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Abstract

We consider the problem of detecting the locations of targets in the far field by sending
probing signals from an antenna array and recording the reflected echoes. Drawing on key
concepts from the area of compressive sensing, we use an `1-based regularization approach
to solve this, in general ill-posed, inverse scattering problem. As common in compressive
sensing, we exploit randomness, which in this context comes from choosing the antenna
locations at random. With n antennas we obtain n2 measurements of a vector x ∈ CN

representing the target locations and reflectivities on a discretized grid. It is common to
assume that the scene x is sparse due to a limited number of targets. Under a natural
condition on the mesh size of the grid, we show that an s-sparse scene can be recovered
via `1-minimization with high probability if n2 ≥ Cs log2(N). The reconstruction is stable
under noise and under passing from sparse to approximately sparse vectors. Our theoretical
findings are confirmed by numerical simulations.

AMS Subject Classification: 65K05, 65C99, 65F22, 94A99, 90C25

Keywords: Compressive sensing, sparsity, `1-minimization, inverse scattering, regulariza-
tion

1 Introduction

Our aim is to detect the locations and reflectivities of remote targets (point scatterers) by send-
ing probing signals from an antenna array and recording the reflected signals. This type of
inverse scattering — which has applications in radar, sonar, medical imaging, and microscopy
— is a rather challenging numerical problem. Typically the solution is not unique and insta-
bilities in the presence of noise are a common issue. Standard techniques, such as matched
field processing [30] or time reversal methods [1, 18, 19] work well for the detection of very few,
well separated targets. However, when the number of targets increases and/or some targets
are adjacent to each other, these methods run into severe problems. Moreover, these methods
have major difficulties when the dynamic range between the reflectivities of the targets is large.
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Fig. 1 (a) Scene with 100 targets in 6400 resolution cells (b) Reconstruction from 900 noisy
measurements with SNR of 20dB

In [14] a compressive sensing based approach to the inverse scattering problem was proposed
to overcome the ill-posedness of the problem by utilizing the sparsity of the target scene. Here,
sparsity is meant in the sense that the targets typically occupy only a small fraction of the
overall region of interest. As common in compressive sensing [13, 4, 15, 26], randomness is used
and in this setup it is realized by placing the antennas at random locations on a square. It
was proved in [14] that under certain conditions it is possible to exactly recover the locations
and reflectivities of the targets from noise-free measurements by solving an `1-regularized
optimization problem, also known as basis pursuit in the compressive sensing literature.

While the framework in [14] can lead to significant improvements over traditional methods,
it also has several limitations. For instance, the main theoretical result in that article requires
the targets to be randomly spaced, a condition that is quite restrictive and does not match well
with practical scenarios. Also the conditions on the number of targets that can be recovered
are far from optimal. In this paper we will overcome most of these limitations, thus leading
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to a theoretical framework that is better adapted to practical applications. In particular, we
also show that recovery is stable with respect to measurement noise and under passing from
sparse to approximately sparse scenes. Figure 1 depicts the reconstruction of a sparse scene of
100 targets in 6400 resolution cells with reflectivities in the dynamic range from 1 to 8 from
900 noisy measurements, that is with 30 antennas. Both the detection performance and the
approximation of the true values of the reflectivities are very good.

What makes the inverse scattering problem with antenna arrays challenging from a com-
pressive sensing viewpoint is that the associated sensing matrix is not a random matrix with
independent rows or columns, but the matrix entries are random variables which are cou-
pled across rows and columns. This in turn means that standard proof techniques from the
compressive sensing literature cannot be applied readily and results developed for structured
sensing matrices [26] are of limited use in our case. In fact, it is an open problem whether the
by now classical and often used restricted isometry property holds for the random scattering
matrix arising in our context. Instead we provide high probability recovery bounds for a fixed
vector and a random choice of the scattering matrix (also referred to as nonuniform recovery
guarantees). We believe that some of the tools that we develop in this paper will potentially
be useful in other compressive sensing scenarios, where the sensing matrix has coupled rows
and columns.

Our paper is organized as follows. In Section 2 we describe the setup of the imaging
problem and state our main results. As preparation for proving our main theorems, we derive
a general sparse recovery result in Section 3 and condition number estimates for certain random
matrices in Section 4. In Section 5 we prove the recovery of sparse vectors for sensing matrices
with dependent rows and columns which are associated with a class of bounded orthonormal
systems. This type of matrices includes the sensing matrix arising in the inverse scattering
problem as a special case. On the other hand this result assumes that the non-zero coefficients
of the signal to be recovered have random phases. In Section 6 we remove the assumption of
random phases and show sparse recovery for the inverse scattering setup for signals with fixed
deterministic phases. In Section 7 we illustrate our theoretical results by numerical simulations.
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2 Problem formulation and main results

2.1 Array imaging setup and problem formulation

Suppose an array of n transducers is located in the square [0, B]2, where B > 0 is the array
aperture. The spatial part of a wave of wavelength λ > 0 emitted from some point source
b ∈ [0, B]2 and recorded at another point r ∈ R3 is given by the Green’s function G of the
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Fig. 2 The targets at distance z0 distributed sparsely in the target domain

