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Abstract

We consider a MIMO radar system and derive a
theoretical framework for the recoverability of targets
in the azimuth-range-Doppler domain via compressive
sensing type recovery algorithms. In particular we
prove bounds on the achievable resolution and number
of detectable targets in the presence of additive noise.
Furthermore our theory reveals that even weak targets
can be recovered reliably with the proposed approach.

1 Introduction

In recent years there has been considerable interest
in a class of radar systems called MIMO Radar. The
literature on the subject addresses two distinct types
of radar systems which we will refer to as MIMO radar
with co-located antennas [1] and MIMO radar with
widely separated antennas, [2], which is also referred
to as statistical MIMO. In this paper we consider only
MIMO radars with co-located antennas and all subse-
quent mentions of MIMO radar refer to this type only.

MIMO radar is characterized by using multiple an-
tennas to simultaneously transmit diverse, usually or-
thogonal, waveforms in addition to using multiple an-
tennas to receive the reflected signals. MIMO radar
has the potential for enhancing spatial resolution and
improving interference and jamming suppression. The
ability of MIMO radar to shape the transmit beam
post facto allows for adapting the transmission based
on the received data in a way which is not possible in
“conventional” radar.

Most radar scenes are sparse in the sense that only a
small fraction of the range-azimuth or range-Doppler-
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azimuth cells are occupied by objects of interest. In
fact in most situations this fraction is very small in-
deed. This sparsity assumption suggests to approach
the MIMO radar problem using the framework of com-
pressed sensing [3]. In this paper we develop some
fundamental results about the feasibility of recovering
sparse radar scenes using algorithms based on com-
pressed sensing. In particular we prove bounds on the
achievable resolution and number of detectable targets
in the presence of additive noise. We are able to show
that targets can be detected at signal-to-noise ratios
comparable to that of matched filter detectors. This is
a continuation of our analysis begun in [4], where we
investigated the Doppler-free and noiseless case.

Notation

Let v ∈ Cn. As usual, we define ‖v‖1 :=
∑n
k=1 |vk|

and ‖v‖2 :=
√∑n

k=1 |vk|2. The operator norm of a
matrix A is the largest singular value of A and is de-
noted by ‖A‖op. The coherence of A is defined as

µ(A) := max
k 6=l

|〈Ak,Al〉|
‖Ak‖2‖Al‖2

, (1)

where Ak is the k-th column of A.

2 The Signal Model

Consider a MIMO radar employing NT antennas at
the transmitter and NR antennas at the receiver. We
assume that the element spacing is sufficiently small
so that the radar return from a given scatterer is fully
correlated across the array. In other words, this is a
coherent propagation scenario.

To simplify the presentation we assume that the two
arrays are co-located, i.e. this is a mono-static radar.
The extension to the bi-static case is straightforward as
long as the coherency assumption holds for each array.
The arrays are characterized by the array manifolds:



aR(β) for the receive array and aT (β) for the transmit
array, where β = sin(θ) is the direction relative to the
array. We assume that the arrays and all the scatterers
are in the same 2-D plane. The extension to the 3-D
case is straightforward and all of the following results
hold for that case as well.

For convenience we formulate our theorems and
analysis in terms of delay τ instead of range r. This is
no loss of generality, as delay and range are related by
τ = 2r/c, with c denoting the speed of light.

2.1 The model for the azimuth-delay domain

The i-th transmit antenna repeatedly transmits the
signal si(t). Let Z(t;β, τ) be the NR × Nt noise free
received signal matrix from a unit strength target at
direction β and delay τ , where Nt is the number of
samples in time. Then

Z(t;β, τ) = aR(β)aTT (β)S∗τ , (2)

where Sτ is an Nt × NT matrix whose columns are
the circularly delayed signals si(t− τ), sampled at the
discrete time points t = n∆t, n = 1, . . . , Nt. If τ = 0,
we often write simply S instead of S0.

Assuming uniformly spaced linear arrays (ULA), the
array manifolds are given by

aT (β) =


1

ej2πdT β

...
ej2πdT β(NT−1)

 (3)

and

aR(β) =


1

ej2πdRβ

...
ej2πdRβ(NR−1)

 (4)

where dT and dR are the normalized spacings (distance
divided by wavelength) between the elements of the
transmit and receive arrays, respectively.

