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In this short note we respond to some concerns raised by Y. Censor,
G. Herman, and M. Jiang about the randomized Kaczmarz method that we
proposed in [5].

The Kaczmarz method is a well-known iterative algorithm for solving a
linear system of equations Az = b. For more than seven decades, this method
was useful in practical applications, and it was studied in many research
papers. Despite of this, little is known about the rate of convergence of
this method. The classical scheme of Kaczmarz’s method sweeps through
the rows of A in a cyclic manner, projecting in each substep the last iterate
orthogonally onto a hyperplane associated with a row of A. One variation of
Kaczmarz’s method consists of randomly choosing in each iteration the row
for the projection. Our algorithm in [5] (labeled Algorithm 1 there) is based
on this approach. The idea of choosing the rows randomly is certainly not
new. It has been mentioned for instance by Natterer [4], and later also by
Feichtinger et al. [1] and by G. Herman and L. Meyer [3]. In these papers,
improvement of performance is observed in numerical experiments, but none
of these papers contain any proof of the rate of convergence.

We consider the main contribution of [5] that (i) it contains the first
proof for a rate of convergence for the Kaczmarz’s method that is applicable
to general matrices (and not just to very restricted special cases); (ii) the
algorithm achieves an exponential rate of convergence; and (iii) the rate
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of convergence is expressible in terms of standard quantities in numerical
analysis (condition numbers of matrices).

Y. Censor, G. Herman, and M. Jiang (CHJ for short) claim in their note
that “the rule proposed in Algorithm 1 cannot be in general optimal (or even
in any sense superior)”. Here, “the rule” refers to choosing the rows for the
projection steps randomly according to probabilities given by the row-norms
of A. CHJ are correct that this rule is not optimal, and we actually never
claimed it to be optimal. In fact, we even give a concrete example in Sec-
tion 3.2 of [5] for which this rule (as indeed other Kaczmarz-type algorithms)
must perform poorly. This example is presented in connection with a discus-
sion of optimality of our convergence rate estimates. We prove in Section 3
of [5] that the estimate of the rate of convergence we derive for Algorithm 1
cannot be improved from below beyond a constant factor. Furthermore we
show that the estimate cannot be improved from above, since there are ma-
trices (well-conditioned ones and ill-conditioned ones) for which equality in
our estimate is obtained. One should not confuse optimality of our estimates
with optimality of “the rule” with which we pick the rows in our algorithm.

We prove in Theorem 2 of [5] that our randomized Kaczmarz algorithm
achieves exponential rate of convergence (in expectation). We are not aware
of any similar previous results for general matrices, for any Kaczmarz-based
algorithms. CHJ also do not provide any reference for a Kaczmarz-based
algorithm that provably achieves exponential rate of convergence (in expec-
tation or otherwise) for general matrices. Our analysis further implies that
the convergence rate of our algorithm does not even depend on the number of
equations in the system. To the best of our knowledge such results have not
been shown for any other Kaczmarz-based algorithm (nor do CHJ provide
any reference that would demonstrate otherwise). Thus, to the best of our
knowledge, our algorithm can claim superiority over other Kaczmarz meth-
ods in that sense (but not the optimality of the rule in which the probabilities
are selected, which was never claimed).

Moreover, in the beginning of Section 5 we suggest, based on numerical
simulations, how a certain choice of relaxation parameter can further improve
the convergence — which would not make sense if we did believe that our
algorithm were already optimal.

The value and motivation for choosing the probabilities according to the
row-norms of the matrix lies in the following facts:

e It allows us to guarantee the exponential rate of convergence for Kacz-



marz’s method;

e [t is a computationally efficient strategy, and while not optimal, often
provides very good results.

Choosing the probabilities according to the row-norms is related to the idea
of preconditioning a matrix by row-scaling. From the viewpoint of precondi-
tioning, it is clear that other methods of choosing a diagonal preconditioner
will in general perform better. However, finding the optimal diagonal precon-
ditioner for the system Ax = b is an optimization problem whose complexity
can easily exceed that of directly inverting the matrix A. Therefore a cheaper,
suboptimal alternative is needed. Scaling by the inverses of the squared row-
norms has been shown to be an efficient means to balance computational
costs with optimality, see e.g. [?], and its suboptimality is well-known [?].
From a practical viewpoint, one may not even be willing to spend the com-
putational effort to compute the row-norms of A, since the cost is still in the
order of mn operations for an m x n matrix A.

