ ε

(K)
A for all K with high

probability since both A, E are random Gaussian matrices.
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Fig. 1. Average (100 trials) relative error of BP solution z? with respect to K-sparse x vs. Sparsity K for different relative perturbations εA

of A. Here A, E are both 128× 512 random matrices with i.i.d. Gaussian entries and εb = 0.

holds for any K-sparse vector x. From the triangle inequality, (5) and (3) we have

‖Âx‖2
2 ≤ (‖Ax‖2 + ‖Ex‖2

)2 (20)

≤
(√

1 + δK + ‖E‖(K)
2

)2
‖x‖2

2 (21)

≤ (1 + δK)
(
1 + ε

(K)
A

)2
‖x‖2

2. (22)

In comparing the RHS of (19) and (22), it must be that

(1 + uK) ≤ (1 + δK)
(
1 + ε

(K)
A

)2

as demanded by the definition of the uK . Moreover, this inequality is sharp for the following reasons:
• Equality occurs in (20) whenever E is a positive, real-valued multiple of A.
• The inequality in (21) inherits the sharpness of the upper bound of the RIP for matrix A in (5).
• Equality occurs in (22) since, in this hypothetical case, we assume that E = βA for some 0 < β < 1.

Therefore, the relative perturbation ε
(K)
A in (3) no longer represents a worst-case deviation (i.e., the ratio

‖E‖(K)
2

‖A‖(K)
2

= β =: ε
(K)
A ).

Since the triangle inequality constitutes a least-upper bound, and since we attain this bound, then

uK := (1 + δK)
(
1 + ε

(K)
A

)2
− 1

satisfies the definition of uK .
Now the LHS of (19) is obtained in much the same way using the “reverse” triangle inequality with similar

arguments (in particular, assume −1 < β < 0 and ε
(K)
A := |β|). Thus

lK := 1− (1− δK)
(
1 − ε

(K)
A

)2
.

Next, we need to make the bounds of (19) symmetric. Notice that (1−uK) ≤ (1− lK) and (1+ lK) ≤ (1+uK).
Therefore, given δK and ε

(K)
A , we choose

δ̂K,max := uK

as the smallest nonnegative constant which makes (19) symmetric. Finally, it is clear that the actual RIC δ̂K for Â
obeys δ̂K ≤ δ̂K,max. Hence, (9) follows immediately. ¥
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B. Bounding the perturbed observation

Before proceeding to the proof of Theorem 2 we need several important facts. First we generalize a lemma
in [12] about the image of an arbitrary signal.

Proposition 1 ([12], Lemma 29). Assume that matrix A satisfies the upper bound of the RIP in (5). Then for every
signal x we have

‖Ax‖2 ≤
√

1 + δK

(
‖x‖2 +

1√
K
‖x‖1

)
.

Now we can establish sufficient conditions for the lower bound in terms of the head and tail of x and the RIC
of A.

Lemma 2. Assume condition (13) in Theorem 2. Then for general signal x, its image under A can be bounded
below by the positive quantity

‖Ax‖2 ≥
√

1− δK

(
‖xK‖2 − κ

(K)
A

(
‖xKc‖2 +

‖xKc‖1√
K

))
.

Proof: Apply Proposition 1 to the tail of x. Then

‖Ax‖2 ≥ ‖AxK‖2 − ‖AxKc‖2

≥
√

1− δK‖xK‖2−
√

1 + δK

(
‖xKc‖2 +

‖xKc‖1√
K

)

=
√

1− δK

(
1− κ

(K)
A

(
rK +

sK√
K

))
‖xK‖2

> 0

on account of (13).

We still need some sense of the size of the total perturbation incurred by E and e. We do not know a priori
the exact values of E, x, or e. But we can find an upper bound in terms of the relative perturbations in (3). The
main goal in the following lemma is to remove the total perturbation’s dependence on the input x.