The spatial characteristics of a MIMO radar are
closely related to that of a virtual array with NTNR an-
tennas, whose array manifold is a(β) = aT (β)⊗aR(β).
It is known [5] that the following choices for the spac-
ing of the transmit and receive array spacing will yield
a uniformly spaced virtual array with half wavelength
spacing:

dR = 0.5, dT = 0.5NR; (5)
dT = 0.5, dR = 0.5NT . (6)

Both of these choices lead to a virtual array whose aper-
ture is 0.5(NTNR− 1) wavelengths. This is the largest

virtual aperture free of grating lobes. The choices (5)
and (6) will also show up in our theoretical analysis,
see Theorem 1.

Next let z(t;β, τ) = vec{Z(t;β, τ)} be the noise-
free vectorized received signal. We set up a discrete
delay-azimuth grid {(βi, τj)}, 1 ≤ i ≤ Nβ , 1 ≤ j ≤ Nτ ,
where ∆β and ∆τ denote the corresponding discretiza-
tion stepsizes. Using vectors z(t;βi, τj) for all grid
points (βi, τj) we construct a complete response matrix
A whose columns are z(t;βi, τj) for 1 ≤ i ≤ Nβ and
1 ≤ j ≤ Nτ . In other words, we have Nτ delay values
and Nβ azimuth values, so that A is a NRNt ×NτNβ
matrix.

Assume that the radar illuminates a scene consisting
of K scatterers located on K points of the (βi, τj) grid.
Let x be a sparse vector whose non-zero elements are
the complex amplitudes of the scatterers in the scene.
The zero elements corresponds to grid points which
are not occupied by scatterers. We can then define the
radar signal received from this scene y by

y = Ax + v (7)

where y is a NRNt × 1 vector, x is a NτNβ × 1 sparse
vector, v is a NRNt×1 complex Gaussian noise vector,
and A is a NRNt ×NτNβ matrix.

2.2 The model for the azimuth-delay-Doppler do-
main

The discussion so far was for the case of a stationary
radar scene and a fixed radar, in which case there is no
Doppler shift. The extension of this signal model to
include the Doppler effect is conceptually straightfor-
ward, but leads to a significant increase in the problem
dimension.

The signal model for the return from a unit strength
scatterer at direction β, delay τ , and Doppler f (cor-
responding to its radial velocity with respect to the
radar) is given by

Z(t;β, τ, f) = aR(β)aTT (β)S∗τ,f , (8)

where Sτ,f is a Nt×NT matrix whose columns are the
circularly delayed and Doppler shifted signals si(t −
τ)ej2πft.

As before we let z(t;β, τ, f) = vec{Z(t;β, τ, f)} be
the noise-free vectorized received signal. We extend
the discrete delay-azimuth grid by adding a discretized
Doppler component (with stepsize ∆f and correspond-
ing Doppler values f = k∆f , k = 1, . . . , Nf ) and obtain
a uniform delay-azimuth-Doppler grid {(βi, τj , fk)}.
Using vectors z(t;βi, τj , fk) for all discrete (βi, τj , fk)
we construct a complete response matrix A whose



columns are z(t;βi, τj , fk) for 1 ≤ i ≤ Nβ , 1 ≤ j ≤ Nτ ,
1 ≤ k ≤ Nf .

Assume that the radar illuminates a scene consisting
of K scatterers located on K points of the (βi, τj , fk)
grid. Let x be a sparse vector whose non-zero elements
are the complex amplitudes of the scatterers in the
scene. The zero elements corresponds to grid points
which are not occupied by scatterers. We can then
define the radar signal received from this scene y by
y = Ax + v, where y is a NRNt × 1 vector, x is a
NτNβNf × 1 sparse vector, v is a NRNt × 1 complex
Gaussian noise vector, and A is a NRNt × NτNβNf
matrix.

2.3 The scattering model

We introduce the following generic K-sparse scat-
terer model:

• The support I ⊂ {1, . . . , NτNβ} (or I ⊂
{1, . . . , NτNfNβ} for the Doppler case) of the K
nonzero coefficients of x is selected uniformly at
random.

• The phases of x form a Steinhaus sequence, i.e.,
they are random and uniformly distributed on the
unit circle.

We do not impose any condition on the amplitudes of
the non-zero entries of x. We do assume however that
the targets are exactly located at the discretized grid
points. This is certainly an idealized assumption, that
is not satisfied in this strict sense in practice, resulting
in a “gridding error”. We refer the reader to [6, 7] for
an analysis of the associated perturbation error.

2.4 The recovery algorithm – Debiased Lasso

A standard approach to finding a sparse (and under
appropriate conditions the sparsest) solution to a noisy
system y = Ax + v is via

min
x

1
2
‖Ax− y‖22 + λ‖x‖1, (9)

which is also known as lasso [8]. Here λ > 0 is a regu-
larization parameter.

