
1

Sparsity Enhanced Decision Feedback

Equalization
Jovana Ilic, Student Member, IEEE, and Thomas Strohmer

Abstract

For single-carrier systems with frequency domain equalization, decision feedback equalization (DFE) performs

better than linear equalization and has much lower computational complexity than sequence maximum likelihood

detection. The main challenge in DFE is the feedback symbol selection rule. In this paper, we give a theoretical

framework for a simple, sparsity based thresholding algorithm. We feed back multiple symbols in each iteration, so

the algorithm converges fast and has a low computational cost. We show how the initial solution can be obtained via

convex relaxation instead of linear equalization, and illustrate the impact that the choice of the initial solution has on

the bit error rate performance of our algorithm. The algorithm is applicable in several existing wireless communication

systems (SC-FDMA, MC-CDMA, MIMO-OFDM). Numerical results illustrate significant performance improvement

in terms of bit error rate compared to the MMSE solution.

I. INTRODUCTION

In broadband, high data-rate, wireless communication systems, the effect of multipath propagation can be severe.

While orthogonal frequency division multiplexing (OFDM) successfully deals with multipath, it is a multicarrier

modulation that suffers from a large peak to average power ratio (PAPR). On the other hand, a more traditional

single carrier modulation with time domain equalization approach is unattractive, due to the high complexity of the

receiver and required signal processing time. When single carrier modulation is used in combination with frequency

domain equalization, one attempts to approach the performance and complexity of OFDM, while maintaining a

lower PAPR compared to OFDM [1].

Single carrier frequency division multiple access (SC-FDMA), is a single carrier technique that has lately received

much attention as an alternative to orthogonal frequency division multiple access for 4G technology. SC-FDMA

has been adopted for uplink transmission technique in both 3GPP Long Term Evolution (LTE) and LTE Advanced

standards [2]. Since most of the cost in communication terminals comes from the power amplifier, a lower PAPR

can significantly reduce the cost of mobile units. This results in a more power efficient and less complex mobile

terminals. Since the orthogonal frequency division multiple access (OFDMA) is used in the downlink, both the

burdens of complex frequency domain equalizer needed for the SC-FDMA and accommodating large PAPR in

OFDMA rest upon the base station.

Both authors were supported by NSF project DMS 0811169.

2

Frequency domain equalization includes frequency domain linear equalization, decision feedback equalization and

turbo equalization [3]. For frequency selective channels, decision feedback equalization (DFE) gives much better

performance than linear equalization and has a lower complexity and computational cost than optimum equalizers

and turbo equalizers. The basic idea behind the DFE is to subtract (feed back) correctly equalized symbols in order

to reduce the interference for the currently equalized symbols. If the wrong symbols are fed back, the interference

will be further increased, so choosing which symbols are correct and should be fed back is a crucial step for any

decision feedback algorithm. Existing DFE algorithms are mostly based on finding the minimum mean square error

solution (MMSE) solution of the system, and then forming some metric (such as covariance matrix, or mean square

error matrix), associated with that solution. The element of the solution that corresponds to the minimum of that

metric is assumed to be the one that is most likely correct, and it is fed back. The equalizer is usually implemented

using a frequency domain feed-forward and time domain feed-back filter, such as in [4] and [5]. Vertical Bell Labs

Layered Space Time (V-Blast), [6] [7], has been proposed as receiver architecture for MIMO systems and can be

viewed as a generalized decision feedback equalizer [8]. The drawback is that only one symbol is fed back in each

iteration, so the complexity is linear in the block length. Even if multiple symbols are fed back, there is no general

or systematic rule on how many symbols should be fed back, the number is fixed in each iteration. In this paper we

address these issues with an adaptive thresholding rule for feedback symbol selection. Motivated by recent work in

sparse recovery and compressive sensing [9], our algorithm gives a theoretical framework, based on sparsity, for

multiple symbol feedback selection. Our algorithm converges in very few iterations and its performance substantially

improves upon MMSE equalization. We note here that a similar concept, successive interference cancellation, exists

in multiple access schemes, where users cause interference for each other. This is especially a challenge in cases,

such as code division multiple access (CDMA) when there is no strict time or frequency orthogonality between

different users [10], [11].

The rest of the paper is organized as follows. In section II we give the problem statement. In section III we will

present two ways of obtaining an initial solution for our algorithm and make the connection between sparsity of the

error signal and the optimal thresholding rule for the DFE. Furthermore, we will introduce an adaptive thresholding

algorithm. Section IV is devoted to numerical results. Finally, in section V we will give our concluding remarks

and discussion of open problems.

II. PROBLEM STATEMENT

A. SC-FDMA

While the decision feedback algorithm presented in this paper can be applied to several different technologies,

such as MC-CDMA, MIMO OFDM, in this paper we focus on SC-FDMA. We will describe the SC-FDMA system

model, and then explain how this model can be extended to other systems.