Helmholtz equation,

G(r, b) :=
exp

(
2πi
λ ‖r − b‖2

)
4π ‖r − b‖2

. (2.1)

Here and in the following ‖ · ‖p refers to the usual `p-norm.
Assume that we want to image the locations of targets which are at distance z0 > 0. For

the analysis, we make the idealizing assumption that the targets are on a discretized grid of
meshsize d0 > 0 in the target domain TD := [−L,L]2×{z0}, where L > 0 determines the size
of the target domain. To be more precise, let us assume that each target occupies one of the
points (rj)j∈[N ] ⊂ TD, where [N ] := {1, . . . , N} with N = b2L/d0c2 and each rj is of the form

rj = (−L+ kd0,−L+ `d0, z0)T for some (k, `) ∈ [
√
N ]2. See also Figure 2 for a visualization

of this setup.
In order to be able to analyze the arising sensing mechanism, we approximate the Green’s

function from (2.1) in an adequate way. To this end, we assume to be in the far field region,
that is, the distance z0 from antenna to target satisfies z0 � B + L. Writing r = (x, y, z0)T

and b = (ξ, η, 0)T , the truncated Taylor expansion for ‖r − b‖2 around r0 := (ξ, η, z0) is given
by

‖r − b‖2 ≈ z0 +
‖(x, y)− (ξ, η)‖22

2z0
. (2.2)

Under the far field assumption we obtain then that

G(r, b) ≈ G̃(r, b) := exp

(
2πiz0

λ

) exp
(
πi
λz0
‖(x, y)− (ξ, η)‖22

)
4πz0

. (2.3)

If we choose the meshsize d0 such that the crucial aperture condition [14]

ρ :=
d0B

λz0
∈ N (2.4)

is fulfilled, then the normalized system of functions

Ĝ(b, r`) := 4πz0G̃ (b, r`) , b ∈ [0, B], ` ∈ [N ],
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satisfies the convenient orthonormality relation

1

B2

∫
[0,B]2

Ĝ(b, rm)Ĝ(b, r`)db =
exp

(
πi
λz0

(
‖(xm, ym)‖22 − ‖(x`, y`)‖

2
2

))
B2

×
∫

[0,B]

∫
[0,B]

exp

(
−2πi

λz0
(xm − x`)ξ

)
exp

(
−2πi

λz0
(ym − y`)η

)
dξdη

= δ`m. (2.5)

It is for this relation to hold that we make the approximation (2.3).
Let us now describe the scattering matrix. Assume we have a vector (xj)j∈[N ] ∈ CN

of reflectivities on the resolution grid. We sample n antenna positions b1, . . . , bn ∈ [0, B]2

independently at random according to the uniform distribution on [0, B]2. If antenna element
bj ∈ [0, B]2 transmits and bk ∈ [0, B]2 receives, then we model the echo yjk as

yjk =
N∑
`=1

Ĝ(bj , r`)Ĝ(r`, bk)x`, (j, k) ∈ [n]2. (2.6)

This is called the Born approximation [2]. It amounts to discarding multipath scattering
effects. So if the transmit-receive mode is that one antenna element transmits at a time and
the whole aperture receives the echo, the appropriately scaled sensing matrix A ∈ Cn

2×N is
given entrywise by

A(j,k),` := Ĝ(bj , r`)Ĝ(r`, bk), (j, k) ∈ [n]2, ` ∈ [N ]. (2.7)

Then y = Ax by (2.6). Due to the randomness in the bk, k ∈ [n], the matrix A is a (structured)
random matrix with coupled rows and columns.

In many scenarios the number of targets is small compared to the grid size. This naturally
leads to sparsity in the vector x ∈ CN of reflectivities, ‖x‖0 := #{` : x` 6= 0} ≤ s, where s� N .
Compressive sensing suggests that in such a scenario, we can recover x from undersampled
measurements y = Ax ∈ Cn

2
when n2 � N . We note that A contains only n(n+1)/2 different

rows due to the symmetries in the sensing setup. Our goal is determine a good bound on the
required minimal number of antennas n in order to ensure recovery of an s-sparse scene. A
small number of antennas has clear advantages such as low costs of imaging hardware.

2.2 Compressive sensing

We briefly describe the basics of compressive sensing in order to place our results outlined below
into context. Given measurements y = Ax ∈ Cm of a sparse vector x ∈ CN , where A ∈ Cm×N

is the so-called measurement matrix, we would like to reconstruct x in the underdetermined
case that m� N by taking into consideration the sparsity.