Lemma 3 (Total perturbation bound). Assume condition (13) in Theorem 2 and set 8

ε′A,K,b :=
(

ε
(K)
A κ

(K)
A + εAαArK

1− κ
(K)
A

(
rK + sK/

√
K

) + εb

)
‖b‖2

where εA, ε
(K)
A , εb are defined in (3), κ

(K)
A , αA in (10), and rK , sK in (11). Then the total perturbation obeys

‖Ex‖2 + ‖e‖2 ≤ ε′A,K,b. (23)

Proof: First divide the multiplicative noise term by ‖b‖2 and then apply Lemma 2

‖Ex‖2

‖Ax‖2
≤

(‖E‖(K)
2 ‖xK‖2 + ‖E‖2‖xKc‖2

) · 1√
1−δK

‖xK‖2 − κ
(K)
A

(‖xKc‖2 + ‖xKc‖1/
√

K
)

=

(‖E‖(K)
2 + ‖E‖2rK

) · 1√
1−δK

1− κ
(K)
A

(
rK + sK/

√
K

)

≤ ε
(K)
A κ

(K)
A + εAαArK

1− κ
(K)
A

(
rK + sK/

√
K

) . (24)

Including the contribution from the additive noise term completes the proof.

8Note that the results in this paper can easily be expressed in terms of the perturbed observation by replacing ‖b‖2 ≤ ‖b̂‖2(1 − εb)
−1.

This can be useful in practice since one normally only has access to b̂.
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C. Proof of Theorem 2

Step 1. We duplicate the techniques used in Candès’ proof of Theorem 1.2 in [1], but with decoding matrix A
replaced by Â. The proof relies heavily on the RIP for Â in Theorem 1. Set the BP minimizer in (7) as z? = x+h.
Here, h is the perturbation from the true solution x induced by E and e. Instead of Candès’ (9), we now determine
that the image of h under Â is bounded by

‖Âh‖2 ≤ ‖Âz? − b̂‖2 + ‖Âx− b̂‖2 (25)

≤ 2 ε′A,K,b.

The second inequality follows since both terms on the RHS of (25) satisfy the BP constraint in (7). Notice in the
second term that x is a feasible solution due to Lemma 3.

Since the other steps in the proof are essentially the same, we end up with constants α̂ and ρ̂ in Candès’ (14)
(instead of α and ρ) where

α̂ :=
2
√

1 + δ̂2K

1− δ̂2K

, ρ̂ :=
√

2 δ̂2K

1− δ̂2K

. (26)

The final line of the proof concludes that

‖h‖2 ≤ 2α̂(1 + ρ̂)
1− ρ̂

‖x− xK‖1√
K

+
2α̂

1− ρ̂
ε′A,K,b. (27)

The denominator demands that we impose the condition that 0 < 1− ρ̂, or equivalently

δ̂2K <
√

2 − 1. (28)

The constants C0 and C1 are obtained by first substituting α̂ and ρ̂ from (26) into (27). Then, recalling that
δ̂2K ≤ δ̂2K,max, substitute δ̂K,max from (8) (with K → 2K).

Step 2. We still need to show that the hypothesis of Theorem 2 implies (28). This is easily verified by substituting
the assumption of δ2K <

√
2
(
1 + ε

(2K)
A

)−2 − 1 into (8) (again with K → 2K) and the proof is complete. ¥

D. Proof of Lemma 1

Assume (12) in the hypothesis of Theorem 2. It is easy to show that this implies

‖E‖(2K)
2 <

4
√

2 −
√

1 + δ2K .

Simple algebraic manipulation then confirms that
4
√

2 −
√

1 + δ2K <
√

1− δ2K ≤ σ
(2K)
min (A).

Therefore, (18) holds with k = 2K. Further, for any k ≤ 2K we have σ
(k)
max(E) ≤ σ

(2K)
max (E) and σ

(2K)
min (A) ≤

σ
(k)
min(A), which proves the first part of the lemma. The second part is an immediate consequence. ¥

IV. CLASSICAL `2 PERTURBATION ANALYSIS

Let the subset T ⊆ {1, . . . , n} have cardinality |T | = K, and note the following T -restrictions: AT ∈ Cm×K

denotes the submatrix consisting of the columns of A indexed by the elements of T , and similarly for xT ∈ CK .
Suppose the “oracle” case where we already know the support T of xK , i.e., the best K-sparse representation

of x.9 By assumption, we are only interested in the case where K ≤ m in which AT has full rank. Given the
completely perturbed observation of (2), the least squares problem consists of solving:

z#
T = argmin

ẑT

‖ÂT ẑT − b̂‖2.