Figure 1 depicts the high level model of an SC-FDMA receiver and transmitter. m modulated source symbols are

converted to frequency domain. The frequency domain symbols are then mapped onto m out of n (m < n) possible

orthogonal subcarriers. Subcarriers can be mapped in two ways: localized mapping, where each user is assigned

3

Fig. 1. Transmitter and Receiver Model for SC-FDMA

a set of m consecutive subcarriers, and distributed mapping, where subcarriers assigned to the user are equally

spaced across the entire channel bandwidth. After converting the symbols back to the time domain using an n-point

IDFT and inserting the cyclic prefix, the SC-FDMA time domain symbol is transmitted through the channel. At

the receiver all the steps are reversed. The crucial difference between the SC-FDMA and OFDMA comes from the

additional DFT block before subcarrier mapping (shaded in the figure). The DFT block ”spreads” the modulated

source symbols, so that each subcarrier in frequency domain contains information about all the source symbols.

While this has an advantage of multipath diversity, it also destroys the decoupling of the source symbols, since

we no longer have one-to-one mapping between the source symbols and subcarriers. The result is that, unlike in

OFDM, simple, one-tap equalization combined with symbol-by-symbol detection is not equivalent to maximum

likelihood detection (MLD). In fact, the complexity of MLD for SC-FDMA grows exponentially with the block

size, m, making it unsuitable for practical purposes. Sphere decoding can be successfully implemented with lower

complexity than MLD, however, for large block sizes, m, the complexity is still too high.

It is convenient to consider a matrix formulation of an SC-FDMA system. In particular, for one user, the received

vector, Y ∈ Cm in time domain, (see e.g. equation (11) of [5]) is given by

Y = F−1(FH ′F−1)Fx+ ω, (1)

where F is an m × m DFT matrix, H ′ ∈ Cm is a circulant channel matrix, x ∈ Cm is a vector of modulated

source symbols, and w ∈ Cm additive white Gaussian noise (AWGN) . Since we are interested in frequency domain

equalization, from (1) we can get the following

y = HFx+ ω, (2)

where y ∈ Cm is a received vector for one user in frequency domain and H ∈ Cm×m is the diagonalized channel

4

matrix. We assume that the channel is Rayleigh fading, and that the rows of H are normalized. Defining A = HF ,

our system becomes

y = Ax+ ω. (3)

From (3) it is easy to see that by substituting matrix F in (2) with any unitary “spreading” matrix U , such

as a Hadamard, Haar or random Gaussian matrix, we get a more general model. The choice of U depends on

the particular system being modeled. We also note that in this paper we assume that the receiver knows both the

channel matrix H and the spreading matrix U . While we assumed for convenience that A is a square matrix, we

emphasize that all results in our paper can be easily extended to the case of tall matrices A.

Ideally, we would like to find the maximum likelihood (ML) solution of (3), given by1

xML = argmin
x∈Sm

‖y −Ax‖2, (4)

where Sm is the space of all vectors of length m whose elements are picked from a given constellation S (e.g., for

BPSK we have S = {−1,+1}). As mentioned above, the ML solution is optimal, but the complexity of solving (4)

grows exponentially with m, and therefore it cannot be used for practical purposes even for small m. While sphere

decoding reduces the computational complexity of ML considerably, it is still too costly for moderate or large m.

In the literature, the terms equalization and detection are often (mistakenly) used interchangeably, but in our

case it is really important to distinguish between the two. Equalization refers to operations done on the observation

vector y in order to obtain the estimate of the transmitted vector (such as minimum mean square error equalization,

or least squares equalization). However, at this stage, the estimate still contains the ”soft” information, and not the

actual symbols from the used constellation. The mapping of the estimate into the symbols of the used constellation

(such as BPSK, or QPSK) is detection. The point of equalization is to allow for a simple coefficient-by-coefficient

detection of the equalized vector instead of the computationally so expensive sequence detection done in (4) (for

ML there is of course no need for equalization, as we immediately obtain the detected solution). In this paper, we

feed back the detected symbols, and not the soft information, so from here on, when we talk about obtaining and

feeding back the initial solution, we are referring to the detected symbols.

B. Decision Feedback Equalization

To explain the idea behind the decision feedback equalization, let us assume that we want to equalize the lth

symbol in vector x. We can rewrite y as

y = Alxl +
∑
i∈L

Aixi + ω,

where L = {i ∈ Z | 0 ≤ i ≤ n − 1, i 6= l} and Al denotes the lth column of matrix A. The first term

in the last equation is simply the symbol we want to equalize, xl, scaled by the channel. The summation term,

I =
∑
i∈LA

ixi, at least as far as equalization of xl is concerned, is viewed as interference. The hope is that if we

1The 2-norm of vector a of length n is denoted by ‖a‖ =
√∑n

i=1 |ai|2.

5

have previously correctly equalized and detected some of the xi i ∈ P , where P ⊆ L, we can use that knowledge to

reconstruct IP =
∑
i∈P A

ixi and subtract it from y. In this way, we are subtracting the contributions of interference

from our observation. Basically, for the purpose of equalization of xl, the interference is reduced, which gives us a

better chance of recovering xl correctly. In the subsequent iterations, we will have a reduced system, since we will

omit the columns of A that correspond to the index set of correctly equalized symbols in the previous iteration. So

our system for all iterations k > 0 will be overdetermined, which increases our likelihood of recovering correctly

the remaining symbols.