The näıve approach of `0-minimization

min
z∈CN

‖z‖0 subject to Az = y (2.8)

is NP-hard [21]. Hence several tractable alternatives were proposed including `1-minimization,
also called basis pursuit [10, 13, 4],

min
z∈CN

‖z‖1 subject to Az = y. (2.9)
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This can be seen as a convex relaxation of (2.8) and can be solved via efficient convex opti-
mization methods [3, 9]. It is by now well-understood that `1-minimization can recover sparse
vectors under appropriate conditions. Remarkably, random matrices provide (near-)optimal
measurement matrices in this context and good deterministic constructions are lacking to date,
see [26, 15] for a discussion. For instance, an m×N Gaussian random matrix A ensures exact
(and stable) recovery of all s-sparse vectors x from y = Ax using `1-minimization (and other
types of algorithms) with high probability provided

m ≥ Cs log(N/s), (2.10)

where C > 0 is a universal constants. This bound is optimal [13, 16]. It is crucial that m
is allowed to scale linearly in s. The log-factor cannot be removed. Recovery is stable under
passing to approximately sparse vectors and under adding noise to the measurements. In the
latter case, one may rather work with the noise-constrained `1-minimization problem

min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤ η. (2.11)

Random partial Fourier matrices [4, 7, 29, 25, 26] (that is, random row-submatrices of the
discrete Fourier matrix) and other types of structured random matrices [26, 27] also provide
s-sparse recovery under similar conditions as in (2.10) (with additional log-factors).

Some of the mentioned recovery results are derived using the restricted isometry property
(RIP) [7, 6]. This leads to uniform guarantees in the sense that once the matrix is selected,
then with high probability every s-sparse vector can be recovered from y = Ax. The RIP,
however, is a rather strong condition which is sometimes hard to verify. In particular, it is
open to verify it for our random matrix in (2.7). Instead, we may work with weaker conditions,
which ensure nonuniform recovery in the sense that a fixed s-sparse vector is recovered with
high probability using a random draw of the matrix. Our result below for the structured
random matrix in (2.7) is based on the extension of certain general recovery conditions for
`1-minimization [17, 32, 5] to stable recovery using a so-called dual certificate, see Section 3.

2.3 Main results

We define the error of best s-term approximation in the `1-norm by

σs(x)1 := inf
‖z‖0≤s

‖x− z‖1.

Furthermore, we will assume throughout that the aperture condition

ρ :=
d0B

λz0
∈ N (2.12)

holds, which can be accomplished by an appropriate choice of the meshsize d0. The further
notation is the one used in Section 2.1. We will refer to the matrix A ∈ Cn

2×N in (2.7)
with the antenna positions b1, . . . , bn selected independently and uniformly at random from
[0, B]2 as the random scattering matrix. Note that the aperture condition (2.12) implies that
EA∗A = n2 Id by a similar computation as in (2.5), that is, in expectation the matrix A∗A
behaves nicely, which will be crucial in the proof. Let us now state our nonuniform recovery
result.
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Theorem 2.1. Let x ∈ CN and A ∈ Cn
2×N be a draw of the random scattering matrix. Let

s ∈ N be some sparsity level. Suppose we are given noisy measurements y = Ax+ e ∈ Cn
2

with
‖e‖2 ≤ ηn. If, for ε > 0,

n2 ≥ Cs log2

(
cN

ε

)
(2.13)

with universal constants C, c > 0, then with probability at least 1 − ε, the solution x̂ ∈ CN to
the noise-constrained `1-minimization problem

min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤ ηn. (2.14)

satisfies
‖x− x̂‖2 ≤ C1

√
sη + C2σs(x)1. (2.15)

The constants satisfy C ≤
(
800e3/4

)2 ≈ 2.87 · 106, c ≤ 6, C1 ≤ 4(1 +
√

2) + 8
√

3 ≈ 23.513,

C2 ≤ 4(1 +
√

6) ≈ 13.798.

Remark 2.2. (a) The constants appearing in Theorem 2.1 are quite large and reflect a worst
case analysis. No attempt has been made to optimize the above bounds. In practice, much
better bounds can be expected, see also the numerical results below.

(b) The scaling of the noise level, ‖e‖2 ≤ ηn is natural because e ∈ Cn
2
. Indeed, if we have

a componentwise bound |ej | = |(Ax)j − yj | ≤ η for all j ∈ [n]2 then it is satisfied.

(c) The error bound (2.15) is slightly worse than the one we would get under the RIP. In
fact, if A has the RIP then the associated error bound improves the right hand side of
(2.15) by a factor of s−1/2 [6]. Unfortunately, it is so far unknown whether the random
scattering matrix A obeys the RIP under a similar condition as (2.13), so that the error
bound (2.15) is the best one can presently achieve.

(d) If x is s-sparse, σs(x)1 = 0, and if there is no noise, η = 0, then (2.15) implies exact
reconstruction, x̂ = x, by equality-constrained `1-minimization (2.9).