In this paper we adopt the following two-step version
of lasso. In the first step we compute an estimate K̃ for
the support of x by solving (9). In the second step we
estimate the amplitudes of x by solving the reduced-
size least squares problem min ‖AK̃xK̃ − y‖2, where
AK̃ is the submatrix of A consisting of the columns
corresponding to the index set K̃, and similarly for
xK̃ . This is a standard way to “debias” the solution,
we thus will call this approach in the sequel debiased
lasso.

3 Performance bounds for sparse
MIMO radar

We assume that si(t) is a periodic, complex-valued,
continuous-time white Gaussian noise signal of period-
duration T seconds and bandwidth B. The transmit
waveforms are normalized so that the total transmit
power is fixed, independent of the number of transmit
antennas. Thus, we assume that the entries of si(t)
have variance 1

NT
. It is convenient to introduce the

finite-length vector si associated with si, via si(l) :=
si(l∆t), l = 1, . . . , Nt, where ∆t = 1

2B and Nt = T/∆t.

Theorem 1 Consider y = Ax + v, where A is as
defined in Subsection 2.1 and vi ∈ CN (0, σ2). Choose
the discretization stepsizes to be ∆β = 2

NRNT
and ∆τ =

1
2B . Let dT = 1/2, dR = NT /2 or dT = NR/2, dR =
1/2, and suppose that

Nt ≥ 128 and
(

log(NτNβ)
)3 ≤ Nt, (10)

If x is drawn from the generic K-sparse scatterer model
with

K ≤ c0NτNR
3 log(NτNβ)

(11)

for some constant c0 > 0, and if

min
k∈S
|xk| >

10σ√
NRNt

√
2 logNτNβ , (12)

then the solution x̃ of the debiased lasso computed with
λ = 2σ

√
2 log(NτNβ) obeys with high probability

supp(x̃) = supp(x), (13)

and
‖x̃− x‖2
‖x‖2

≤ 6σ
√
NtNR
‖y‖2

. (14)

Remarks:

• The notion “with high probability” in the above
theorem (as well as in the other theorems and
lemmata below) can be quantified explicitly, but
the resulting explicit probabilities are somewhat
lengthy, therefore we leave their precise form for
the journal version of this paper.

• The assumptions in (10) are fairly mild and easy
to satisfy in practice.

• We emphasize that at least in theory there is no
constraint on the dynamical range of the target
amplitudes. The lasso estimate will recover all tar-
get locations correctly as long as they exceed the
noise level (12), regardless of the dynamical range
between the targets.



• Note that equation (12) can be written as SNRk >

100 2 logNτNβ
NRNt

where SNRk = |xk|2/σ2 is the input
signal-to-noise ratio for the k-th scatterer.

• As noted in [9], one can replace the factor 10
in (12) by a factor (1 + ε) for some ε > 0, at the
cost of a somewhat reduced probability of success
and slightly stronger conditions on the coherence
and sparsity. This means the factor 100 in the
remark above can be replaced by a much smaller
value.

The proof of the above theorem is rather involved
and too long to be included in this brief paper. The
full proof of this theorem, as well as other results pre-
sented in this paper can be found in the journal version
of this paper. Here, we can only sketch the key steps.
We rely on the following theorem which is a slight gen-
eralization of a theorem by Candès and Plan [9].

Theorem 2 Given y = Ψx+v, where Ψ ∈ Cn×m has
all unit-`2-norm columns, x is drawn from the generic
K-sparse model and vi ∼ CN (0, σ2). Assume that

µ(Ψ) ≤ C0

logm
, (15)

where C0 > 0 is a constant independent of n,m. Fur-
thermore, suppose

K ≤ c0m

‖Ψ‖2op logm
(16)

for some constant c0 > 0 and that

min
k∈S
|xk| > 8σ

√
2 logm. (17)

Then the solution x̂ to the debiased lasso computed with
λ = 2σ

√
2 logm obeys

supp(x̂) = supp(x), (18)

and
‖x̂− x‖2
‖x‖2

≤ 3σ
√
n

‖y‖2
(19)

with high probability.

In order to apply Theorem 2 we need two key lem-
mata, one concerns a bound for the operator norm of
A, the other one concerns a bound for the coherence of
A. In many cases (such as for Gaussian random matri-
ces or tight frames) it is fairly simple to bound ‖A‖op.
In our case this is less straightforward. Indeed, the
proof of the lemma below relies on a careful exploita-
tion of the structure of the matrix A∗A and various
large deviation inequalities for random matrices.

Lemma 3 Let A be as defined in Theorem 1. Then
with high probability there holds

‖A‖2op ≥ NtNRNT (1 + logNt), (20)

where C > 0 is some numerical constant.