While this concept sounds very nice in theory, in practice we face a very difficult question: how do we know

which symbols are equalized correctly and should be fed back? Unfortunately, there is no way to ensure that we

are feeding back the correct symbols. It is even more unfortunate that if we feed back the wrong symbols, we

further increase the interference and cause error propagation. Obviously, the performance of any DFE algorithm

is determined by the selection rule of the feedback symbols. The other question that arises is how many symbols

should we feed back in each iteration. While feeding back one symbol at a time, as is done in V-BLAST [6], may

seem like the safest option, the computational time that it requires for larger block sizes, m, might be unacceptable

for some applications. Also, in a good signal to noise ratio (SNR) situation, the majority of the symbols would most

likely be correct, so feeding back one symbol at a time would be a waste of resources. Hence there is a tradeoff:

from the performance point of view, we would rather feed back fewer symbols, that are guaranteed to be correct,

while from a computational point of view we want to feed back as many symbols as possible in each iteration, in

order to have fewer iterations.

Let us assume for the moment that x is known at the receiver. Then we would be able to compute the error

signal given by

e = x− x̂, (5)

where x̂ is the estimate of x obtained at the receiver after equalization and detection. Note that for each x̂i,

i = 0, ...,m − 1 that matches xi, the corresponding entry in vector ei would be 0. So, assuming that we did a

decent job of estimating x, then e is a sparse vector, where the locations of the non-zero entries of e correspond

to the locations of errors we made in our estimate of x. One realization of e is shown in Figure 2(a). We can

immediately see that knowing this error vector would be ideal for our DFE selection rule: if we knew the locations

of errors, we would simply not feed back the symbols that correspond to them, while we could safely feed back

all symbols whose entries correspond to the zero entries of e.

Unfortunately, a true solution for x is not known at the receiver, so we cannot construct the error signal e given

by (5). We can try to obtain an estimate ê of e, and use this information for our feedback selection rule. One such

estimate is shown in Figure 2(b). We can see that the largest peaks in Figure 2(b) correspond to the locations of

errors in Figure 2(a). However, there are a lot of small peaks that come from the noise, and our goal is to come up

with a threshold rule that will be able to distinguish the ”true” peaks in the estimated error signal from the noise.

Also, as we reduce the interference in the subsequent iterations the error signal will look differently, which means

6

(a) Absolute value of the true error signal in the first iteration, |e| (b) Absolute value of the estimated error signal in the first iteration,

|ê|

Fig. 2. Comparison of the true and estimated error signals

that the chosen threshold should adapt appropriately.

From our previous discussion we can see that in order to design an efficient decision feedback equalization

algorithm that utilizes iterative adaptive thresholding of the error signal, we need to provide answers to the following

crucial questions:

1) How do we find the initial solution, x̂?

2) How do we obtain the error estimate ê?

3) How do we design a threshold that will separate true peaks from the noise, and adapt to the error signal in

each iteration?

III. SUCCESSIVE INTERFERENCE CANCELLATION WITH ADAPTIVE THRESHOLDING

A. Initial Solution via Linear Equalization

In a decision feedback algorithm, in each iteration, we first must obtain an initial solution that will be used to

determine which symbols are correctly equalized and should be fed back. Obviously, a solution closer to the actual

transmitted vector will give more accurate information for our decision feedback rule, so obtaining a good estimate

of x in each iteration obviously has an impact on the performance of our algorithm.

The simplest way to obtain x̂ is using zero forcing (ZF)

xZF = A∗(AA∗)−1y,

or an MMSE solution

xMMSE = A∗(AA∗ + σ2I)−1y.

For instance for MMSE, x̂ is now obtained from xMMSE by projecting each coefficient of xMMSE onto S.

Unfortunately large noise enhancement severely degrades the performance of ZF. MMSE offers better performance

than ZF, but the ISI is still present [5].

7

B. Initial Solution via Convex Relaxation

From a computational viewpoint the problem with the optimization problem (4) is that we need to find the

minimum over a non-convex set, the symbol space Sm. A natural idea is then to consider a convex relaxation of (4)

by replacing S by its convex hull conv S (for a definition of a convex hull see [12]). Thus instead of (4) we are

concerned with

x = argmin
x∈conv Sm

‖y −Ax‖2. (6)

Clearly, convSm = (conv S)m. For instance for QPSK convS = {x ∈ C : max{|<{x}|, |={x}|} ≤ 1}. Thus in

that case (6) can be expressed as

min ‖Ax− y‖2 s.t ‖<{x}‖∞ < 1, ‖={x}‖∞ < 1.2 (7)

Some theoretical results for the noise-free, underdetermined setting and the special case S = {±1} can be found

in [13], [14]. However, in our case the issue is not underdeterminedness, but noise. Therefore the results in the

aforementioned papers have little bearing on our situation.