(e) We can specialize the error bound in the previous theorem for the case of Gaussian noise.
To this end, assume that the components of e ∈ Cn

2
are i.i.d. complex Gaussians with

variance η2, where the real and imaginary part of a complex Gaussian are independent
real Gaussians with variance η2/2. A standard calculation shows that the noise satisfies
‖e‖2 ≤ ηn log(1/ε) with probability at least 1− ε. Assuming that e is independent of the
matrix A, it follows that the solution x̂ of noise-constrained `1-minimization with bound
‖Az − y‖2 ≤ ηn log(1/ε) satisfies

‖x̂− x‖2 ≤ C1η
√
s log(1/ε) + C2σs(x)1 (2.16)

with probability at least (1 − ε)2. The constants C1, C2 satisfy the bounds of Theorem
2.1.

Theorem 2.1 holds for a fixed, deterministic x ∈ CN . We define the sign of a number a ∈ C
as

sgn(a) =

{
a
|a| if a 6= 0,

0 if a = 0.
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For a vector x ∈ CN we denote by sgn(x) := (sgn(xj))j∈[N ] the sign pattern of x. On the way
to the proof of Theorem 2.1, we will provide the easier result stated next for the case when
the sign pattern of x restricted to its support set T ⊂ [N ], sgn(x)T = (sgn(xj))j∈T , forms a
Rademacher or a Steinhaus sequence. The latter amounts to assuming that the phases of the
reflectivities are iid uniformly distributed on [0, 2π], which is a common assumption in array
imaging and radar signal processing. Theorem 2.3 below actually establishes sparse recovery
in a more general setting than the inverse scattering problem. It is not only applicable to
the radar-type sensing matrices analyzed above, but to more general sensing matrices whose
rows and columns are not independent, and whose entries are associated with a certain class of
orthonormal systems. Its statement requires the notion of bounded orthonormal systems [26].

Definition 2.1. Let D ⊂ Rd be a measurable set and ν a probability measure on D. A system
of functions {Φk : D → C}k∈[N ] is called a bounded orthonormal system (BOS) with respect
to (D, ν) if ∫

D
Φk(t)Φ`(t)ν(dt) = δk`

and if the functions are uniformly bounded by a constant K ≥ 1,

max
k∈[N ]

‖Φk‖∞ ≤ K.

Let now {Φ`}`∈[N ] be a BOS on (D, ν) with bounding constant K = 1 and with the property

that
{

Φ2
`

}
`∈[N ]

is also a BOS on (D, ν). Note that due to the orthogonality relation, we then

necessarily have |Φ`(t)| = 1 for all t ∈ D. The functions Φ`(t) = Ĝ(r`, t), t ∈ [0, B]2 fall into
this setup when the aperture condition (2.12) is satisfied, see also (2.5). Another example is
provided by the Fourier system {Φ`}`∈Z, where Φ`(t) = e2πi`t, ` ∈ Z, t ∈ [0, 1]. For b1, b2 ∈ D,
set

v(b1, b2) :=
(

Φ`(b1) Φ`(b2)
)
`∈[N ]

∈ CN .

Sample now n elements b1, . . . , bn independently at random according to ν from D. Define the
sampling matrix A via

A := (v(bj , bk)
∗)j,k∈[n] ∈ Cn

2×N , (2.17)

so that A is the matrix with rows v(bj , bk)
∗, (j, k) ∈ [n]2. Note that with the system Φ`(b) =

Ĝ(r`, b) we recover the random scattering matrix (2.7) in this way.
Now we can state our main result for random sign patterns. We recall that the entries of

a (random) Rademacher vector ε are independent random variables that take the values ±1
with equal probability. Similarly, a Steinhaus vector is a random vector where all entries are
independent and uniformly distributed on the complex torus {z ∈ C : |z| = 1}.

Theorem 2.3. Let A ∈ Cn
2×N be a draw of the random sampling matrix from (2.17). Let

x ∈ CN and T ⊂ [N ] be the index set corresponding to its s largest absolute entries. Assume
that the sign vector sgn(x)T of x restricted to T forms a Rademacher or a Steinhaus sequence.
Suppose we take noisy measurements y = Ax+ e ∈ Cn

2
with ‖e‖2 ≤ ηn. If

n2 ≥ Cs log

(
c1(N − s)

ε

)
log2

(
c2(N − s)2s/ε

)
, (2.18)
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then with probability at least 1 − ε, the solution x̂ ∈ CN to noise-constrained `1-minimization
(2.14) satisfies

‖x̂− x‖2 ≤ C1

√
sη + C2σs(x)1. (2.19)

The constants satisfy C ≤ 1024, c1 ≤ 8, c2 ≤ 576, C1 ≤ 4(1 +
√

2) + 8
√

3 ≈ 23.513, C2 ≤
4(1 +

√
6) ≈ 13.798.

Remark 2.4. Whereas the bounds on the constants in Theorem 2.1 are quite large, and cer-
tainly improvable, in the case of random sign patterns, the number of antennas required must
satisfy

n ≥ 32
√
s log3/2 (cN/ε) ,

which is a reasonable bound, see also the improvement in Remark 4.6 (b).