9Although perhaps slightly confusing, note that xK ∈ Cn, while xT ∈ CK . Restricting xK to its support T yields xT .
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Since we know the support T , it is trivial to extend z#
T to z# ∈ Cn by zero-padding on the complement of T . Our

goal is to see how the perturbations E and e affect z#. Using Golub and Van Loan’s model ([13], Thm. 5.3.1) as
a guide, assume

max
{‖ET ‖2

‖AT ‖2
,
‖e‖2

‖b‖2

}
<

σmin(AT )
σmax(AT )

. (29)

Remark 4. This assumption is fairly easy to satisfy. In fact, assumption (12) in the hypothesis of Theorem 2
immediately implies that ‖ET ‖2/‖AT ‖2 < σmin(AT )/σmax(AT ) for all ε

(2K)
A ∈ [0, 4

√
2 − 1). To see this simply

set k = K in (18) of Lemma 1, and note that ‖ET ‖2 ≤ ‖E‖(K)
2 and σ

(K)
min(A) ≤ σmin(AT ). Further, the reasonable

condition of εb ≤
(√

2
(
1+ε

(2K)
A

)2−1
)1/2 is sufficient to ensure εb <

√
1− δ2K/

√
1 + δ2K so that assumption (29)

holds. Note that this assumption has no bearing on CS recovery, nor is it a constraint due to BP. It is simply made
to enable an analysis of the least squares solution which we use as a best-case comparison below.

Following the steps in [13] with the appropriate modifications for our situation we obtain

‖z# − xK‖2 ≤ ‖A†
T ‖2

(‖ET xT ‖2

‖Ax‖2
+
‖e‖2

‖b‖2

)
‖b‖2

≤ 1√
1− δK

ζ ′A,K,b

where A†
T = (A∗

TAT )−1A∗
T is the left inverse of AT whose spectral norm

‖A†
T ‖2 ≤ 1√

1− δK
,

and where

ζ ′A,K,b :=
(

κ
(K)
A ε

(K)
A

1− κ
(K)
A

(
rK + sK/

√
K

)
)
‖b‖2

was obtained using the same steps as in (24). Finally, we obtain the total least squares stability expression

‖z# − x‖2 ≤ ‖x− xK‖2 + ‖z# − xK‖2

≤ ‖x− xK‖2 + C2ζ ′A,K,b, (30)

with C2 = 1/
√

1− δK .

A. Comparison of LS with BP

Now, we can compare the accuracy of the least squares solution in (30) with the accuracy of the BP solution
found in (15). However, this comparison is not really appropriate when the original data is compressible since the
least squares solution z# returns a vector which is strictly K-sparse, while the BP solution z? will never be strictly
sparse.

To make the comparison fair, we need to assume that x is strictly K-sparse. Then, as mentioned previously, the
constants rK = sK = 0 and the solutions enjoy stability of

‖z# − x‖2 ≤ C2

(
κ

(K)
A ε

(K)
A + εb

)
‖b‖2,

and
‖z? − x‖2 ≤ C1

(
κ

(K)
A ε

(K)
A + εb

)
‖b‖2.

Yet, a detailed numerical comparison of C2 with C1, even at this point, is still is not entirely valid, nor illuminating.
This is due to the fact that we assumed the oracle setup in the least squares analysis, which is the best that one
could hope for. In this sense, the least squares solution we examined here can be considered a “best, worst-case”
scenario. In contrast, the BP solution really should be thought of as a “worst, of the worst-case” scenarios.