Next we estimate the coherence of A. Since the
columns of A do not all have the same norm, we will
proceed in two steps. First, in Lemma 4 we bound
the modulus of the inner product of any two columns
of A and then use this result to bound the coherence
of a properly normalized version of A in Lemma 5.
Since the columns of A depend on azimuth and delay,
we index them via the double-index (τ, β). Thus the
(τ, β)-th column of A is Aτ,β .

Lemma 4 Let A be as defined in Theorem 1. Assume
that

log(NτNβ) ≤ Nt
23
, (21)

then with high probability there holds

max
(τ,β) 6=(τ ′,β′)

∣∣〈Aτ,β ,Aτ ′,β′〉
∣∣ ≤ 3NR

√
Nt log(NτNβ).

(22)

The key to proving Theorem 1 is now to combine
Lemma 3 and Lemma 4 with Theorem 2. However, the
latter theorem requires the matrix to have columns of
unit-norm, whereas the columns of our matrix A have
all different norms. Thus instead of Ax = y we now
consider

Ãz = y, where Ã := AD−1 and z := Dx. (23)

Here D is the NτNβ ×NτNβ diagonal matrix defined
by

D(τ,β),(τ,β) = ‖Aτ,β‖2. (24)

When proving Theorem 1, we first establish the claims
for the system Ãz = y in (23) where Ã = AD−1,
z = Dx, and then we switch back to Ax = y. Note
that x and z have the same sparsity and we can easily
recover x from z via x = D−1z.

The following lemma gives a bound for µ(Ã) and
‖Ã‖op in terms of the corresponding bounds for A.

Lemma 5 Let Ã = AD−1, where the D the diago-
nal matrix is defined by (24). Under the conditions of
Theorem 1, there holds with high probability

‖Ã‖2op < 3(1 + logNt) (25)

and

µ
(
Ã
)
≤ 6
√

1
Nt

log(NτNRNT ). (26)



If we consider a Gaussian random matrix of the same
dimensions as A, then its coherence would scale like√

1
NtNR

log(NτNRNT ), thus we would gain a factor

of
√

1/NR compared to (26). However the coherence
proved in Lemma 5 is of the optimal order for the ma-
trix at hand. The reason why the factor

√
1/NR cannot

appear in (26) is due to the “decoupling” of the receive
antennas and the waveforms in the matrix A, which
becomes apparent when we recall that we can express
the columns of A as Aτ,β = aR(β)⊗ (SτaT (β)).

3.1 Some theoretical results for the Doppler case

We use the same transmission waveforms of band-
width B as in the previous section. However, due to
the Doppler effect the received signal will have a some-
what larger bandwidth B1 > B. But in practice this
increase in bandwidth is small, therefore we assume for
simplicity B1 ≈ B in the sequel.

Theorem 6 Consider y = Ax + v, where A is as
defined in Subsection 2.2 and vi ∈ CN (0, σ2). Choose
the discretization stepsizes to be ∆β = 2

NRNT
, ∆τ = 1

2B

and ∆f = 1
T . Let dT = 1/2, dR = NT /2 or dT =

NR/2, dR = 1/2, and suppose that

Nt ≥ 128 and
(

log(NτNβ)
)3 ≤ Nt,

If x is drawn from the generic K-sparse scatterer model
with

K ≤ c0NτNfNR
6 log(NτNfNβ)

for some constant c0 > 0, and if

min
k∈S
|xk| >

10σ√
NRNt

√
2 logNτNfNβ , (27)

then the solution x̃ of the debiased lasso computed with
λ = 2σ

√
2 log(NτNfNβ) obeys with high probability

supp(x̃) = supp(x),

and
‖x̃− x‖2
‖x‖2

≤ 6σ
√
NtNR
‖y‖2

.

The proof is very similar to that of Theorem 1. We
need to establish the analogs of the key steps, Lemma 3
and Lemma 4.

Lemma 7 Let A be as defined in Theorem 6. Then
with high probability

‖A‖2op ≤ 2NtNfNRNT .

Next we establish a coherence bound for A.

Lemma 8 Let A be as defined in Theorem 6. Assume
that

log(NNβ) <
Nt
23
,

where N can be chosen to be either Nτ , Nf or
√
NτNf ,

then with high probability

max
∣∣〈Aτ,f,β ,Aτ ′,f ′,β′〉

∣∣ ≤ 3NR
√
Nt log(NτNfNβ).

Remark: Note that equation (27) can be written as
SNRk > 100 2 logNτNfNβ

NRNt
where SNRk = |xk|2/σ2 is the

input signal-to-noise ratio for the k-th scatterer.
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