3 Stable sparse recovery via `1-minimization

In this section we establish a general result for the recovery of an individual vector x ∈ CN

from noisy measurements y = Ax+ e ∈ Cm with A ∈ Cm×N . It uses a dual vector in the spirit
of [17, 32] and extends these results to the noisy and non-sparse case. The proof is inspired by
[5] for recovery based on the weak RIP. However, since we actually do not assume the weak
RIP, the error bound in (3.5) below is slightly worse by a factor of

√
s than the one in [5,

Section 4]. In the noiseless and exact sparse case the theorem below implies exact recovery
similar to [17, 32].

For a set T ⊂ [N ] and a matrix A ∈ Cm×N with columns aj ∈ Cm, j ∈ [N ], we denote
by AT = (aj)j∈T ∈ Cm×|T | the column-submatrix of A with columns indexed by T and by
T c := [N ] \ T the complement of T in [N ]. Similarly, we denote by xT ∈ C|T | the vector
x ∈ CN restricted to its entries in T . The operator norm of a matrix B on `2 is denoted by
‖B‖2→2.

Theorem 3.1. Let x ∈ CN and A ∈ Cm×N with `2-normalized columns, ‖aj‖2 = 1, j ∈ [N ].
For s ≥ 1, let T ⊂ [N ] be the set of indices of the s largest absolute entries of x. Assume that
AT is well-conditioned in the sense that

‖A∗TAT − Id‖2→2 ≤
1

2
(3.1)

and that there exists a dual certificate u = A∗v ∈ CN with v ∈ Cm such that

uT = sgn(x)T , (3.2)

‖uT c‖∞ ≤
1

2
, (3.3)

‖v‖2 ≤
√

2s. (3.4)

Suppose we are given noisy measurements y = Ax+ e ∈ Cm with ‖e‖2 ≤ η. Then the solution
x̂ ∈ CN to noise-constrained `1-minimization (2.11) satisfies

‖x− x̂‖2 ≤ C1

√
sη + C2σs(x)1. (3.5)

The constants satisfy C1 ≤ 4(1 +
√

2) + 8
√

3 ≈ 23.513, C2 ≤ 4(1 +
√

6) ≈ 13.798.
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Remark 3.2. The constants appearing in the conditions above are rather arbitrary and chosen
for convenience.

Proof. Write x̂ = x + h. Due to (2.11) and the assumption on the noise level, ‖e‖2 ≤ η, we
have

‖Ah‖2 = ‖Ax− y − (Ax̂− y)‖ ≤ ‖Ax− y‖2 + ‖Ax̂− y‖2 ≤ 2η. (3.6)

Since x is feasible for the optimization program (2.11) we obtain

‖x‖1 ≥ ‖x̂‖1 = ‖(x+ h)T ‖1 + ‖(x+ h)T c‖1
≥ Re (〈(x+ h)T , sgn(x)T 〉) + ‖hT c‖1 − ‖xT c‖1
= ‖x‖1 + Re (〈hT , sgn(x)T 〉) + ‖hT c‖1 − 2 ‖xT c‖1 ,

where we applied Hölder’s and the triangle inequality in the second line. Rearranging the
above yields

‖hT c‖1 ≤ |Re (〈hT , sgn(x)T 〉)|+ 2 ‖xT c‖1 . (3.7)

Let u = A∗v be the dual certificate. Then, using the Cauchy-Schwarz and Hölder’s inequality

|Re (〈hT , sgn(x)T 〉)| = |Re (〈hT , (A∗v)T 〉)| ≤ |〈h,A
∗v〉|+ |〈hT c , uT c〉|

≤ ‖Ah‖2 ‖v‖2 + ‖hT c‖1 ‖uT c‖∞ ≤ 2
√

2sη +
1

2
‖hT c‖1 ,

where we used (3.3) and (3.4) in the last line. Plugging into (3.7) yields

‖hT c‖1 ≤ 4
√

2s η + 4 ‖xT c‖1 . (3.8)

Due to (3.1), we have

1

2
‖hT ‖22 ≤ ‖AThT ‖

2
2 = 〈AThT , Ah〉 − 〈AThT , AT chT c〉. (3.9)

Using Hölder’s inequality, the normalization of the columns of A and (3.6), we obtain

|〈AThT , Ah〉| ≤ ‖hT ‖1 ‖A
∗
TAh‖∞ ≤ 2

√
sη ‖hT ‖2 .

The triangle inequality and the Cauchy Schwarz inequality give, by noting that (3.1) implies

‖AT ‖2→2 ≤
√

3
2 ,

|〈AThT , AT chT c〉| ≤
∑
j∈T c

|hj ||〈AThT , aj〉| ≤
∑
j∈T c

|hj |‖AThT ‖2‖aj‖2 ≤
√

3

2
‖hT ‖2‖hT c‖1.

Inserting into (3.9) we obtain

‖hT ‖2 ≤ 4
√
sη +

√
6 ‖hT c‖1 . (3.10)

Combining (3.8) and (3.10) we arrive at

‖h‖2 ≤ ‖hT ‖2 + ‖hT c‖1
≤ (4(1 +

√
2) + 8

√
3)
√
sη + 4(1 +

√
6) ‖xT c‖1 .