We note here that while the solution obtained via (6) leads to a better performance than MMSE (as we will

show in section IV) the computational cost of solving (7) is higher. Nevertheless, due to recent progress in convex

optimization (partly driven by the thriving area of compressive sensing) we have now a number of fast algorithms

for the solution of problems like (6).

Remark: Because of the noise, the solution we obtain by solving (6) or (7) will not necessarily be from a finite

alphabet of our constellation. So in order to obtain our x̂ we still have to perform symbol by symbol detection step

as discussed in the previous section. The same is true for xZF or xMMSE.

C. Error Signal And Adaptive Thresholding

In the area of compressed sensing greedy algorithms have been successfully used in finding the sparsest solution

for large, underdetermined systems. While the recovery of our error signal does not fall into the category of a large

underdetermined system with a sparse solution, our approach is inspired by the Stagewise Orthogonal Matching

Pursuit (StOMP), an iterative thresholding algorithm for finding sparse solutions of [9]. We use a similar idea

for determining which symbols in our current solution are correct and should be fed back in order to reduce the

interference for the next iteration.

Let us assume that in the kth iteration we have obtained x̂k. Then we can form the corresponding residual, rk,

as

rk = yk −Akx̂k, (8)

where Ak denotes the matrix that is obtained from matrix A by leaving out the columns that correspond to the

index set of correctly equalized symbols in each previous iteration (the number of rows of Ak is still m, but the

2The infinity-norm of vector a of length n is given by ‖a‖∞ = max{|a1|, ..., |an|}.

8

number of columns gets smaller in each iteration). Then the estimate of e in the k-th iteration is given by

êk = A∗krk. (9)

The key observation is that the vector ê can be viewed as a sparse, spiky signal embedded in noise, and therefore

we can represent it as

êk = ek + zk, (10)

where zk is the noise term in the k-th iteration. We will later show that under certain conditions z is approximately

additive white Gaussian noise (AWGN).

Now that we were able to obtain an estimate of e we need to come up with a threshold which will help us

determine which entries in ê are small enough to be considered just noise (no error was made for that index) and

thus should be fed back.

It is a well known result, that the maximum of a random Gaussian sequence, c ∈ Cm, ck ∼ CN (0, σ2), is

bounded by [15]

max(|c|) <
√

2σ2 logm, k = 0, ...m− 1 (11)

with high probability. So if we had an unknown “spiky” function embedded in AWGN, (11) would be a natural

choice for the threshold that would distinguish between the spikes and the noise: we could assume with very high

probability that everything that is below (11) is indeed just noise and not a “true” spike. In [16], the authors use (11)

to obtain an optimal threshold rule for recovering a sparse signal embedded in AWGN noise that adapts to the level

of sparsity. They modify (11) by exploiting the number of spikes (level of sparsity) of the function that they are

thresholding. In particular, their proposed threshold is given by

tβ = σm
√

2(1− β) logm, 0 < β < 1, (12)

where ρ = mβ is the level of sparsity, and σm the variance of the noise term. Via a simple calculation (12) can be

expressed as

tρ = σm
√

2 logm/ρ, (13)

which is more convenient for our purposes. The threshold depends on logm/ρ, rather than just logm, and the

penalty factor of logm/ρ accounts for the number of spikes that we are expecting. So the more spikes we have

(the less sparse the signal is), the lower the threshold gets. Clearly in case that the signal has only one spike, ρ = 1,

equation (13) is reduced to (11).

We emphasize here that our objective is different from the one in [16] or [9]: we are not interested in recovering the

amplitudes of non-zero elements (spikes) of the error signal as it is the case in the compressed sensing applications.

We are only interested in the positions that are zero, or very close to zero since those are the entries that we need

to feed back to reduce the interference. In other words, we are only interested in locations of entries that are below

the threshold. Furthermore, we point out that in our case, if we ”miss” some zero locations in a given iteration, we

do not face a performance penalty, it just means that we might have more iterations. However, if we feed back a

9

location that is actually a spike, we increase the interference and cause error propagation. In that sense, our problem

is not symmetrical, so for our purposes, it is better to feed back fewer entries, (which corresponds to choosing a

lower threshold), than to feed back the wrong entries. Obviously, the ”safest” threshold rule would be to find the

error estimate ê, and feed back only the smallest entry of |ê|, but then the number of iterations needed would be

equal to the block length m. We will show in section IV that while feeding back one symbol per iteration does

have a superior BER performance compared to our adaptive thresholding rule, the computational times are very

high.

In our case the threshold in the kth iteration becomes

tk =
√

2 log(mk/ρk)
√
E [‖zk‖2]. (14)

From (14) we can see that we still need to obtain the level of sparsity, ρ, as well as the variance of the noise

term zk. The level of sparsity is determined by the number of errors we make in our solution. This number will

be different in every iteration, so our threshold has to adapt appropriately. We obviously cannot know the number

of errors, ρ, that occurred in our current solution, but we need to know at least approximately the level of sparsity

of the actual error vector e. We can obtain this estimate in the kth iteration as

ρk = ‖rk‖2/s2min, (15)

where smin is the minimum distance among symbols for the used constellation. Note that the number of unknowns

decreases from one iteration to the next, hence the length, mk of êk will also change in every iteration.