The important thing to glean is that the accuracy of the BP and the least squares solutions are both on the order
of the noise level (

κ
(K)
A ε

(K)
A + εb

)
‖b‖2

in the perturbed observation. This is an important finding since, in general, no other recovery algorithm can do
better than the oracle least squares solution. These results are analogous to the comparison by Candès, Romberg
and Tao in [2], although they only consider the case of additive noise e.
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V. CONCLUSION

We introduced a framework to analyze general perturbations in CS and found the conditions under which BP
could stably recover the original data. This completely perturbed model extends previous work by including a
multiplicative noise term in addition to the usual additive noise term.

Most of this study assumed no specific knowledge of the perturbations E and e. Instead, the point of view was in
terms of their worst-case relative perturbations εA, ε

(K)
A , εb. In real-world applications these quantities must either

be calculated or estimated. This must be done with care owing to their role in the theorems presented here.
We derived the RIP for perturbed matrix Â, and showed that the penalty on the spectrum of its K-column

submatrices was a graceful, linear function of the relative perturbation ε
(K)
A . Our main contribution, Theorem 2,

showed that the stability of the BP solution of the complectly perturbed scenario was limited by the total noise in
the observation.

Simple numerical examples demonstrated how the multiplicative noise reduced the accuracy of the recovered BP
solution. Formal numerical simulations were performed on strictly K-sparse signals with no additive noise so as
to highlight the effect of perturbation E. These experiments appear to confirm the conclusion of Theorem 2: the
stability of the BP solution scales linearly with ε

(K)
A .

We also found that the rank of Â did not exceed the rank of A under the assumed conditions. This permitted a
comparison with the oracle least squares solution.

It should be mentioned that designing matrices and checking for proper RICs is still quite elusive. In fact, the
only matrices which are known to satisfy the RIP (and which have m ∼ K rows) are random Gaussian, Bernoulli,
and certain partial unitary (e.g., Fourier) matrices (see, e.g., [14], [15], [16]).

APPENDIX

DIFFERENT CASES OF PERTURBATION E

There are essentially two classes of perturbations E which we care most about: random and structured. The
nature of these perturbation matrices will have a significant effect on the value of ‖E‖(K)

2 , which is used in
determining ε

(K)
A in (3). In fact, explicit knowledge of E can significantly improve the worst-case assumptions

presented throughout this paper. However, if there is no extra knowledge on the nature of E, then we may have to
rely on the “worst case” upper bound: the full-matrix spectral norm ‖E‖(K)

2 ≤ ‖E‖2.

A. Random Perturbations

Random matrices, such as Gaussian, Bernoulli, and certain partial Fourier matrices, are often amenable to analysis
with the RIP. For instance, suppose that E is simply a scaled version of a random matrix R so that E = βR with
0 < β ¿ 1. Denote δR

K as the RIC associated with the matrix R. Then for all K-sparse x the RIP for matrix E
asserts

β2(1− δR
K)‖x‖2

2 ≤ ‖Ex‖2
2 ≤ β2(1 + δR

K)‖x‖2
2,

which immediately gives us
‖E‖(K)

2 ≤ β
√

1 + δR
K ,

and thus
‖E‖(K)

2

‖A‖(K)
2

≤ β

√
1 + δR

K√
1− δK

=: ε
(K)
A .

B. Structured Perturbations

Structured matrices (e.g., Toeplitz, banded) are ubiquitous in the mathematical sciences and engineering. In the
CS scenario, suppose for example that E is a partial circulant matrix obtained by selecting m rows uniformly at
random from an n×n circulant matrix. An error in the modeling of a communication channel could be represented
by such a partial circulant matrix. When encountering a structured perturbation such as this it may be possible to
exploit its nature to find a bound ‖E‖(K)

2 ≤ C.
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A complete circulant matrix has the property that each row is simply a right-shifted version of the row above
it. Therefore, knowledge of any row gives information about the entries of all of the rows. This is also true for a
partial circulant matrix. Thus, with this information we may be able to find a reasonable upper bound on ‖E‖(K)

2 .
The interested reader can find relevant literature at [17].
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