Due to the choice of T we have ‖xT c‖1 = σs(x)1. This completes the proof.
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4 Conditioning of submatrices

Theorem 3.1 requires to find a dual certificate u = A∗v with uT = sgn(x)T , where A is the
random scattering matrix introduced in Section 2.1 and T ⊂ [N ] is some support set. Condition
(3.1) in Theorem 3.1 suggests to investigate the conditioning of AT . Recall that

v(bj , bk) =
(

Φ`(bj) Φ`(bk)
)
`∈[N ]

∈ CN ,

where {Φ`} is a bounded orthonormal system with constant K = 1 such that {Φ2
`} is also

a bounded orthonormal system. The rows of the random scattering matrix A ∈ Cn
2×N are

the vectors v(bj , bk)
∗ ∈ C1×N , (j, k) ∈ [n]2, where the b1, . . . , bn are selected independently at

random according to the orthonormalization measure ν, see (2.17) and Definition 2.1. The
scattering matrix A in (2.7) is a special case of this setup.

We aim at a probabilistic estimate of the largest and smallest singular value of 1
nAT ∈ Cn

2×s,
i.e., the operator norm∥∥∥∥ 1

n2
A∗TAT − Id

∥∥∥∥
2→2

=

∥∥∥∥∥∥ 1

n2

n∑
j,k=1

v(bj , bk)T v(bj , bk)
∗
T − Id

∥∥∥∥∥∥
2→2

. (4.1)

The central result of this section stated next provides an estimate of the tail of this quantity.

Theorem 4.1. Let A ∈ Cn
2×N be the random matrix described above and let T ⊂ [N ] be a

(fixed) subset of cardinality |T | = s. If, for δ, ε > 0,

n2 ≥ 1024δ−2s log2

(
576s3

ε

)
(4.2)

then

P
(∥∥∥∥ 1

n2
A∗TAT − Id

∥∥∥∥
2→2

≥ δ
)
≤ ε. (4.3)

The proof will be given after some auxiliary results are presented.

4.1 Auxiliary results

The fact that the rows of A are not independent makes the analysis difficult at first sight.
In order to increase the amount of independence, we will use a version of the tail decoupling
inequality in Theorem 3.4.1 of [12] . For convenience, we provide a short proof, which essentially
repeats the one in [11] in our slightly more general setup. In this way, we also obtain better
constants than by tracing the ones in the proof of [12, Theorem 3.4.1].

Theorem 4.2. Let (Xi)i∈[n], n ≥ 2, be independent random variables with values in a mea-
surable space Ω. Let h : Ω × Ω → B be a measurable map with values in a separable Banach
space B with norm ‖·‖. Then there exists a subset S ⊂ [n] such that

P

∥∥∥∥∥∥
∑
i 6=j

h(Xi, Xj)

∥∥∥∥∥∥ > t

 ≤ 36P

4

∥∥∥∥∥∥
∑

i∈S,j∈Sc

h(Xi, Xj)

∥∥∥∥∥∥ > t

∨
36P

4

∥∥∥∥∥∥
∑

i∈Sc,j∈S
h(Xi, Xj)

∥∥∥∥∥∥ > t

 , (4.4)

where for a, b ∈ R we denote a ∨ b := max {a, b}.
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The proof of Theorem 4.2 employs Corollary 3.3.8 from [12].

Lemma 4.3. Let (B, ‖ ·‖) be a separable Banach space and let Y be a B-valued random vector
such that for each ξ ∈ B∗, the dual space of B, the map ξ(Y ) is measurable, centered and
square integrable. Then, for every x ∈ B,

P (‖x+ Y ‖ ≥ ‖x‖) > 1

4
inf
ξ∈B∗

 E [|ξ(Y )|](
E
[
|ξ(Y )|2

])1/2


2

. (4.5)

Proof of Theorem 4.2. Set D := (Xi)i∈[n] and let ε = (ε1, . . . , εn) be a Rademacher sequence
independent of D. We introduce

Z :=
∑
i 6=j

h(Xi, Xj)−
∑
i 6=j

εiεjh(Xi, Xj) (4.6)

and Y := −
∑

i 6=j εiεjh(Xi, Xj). Observe that

E [Z |D ] =
∑
i 6=j

h(Xi, Xj).

Let ξ be an element of the dual space B∗. Conditional on D, ξ(Y ) is a homogeneous scalar-
valued Rademacher chaos of order 2. By Hölder’s inequality, we have for an arbitrary random
variable V with finite fourth moment that

E
[
|V |2

]
≤ (E [|V |])1/2

(
E
[
|V |3

])1/2

≤ (E [|V |])1/2
(
E
[
|V |2

])1/4 (
E
[
|V |4

])1/4

and therefore
E
[
|V |2

]
(
E
[
|V |4

])1/2
≤ E [|V |](

E
[
|V |2

])1/2
. (4.7)

Lemma 2.1 from [11] states that(
E
[
|ξ(Y )|4

∣∣∣D])1/2
≤ 3E

[
|ξ(Y )|2

∣∣∣D] .
Plugging this result into (4.7) gives

E [|ξ(Y )| |D](
E
[
|ξ(Y )|2 |D

])1/2
≥

E
[
|ξ(Y )|2 |D

]
(
E
[
|ξ(Y )|4 |D

])1/2
≥ 1

3
.