The validity of using (14) as an optimal threshold is based on the assumption that the noise z in (10) is AWGN.

The following theorem will show that this is indeed the case (asymptotically) at least in the first iteration, and

therefore, using (14) is justified.

Theorem 3.1: Let z0 be defined as z0 = ê0 − e0 where ê(0) and e(0) are defined in (9) and (5), and e0 has

zero mean. Let matrix A from (3) be a square matrix (m = n). Then the entries of z0, zi,0, i = 0, ..., n − 1 are

asymptotically i.i.d. normally distributed with zero mean and variance of E [‖e‖2]/m+ σ2

Proof: For clarity of presentation, throughout this proof we will omit the iteration index, 0, but we emphasize

that the proof applies only to the first (k = 0) iteration.

We can write z in the following way:

z = ê− e

= A∗r − e

= A∗(y −Ax̂)− e

= A∗(Ax+ ω)−A∗Ax̂− e

= A∗A(x− x̂)− e+A∗ω

= A∗Ae− e+A∗ω

= (A∗A− I)e+A∗ω (16)

10

Since F (or in more general case U) is a unitary matrix, and the rows of the channel matrix are normalized to

have unit energy on average, we have that (A∗A)ii = 1 and we can write the i-th entry in z as

zi =

m∑
j 6=i

〈Ai, Aj〉ej +Ai
∗
ω. (17)

Using the Central Limit Theorem, both terms in (17) will be normally distributed in the limit since H , U e, and

w are uncorrelated. As a sum of two normally distributed variables, zi will also have a Normal distribution. The

mean of zi will be zero since both e and ω have zero mean. In order to find the variance of zi, E [‖zi‖2] we first

find the variance σ2
1 of the first term in (17). We have that:

〈Ai, Aj〉 =

m∑
k=0

a∗kiakj (18)

where Ai is the ith row, Aj is the jth column and aki are entries of matrix A, respectively. Since each entry, aki

has a magnitude of 1/
√
m on average, the variance of each entry is then

E [a2ki] =
1

m

Using the Central Limit Theorem again, the variance of (18) is then 1/m. The variance of ej is E [‖e‖2]/m by

definition so we have that σ2
1 is given by:

σ2
1 = (m− 1)

1

m

E [‖e‖2]

m
=
m− 1

m2
E [‖e‖2] ≈ E [‖e‖2]

m
(19)

The second term in (17) is simply a sum of Gaussian random variables, so it remains Gaussian with zero-mean

and variance σ2.

So finally, we have that the variance of zi is given by:

E [‖zi‖2] =
E [‖e‖2]

m
+ σ2.

We have shown that the variance of the noise term in (10) is

E [‖zi‖2] =
E [‖e‖2]

m
+ σ2. (20)

If there are errors in the estimated solution x̂, we can assume, especially for higher SNR values, that σ is much

smaller than the term that comes from the interference in (20), hence

E [‖zi‖2] ≈ E [‖e‖2]

m
.

Since H is normalized and U is unitary, there holds

E [‖e‖2] ≈ E [‖HUe‖2].

Furthermore we have

E [‖rx̂‖2] = E [‖y −Ax̂‖2] = E [‖HUe‖2] + E [‖ω‖2]

11

and thus

E [‖rx̂‖2] = E [‖HUe‖2] + σ2

Using the same assumption about σ as before, we have the following approximation

E [‖e‖2] ≈ ‖rx̂‖2. (21)

Substituting (15) and (20) into (13), we finally obtain our threshold in the k-th iteration as

tk =
√

2 log(mk/ρk)
‖rk‖√
mk

(22)

In Figure 3(b) we have shown the first iteration (k = 0) of our thresholding algorithm for x of length 128 and

signal to noise ratio (SNR) of 10dB. In Figure 3(a) we can see that the actual error signal has k = 4 non-zero

values. Our estimate, obtained by (15), in this case is k̂ ≈ 5. The corresponding threshold, obtained by (22), is

t0 ≈ 0.6. Using this threshold, in the first iteration we feed back over 100 symbols, and they are all correct. This

illustrates how our algorithm gives a systematic framework of choosing as many correct symbols as possible in

each iteration.

(a) Absolute value of the true error signal in the first iteration, |e| (b) Absolute value of the estimated error signal in the first iteration,

|ê|

Fig. 3. Comparison of the true and estimated error signals

We emphasize that the result in the theorem is valid only in the first iteration of our thresholding algorithm.

Once we start removing the interference for the subsequent iterations, the entries in z are no longer uncorrelated.