In some (or many) specific applications better ways for choosing the prob-
abilities can be obtained. This is essentially always possible when a simple
way of choosing a better diagonal preconditioner can be found. One such
example is the problem of reconstructing a bandlimited function or trigono-
metric polynomial from its nonuniformly spaced sampling values, that is
presented in Section 4.1 of [5].

In connection with Section 4.1 of [5] CHJ state that “A scaling of the
equations will change the system matriz A and its scaled condition number
k(A) and, in the light of [5] it might be tempting to think that it is possible to
control in such a way the convergence rate of Kaczmarz’s method. However,
the geometric nature of Kaczmarz’s method precludes such a possibility ...”.

CHJ are overlooking an important aspect of our algorithm here. It is defi-
nitely correct that a mere preconditioning of the system Ax = b by a diagonal
matrix D does not change the convergence rate of the standard Kaczmarz’s
method at all, since the angle between any two rows of DA is still the same
as for A. However, a key element of our randomized Kaczmarz method is
that the probabilities with which the rows are chosen are changing when one
replaces A by DA. This is crucial, since now rows that are considered “more
relevant” (expressed via the scaling by D) are chosen more often, and rows
that have less relevance are chosen less often. And how often rows are chosen
clearly will have a strong influence on the convergence.



With respect to the numerical example in Section 4.1, CHJ state that ” To
avoid inferior behavior of the randomized Kaczmarz algorithm it is essential
that the system of algebraic equations that represents the set of hyperplanes
be carefully chosen. Indeed, this was done by Strohmer and Vershynin in
their numerical simulation in Section J.1, see their equation (18). Had they
selected a different algebraic representation, they would have obtained a dif-
ferent convergence behavior. ” The representation that we supposedly “have
carefully chosen” is a standard one, that is based on the well-established work
by Feichtinger and Grochenig [2]. In light of the preconditioner discussion
before, the weights proposed by Feichtinger and Grochenig play exactly the
role of a simple diagonal preconditioner by assigning more weight to sam-
pling points where the sampling density is low and less points to sampling
points where the sampling density is high. This is a nice and simple way
to incorporate geometrical information about the sampling pattern. Again,
as mentioned above, CHJ seem to overlook that an important aspect of the
randomized Kaczmarz method is that when we scale (i.e., diagonally pre-
condition) the system Az = b we also change the probabilitites with which
the rows of the scaled matrix are chosen during the projection steps. This is
a simple, (suboptimal) yet efficient way to incorporate the geometry of the
(sampling) problem into the algorithm.

CHJ claim that if we had scaled the equations given in equation (18), such
that all rows of A would have norm equal to 1, then the difference between
Algorithm 1 and the simple randomized Kaczmarz method (where every row
is chosen with equal probability) “would have disappeared”. This is certainly
and obviously correct: in Algorithm 1, each row is selected with probability
equal to its squared row-norm, whereas in the simple randomized Kaczmarz
algorithm each row is selected with equal probability. However, such scaling
can dramatically increase the condition number of matrix A. This, in turn,
may lead to a poor performance of the randomized Kaczmarz algorithm on
a system scaled in such “wrong” way.

To summarize, the randomized Kaczmarz method offers various advan-
tages over the standard Kaczmarz method. When choosing the rows at ran-
dom with probabilities equal to the squared row-norms, we are able to give a
proof of the expected rate of convergence. This rate is actually exponential,
and no comparable convergence rate for Kaczmarz has been proven before in
the literature. A proper scaling of the system Ax = b can indeed improve the
convergence of the randomized Kaczmarz method (unlike the ordinary Kacz-
marz method), since the probabilities with which rows are chosen is changing
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with the scaling. Assigning probabilities corresponding to the row-norms is
in general certainly not optimal (which was never claimed), but at least for
well-conditioned matrices it is very efficient. And it is absolutely possible
that somebody, maybe the reader of this note, will come up with a version of
the randomized Kaczmarz method that is provably better than the one we
proposed in [5].
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