Taking into account (4.6), an application of Lemma 4.3 yields

P

‖Z‖ ≥
∥∥∥∥∥∥
∑
i 6=j

h(Xi, Xj)

∥∥∥∥∥∥
∣∣∣∣D
 ≥ 1

4

(
1

3

)2

=
1

36
. (4.8)
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Multiplying both sides of (4.8) by the characteristic function χ of the event{∥∥∥∑i 6=j h(Xi, Xj)
∥∥∥ > t

}
and taking the expectation with respect to D gives

P

∥∥∥∥∥∥
∑
i 6=j

h(Xi, Xj)

∥∥∥∥∥∥ > t

 ≤ 36P (‖Z‖ > t) = 36Eε
[
E
[
χ{‖Z‖>t}|ε

]]
. (4.9)

We conclude by noting that there is a vector ε∗ ∈ {±1}n such that

E
[
χ{‖Z‖>t}|ε∗

]
≥ Eε

[
E
[
χ{‖Z‖>t}|(ε1, . . . , εn)

]]
.

The claim now follows by setting S := {i ∈ {1, . . . , n}|ε∗i = 1}.
We will moreover need the following complex version of Hoeffding’s inequality from [22],

equation (9).

Theorem 4.4. Let ξ1, . . . , ξn be complex, independent and centered random variables satisfying
|ξk| ≤ αk for constants α1, . . . , αn > 0. Set σ2 :=

∑n
k=1 α

2
k. Then

P

(∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣ > t

)
≤ 4 exp

(
− t2

4σ2

)
. (4.10)

The final tool to prove that submatrices of A are well-conditioned is the noncommutative
Bernstein inequality from [31].

Theorem 4.5. Let X1, . . . , Xn ∈ Cs×s be a sequence of independent, mean zero and self-adjoint
random matrices. Assume that, for some K > 0,

‖X`‖2→2 ≤ K a.s. for all ` ∈ [n] (4.11)

and set

σ2 :=

∥∥∥∥∥
n∑
`=1

EX2
`

∥∥∥∥∥
2→2

. (4.12)

Then, for t > 0, it holds that

P

(∥∥∥∥∥
n∑
`=1

X`

∥∥∥∥∥
2→2

≥ t

)
≤ 2s exp

(
− t2/2

σ2 +Kt/3

)
. (4.13)

4.2 Proof of Theorem 4.1

Denote by

Dj := diag
(

Φ`(bj) : ` ∈ T
)
∈ Cs×s

the diagonal matrix with diagonal consisting of the vector
(

Φ`(bj)
)
`∈T
∈ Cs and introduce

g(bk) :=
(

Φ`(bk)
)
`∈T
∈ Cs. Since DjD

∗
j = Id we observe that

1

n2
A∗TAT − Id =

1

n2

n∑
j,k=1

[v(bj , bk)T v(bj , bk)
∗
T − Id] =

1

n2

n∑
j=1

Dj

(
n∑
k=1

[g(bk)g(bk)
∗ − Id]

)
D∗j .

(4.14)
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Let b′ := (b′1, . . . , b
′
n) denote an independent copy of b := (b1, . . . , bn). By the triangle inequal-

ity, we have

P
(∥∥∥∥ 1

n2
A∗TAT − Id

∥∥∥∥
2→2

≥ δ
)
≤ P

 1

n2

∥∥∥∥∥∥
∑
j 6=k

[v(bj , bk)T v(bj , bk)
∗
T − Id]

∥∥∥∥∥∥
2→2

≥ δ

2


+ P

 1

n2

∥∥∥∥∥∥
n∑
j=1

[v(bj , bj)T v(bj , bj)
∗
T − Id]

∥∥∥∥∥∥
2→2

≥ δ

2


Using the decoupling inequality of Theorem 4.2, with S ⊂ [n] denoting the corresponding set,
and the symmetry relation v(bj , bk) = v(bk, bj), we obtain for the first term above

P

 1

n2

∥∥∥∥∥∥
∑
j 6=k

[v(bj , bk)T v(bj , bk)
∗
T − Id]

∥∥∥∥∥∥
2→2

≥ δ

2


≤36P

 1

n2

∥∥∥∥∥∥
∑

j∈S,k∈Sc

[
v(bj , b

′
k)T v(bj , b

′
k)
∗
T − Id

]∥∥∥∥∥∥
2→2

≥ δ

8

 . (4.15)

We will now estimate the right hand side of (4.15). Introducing

X ′ :=
∑
k∈Sc

[
g(b′k)g(b′k)