The result in Theorem 1 is significant, because it allows us to find the optimal threshold in the first iteration. For

all the following iterations, this threshold is no longer optimal, but our numerical results show that the majority of

the indices are fed back in the first iteration. The chosen threshold gives satisfactory results for the other iterations

too, even though it might not be optimal. In Figures 4 - 6 we have shown the quantile-quantile plots of the sample

quantiles of zk versus theoretical quantiles from a normal distribution, for k = 0, 1, 2. Figure 4 illustrates clearly

that in the first iteration z0 is very close to being normally distributed. In Figures 5 and 6 we see that even though

12

majority of the samples of z1 coincide with the normal distribution there are a number of entries that deviate

from the normal distribution. The latter observation suggests that there should be room for improvement to our

thresholding strategy. We briefly return to this issue in our Conclusion.

Fig. 4. Quantile-quantile plots of the sample quantiles of z0 versus theoretical quantiles from a normal distribution

Fig. 5. Quantile-quantile plots of the sample quantiles of z1 versus theoretical quantiles from a normal distribution

D. Algorithm

Now that we have laid out all the necessary pieces, we are ready to present our complete adaptive thresholding

decision feedback algorithm.

From the observed vector y we first obtain an initial estimate of the transmitted vector x using ZF, MMSE or

convex optimization described in (6), which we detect in order to obtain x̂k. We find the residual as

rk = y −Ax̂k,

13

Fig. 6. Quantile-quantile plots of the sample quantiles of z21 versus theoretical quantiles from a normal distribution

and obtain the estimate of the error signal as

êk = A∗krk.

We calculate the threshold tk as

tk =
√

(2 log(mk/ρk)
‖rk‖√
mk

.

We threshold |êk| and obtain the index set, Ick = {i ∈ Z| |êi,k| < tk}. The index set Ick contains the positions

of all entries in the solution x̂k that are assumed to be correct. We then remove the interference caused by the

“correct” symbols:

yk+1 = yk −Ak(:, Ick)x̂k(Ick).

Here, the notation A(:, Ic) denotes that all rows of A are selected, but only columns that correspond to index set

Ic are selected. We form the matrix Ak+1 to be used in the subsequent iteration to obtain x̂k+1 by leaving out all

the columns of matrix Ak that correspond to index set Ick . Using yk+1 and Ak+1 we generate the new, smaller,

initial solution and repeat the process until all indices from I = 0, ...m− 1 are exhausted.

E. Error detection via `1 Minimization

As is the case with the initial solution, the accuracy of our error signal estimate can also influence the performance

of our algorithm. Since e is sparse we can attempt to approximate e by using `1-minimization as is meanwhile

common practice.

Let x̂k, rk be the solution and the residual in the k-th iteration, as defined in the previous subsection. Then the

estimate of e in each iteration can be obtained by solving the following `1-minimization problem:

min ‖ê‖1 s.t. ‖Aê− rx̂‖2 ≤ nσ2.3 (23)

14

The estimate ê obtained is a good approximation of the actual error signal - at least in the high-SNR case. `1-

minimization has been tremendously successful in recovering sparse signals from underdetermined linear systems

in the noise-free or high-SNR setting. However for the low-SNR case it is unfortunately much less effective, even

though we are not dealing with an underdetermined system. In particular, if the noise is large enough such that

‖rx̂‖2 ≤ nσ2, then the optimal solution to (23) is ê = 0, which is not useful. Since nσ2 represents only the

expected energy of the noise, using a more conservative choice in (23), such as e.g. nσ2

2 , can improve the result

somewhat. Furthermore, even though the solution obtained via (23) will be mostly sparse, there can be some small,

non-zero entries due to the noise, so we would still need to apply some kind of threshold before feeding back.

However, obtaining the error estimate solution via `1-minimization does not yield superior performance compared

to using (9), as the numerical simulations clearly demonstrate in the next section. Obviously, one could try to

obtain the error estimate using greedy algorithms (orthogonal matching pursuit [17], subspace pursuit [18]) used in

compressed sensing as a less costly alternative to `1 optimization, however, they did not provide any performance

improvement over `1 minimization.

IV. SIMULATION RESULTS

In this section we present our numerical results. We consider the model as given in (3). We used x with a length

of 128 symbols chosen from a QPSK constellation. The optimization toolbox CVX [19] has been used for solving

both (6) and the `1 optimization problem.

We simulated the bit error rate (BER) performance for the following cases:

1) Standard linear equalizer, labeled as “MMSE” in the plot.

2) Solution of (7) (“inf”).

3) Our adaptive thresholding algorithm, where the initial solution is obtained as an MMSE, and error estimate

via (9) (“MMSE+thresh”).

4) Our adaptive thresholding algorithm where the initial solution is obtained via optimization problem (7) and

error estimate using (9) (“inf + thresh”).

5) Our adaptive thresholding algorithm, where the initial solution is obtained as an MMSE, and error estimate

as using `1 optimization (23) (“`1 opt +thresh”).

6) Feeding back the smallest entry of |ê| in each iteration (“Feed back”).

Figure (7) depicts the results of our simulation. The first comparison that we would like to point out is between

obtaining the initial solution using MMSE and using (7). The performance of (7) is significantly better - around

3.5dB at BER levels of 10−3, however, we emphasize again that finding x̂ using MMSE has a significantly lower

computational cost, especially when considering that an initial solution has to be found in each iteration. We can

then compare all the thresholding scenarios. From the figure, we can see that using `1 optimization to find the

error estimate in combination with our adaptive thresholding has an inferior performance even compared with just

3The `1 norm of vector a of length n is given by ‖a‖1 =
∑n

i=1 |ai|

15

finding an initial solution via (7). The adaptive thresholding with MMSE has a 4dB gain compared to using just

MMSE at BER levels of 10−3. Adaptive thresholding with (7) has around 0.5dB improvement compared to using

MMSE for an initial solution for BER= 10−3. Finally, we can see that feeding back one coefficient at a time

has the best performance, however, the drawback is that the number of necessary iterations is equal to the block

length m. We note here that our adaptive thresholding algorithm usually converges within three iterations for low

SNR scenarios, independently of the block size m. To illustrate the computational time difference between feeding

back 1, our adaptive thresholding algorithm and standard MMSE, we have measured the time it took to run our

simulation for 1000 QPSK symbols. Feeding back 1 took 9645 seconds, our thresholding algorithm took 321 and

standard MMSE took 144 seconds. So feeding back 1 took around 30 times longer than adaptive thresholding, and

around 66 times longer than MMSE.

From the previous discussion, we can see that in addition to the superior performance compared to linear

equalizers, our algorithm is very versatile: depending on how we find the initial solution, the error estimate, we can

choose to sacrifice some performance in terms of BER for faster convergence. Also, the threshold itself depends

very little on the actual system, so it can be easily adapted for different applications. In addition, the algorithm is

scalable, and can be easily be applied to larger block sizes, with same convergence rates and performance. This

is illustrated in Figures 8 and 9 where we have shown the performance of our thresholding algorithm by using

Hadamard and Haar matrices, respectively, instead of an DFT matrix in (3). Our simulations show similar trends

as for the DFT matrix - for BER=10−3 we gain about 4dB for both Hadamard and Haar matrices, by using MMSE

and adaptive thresholding, compared to just MMSE. In Figure 10 we have shown the performance of our algorithm

with DFT matrix, and block length of 1024. The performance improvement does not change with increasing the

block size, and the algorithm still converges within 3 iterations. Finally, in Figure 12 we show the performance

of our algorithm when 16-QAM modulation is used. In this case our thresholding algorithm in combination with

initial solution obtained via (6) for BER = 10−3 has around 10.5dB improvement over MMSE. Unfortunately, poor

MMSE performance has also significantly degraded the performance of our thresholding algorithm when the initial

solution is obtained using MMSE.

In Figure 11 we have explored the performance of threshold given by (11) and threshold given by (22) in order

to see how much we gain by exploiting the sparsity level of the error estimate. We can see from the figure that we

gain around 0.5dB at BER=10−3 just by introducing the penalty factor of logm/ρ.

A. Application To Large-System CDMA

Here, we will briefly describe modifications needed to implement our algorithm for a large system code division

multiple access and show the simulation results. We use the following system model for K user system with

spreading factor of N [20]:

y = SPx+ ω (24)

In (24) S represents the spreading matrix whose entries we choose from Gaussian distribution, with zero mean and

unit variance. P is a diagonal matrix, P = diag(
√

Γ1, ...,
√

ΓK , where Γi denotes the signal to interference ration

16

Fig. 7. BER performance sparsity based thresholding with different ways of obtaining initial solution and error estimate and feeding back 1

entry at a time in case A = HU where H is a normalized Rayleigh fading diagonal matrix, and U is an DFT matrix

Fig. 8. BER performance comparison between MMSE, sparsity based thresholding and feeding back 1 entry at a time in case A = HU where

H is a normalized Rayleigh fading diagonal matrix, and U is Hadamard matrix

of user i. y, x and ω are as defined in previous sections. From (24) we can see that if there was no interference

between users, P would become an identity matrix, and we would exactly get our model given in (3).

In Figure 13 we have illustrated the performance of our algorithm when applied to a CDMA system given by (24).

We use N = K = 128 and QPSK modulation. Matrix S is a random Gaussian matrix, and it is appropriately

normalized. We assume perfect power control, so we have that Γ1 = ... = Γi = ... = ΓK = Γ. Figure 13 shows

17

Fig. 9. BER performance comparison between MMSE, sparsity based thresholding and feeding back 1 entry at a time in case A = HU where

H is a normalized Rayleigh fading diagonal matrix, and U is Haar matrix

Fig. 10. BER performance comparison between block length of 128 and 1024 using sparsity based thresholding in case A = HU where H

is a normalized Rayleigh fading diagonal matrix, and U is a DFT matrix

that MMSE in case U is random Gaussian matrix performs very poorly. That somewhat degrades the performance

of our thresholding algorithm whith an MMSE initial solution, but at the BER level of 10−3 we still have an

improvement of 10dB. When an initial solution obtained via (6) with our thresholding algorithm, we get the same

performace as when feeding back 1 symbol at time which gives us an improvement of almost 13dB over MMSE

performance.

18

Fig. 11. BER performance comparison of our adaptive thresholding algorithms for threshold ∝ logm and threshold ∝ logm/ρ

Fig. 12. BER performance comparison for a block length of 128 and 16-QAM modulation in case A = HU where H is a normalized Rayleigh

fading diagonal matrix, and U is a DFT matrix

V. CONCLUSION

In this paper we propose a new decision feedback equalization algorithm for SC-FDMA system. The algorithm

is based on adaptive thresholding that exploits the sparsity of the estimated error signal. We provide a theoretical

19

Fig. 13. BER performance comparison for a block length of 128 and 4-QAM modulation in case A = HU where H is a normalized Rayleigh

fading diagonal matrix, and U is a random Gaussian matrix

framework for multiple feedback symbol selection in each iteration which leads to a very fast convergence. Our

algorithm has a low computational complexity, and even though the focus of our paper is on SC-FDMA, it can easily

be applied for different existing technologies such as CDMA and MIMO OFDM. We illustrated the performance of

our algorithm in numerical simulations, and our algorithm shows a significant performance improvement compared

to linear equalizers, while the computational time is much lower compared to feeding back one symbol at a time.

While the algorithm presented in this paper offers a dramatically improved BER performance over the linear

equalizer, there is still room for improvement, especially in the low SNR region. Recently in the area of compressed

sensing, adaptive message passing (AMP) algorithms, based on belief propagation, have been successfully used to

improve the performance of iterative thresholding algorithms for sparse signal recovery [21]. AMP can successfully

account for correlations in the data, which is certainly of importance in our setting. Unfortunately, we cannot simply

apply the same approach, mostly because of the step of mapping the estimated initial solution to the constellation

points. How to adapt the message passing approach to our DFE problem is a topic of future research.

REFERENCES

[1] A. B.-S. D. Falconer, S. L. Ariyavisitakul and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,”

IEEE Communications Magazine, vol. 40, pp. 58–66, 2002.

[2] H. Myung and D. Goodman, Single Carrier FDMA a New Air Interface For Long Term Evolution. John Wiley and Sons, Ltd, 2008.

[3] B. V. Z. Lin, P. Xiao and M. Sellathurai, “Analysis of receiver algorithms for LTE SC-FDMA based uplink mimo systems,” IEEE

Transactions on Wireless Communications, Jan. 2010.

[4] N. Benvenuto and S. Tomasin, “On the comparison between OFDM and single-carrier modulation with a DFE using a frequency-domain

feedforward filter,” IEEE Transactions on Communications, vol. 50, Jun. 2002.

20

[5] G. H. A. Nix and S. Armour, “Decision feedback equalization in SC-FDMA,” in in Inter. Symp. on Personal Indoor and Mobile Radio

Communications, PIMRC, 2008.

[6] G. G. P. W. Wolniansky, G. J. Foschini and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the

rich-scattering wireless channel,” in Signals, Systems, and Electronics, International Symposium on, 1998.

[7] H. Kim and H. Park, “Iterative interference cancellation algorithms for the V-BLAST system,” in in Inter. Symp. on Personal Indoor and

Mobile Radio Communications (PIMRC.

[8] J. M. C. G. Ginis, “On the relation between V-BLAST and the GDFE,” IEEE Communications Letters, Sep. 2001.

[9] I. D. D. Donoho, Y. Tsaig and J. Starck, “Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,”

2006.

[10] S. Verdu, Multiuser Detection. Cambridge University Press, 1998.

[11] T. J. L. L. K. Rasmussen and A. Johansson, “A matrix-algebraic approach to successive interference cancellation in CDMA,” 2000.

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge: Cambridge University Press, 2004.

[13] O. Mangasarian and B. Recht, “Probability of unique integer solution to a system of linear equations,” 2009.

[14] D. Donoho and J. Tanner, “Counting the faces of randomly-projected hypercubes and orthants, with applications,” Discrete and

Computational Geometry, vol. 43, pp. 522–541, 2010.

[15] G. L. M. R. Leadbetter and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes, New York, 1983.

[16] D. D. F. Abramovich, Y. Benjamini and I. Johnstone, “Adapting to unknown sparsity by controlling the false discovery rate,” Mar. 2000.

[17] J. Tropp and A. Gilbert, “Signal recovery from partial information via orthogonal matching pursuit,” 2005. [Online]. Available:

http://www.dsp.ece.rice.edu/CS/tropp.pdf

[18] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” 2009. [Online]. Available:

http://arxiv.org/abs/0803.0811

[19] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version,” http://cvxr.com/cvx, Jan. 2011.

[20] D. Guo and S. Verdu, “Replica analysis of large-system CDMA,” in Information Theory Workshop, 2003. Proceedings. 2003 IEEE, 2003.

[21] A. M. D. L. Donoho and A. Montanari, “Message-passing algorithms for compressed sensing,” Proceedings of the National Academy of

Science, vol. 106, pp. 18 914–18 919, Oct. 2009.