∗ − Id
]
∈ Cs×s,

we observe that (4.14) together with Fubini’s theorem yields

36P

 1

n2

∥∥∥∥∥∥
∑

j∈S,k∈Sc

[
v(bj , b

′
k)T v(bj , b

′
k)
∗
T − Id

]∥∥∥∥∥∥
2→2

≥ δ

8


=36P

 1

n2

∥∥∥∥∥∥
∑
j∈S

DjX
′D∗j

∥∥∥∥∥∥
2→2

≥ δ

8

 = Eb′

36Pb

 1

n2

∥∥∥∥∥∥
∑
j∈S

DjX
′D∗j

∥∥∥∥∥∥
2→2

≥ δ

8

 . (4.16)

As the next step we apply the noncommutative Bernstein inequality, Theorem 4.5, to the inner
probability in (4.16). Since Dj is a unitary matrix and the functions Φ` are orthonormal we
have ∥∥DjX

′D∗j
∥∥

2→2
=
∥∥X ′∥∥

2→2
, (4.17)

E
[
(DjX

′D∗j )
2
]

= diag
(
X ′2
)
,

where diag
(
X ′2
)

denotes the matrix that coincides with X ′2 on the diagonal and is zero
otherwise. Set µ to be the coherence parameter

µ := max
`,˜̀∈T :`<˜̀

∣∣∣∣∣∑
k∈Sc

Φ`(b
′
k)Φ˜̀(b′k)

∣∣∣∣∣ .
A crucial observation is that diag

(
X ′2
)
� (s − 1) diag

(
µ2, µ2, . . . , µ2

)
, where � denotes the

semidefinite ordering. Therefore, it holds that∥∥∥∥∥∥
∑
j∈S

E
[
(DjX

′D∗j )
2
]∥∥∥∥∥∥

2→2

≤ |S| (s− 1)µ2 ≤ n(s− 1)µ2. (4.18)
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Plugging the bounds (4.17) and (4.18) into (4.13) yields

Pb

 1

n2

∥∥∥∥∥∥
∑
j∈S

DjX
′D∗j

∥∥∥∥∥∥
2→2

≥ δ

8

 ≤ 2s exp

(
− δ2

128(s−1)
n3 µ2 + 16δ

3n2 ‖X ′‖2→2

)
. (4.19)

Set ε̃ = ε/36. Multiplying the inner probability in (4.16) by the characteristic function of the
event E := E1 ∩ E2, where

E1 :=

{
128(s− 1)

n3
µ2 ≤ δ2

2 log (8s/ε̃)

}
,

E2 :=

{
16

3n2

∥∥X ′∥∥
2→2
≤ δ

2 log (8s/ε̃)

}
,

we obtain, with Ec1 and Ec2 denoting the complements of E1 and E2,

36P

 1

n2

∥∥∥∥∥∥
∑
j∈S

DjX
′D∗j

∥∥∥∥∥∥
2→2

≥ δ

8

 ≤ ε

4
+ 36 (2sP (Ec1) + 2sP (Ec2)) . (4.20)

Therefore, it remains to estimate the probabilities of the events Ec1 and Ec2. For the event Ec1,
the union bound over all s(s − 1)/2 ≤ s2/2 two element subsets of T implies in the case of a
general BOS that

36 (2sP (Ec1)) ≤ 72sP

 ⋃
`,˜̀∈T,`<˜̀

128(s− 1)

n3

∣∣∣∣∣∑
k∈Sc

Φ`(b
′
k)Φ˜̀(b′k)

∣∣∣∣∣
2

≥ δ2

2 log (8s/ε̃)




≤ 72s
∑

`,˜̀∈T,`<˜̀

P

(∣∣∣∣∣∑
k∈Sc

Φ`(b
′
k)Φ˜̀(b′k)

∣∣∣∣∣ ≥ δn3/2√
256s log (8s/ε̃)

)
(4.21)

≤ 144s3 exp

(
− n2δ2

1024s log (8s/ε̃)

)
, (4.22)

where we have applied Hoeffding’s inequality in the form of Theorem 4.4 in the last line. The
right hand side of (4.22) is less than ε/4 provided

n2 ≥ 1024δ−2s log2
(
576s3/ε

)
. (4.23)

As for Ec2, we are going to apply the noncommutative Bernstein inequality again. Noting that∥∥g(b′k)g(b′k)
∗ − Id

∥∥
2→2

= s− 1,∥∥∥∥∥∑
k∈Sc

E
[(
g(b′k)g(b′k)

∗ − Id
)2]∥∥∥∥∥

2→2

= |Sc| (s− 1) ≤ n(s− 1),

we obtain

36 (2sP (Ec2)) ≤ 144s2 exp

(
− δ2(

32
3

)2 s
n3 log2 (8s/ε̃) + 32

9 δ
s
n2 log (8s/ε̃)

)
. (4.24)
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Assuming (4.23), the right hand side of (4.24) is less than ε/4. Since
{

Φ2
k

}
k∈[N ]

is also a BOS

with respect to (D, ν), Condition (4.23) implies, after another application of the noncommu-
tative Bernstein inequality analogously to (4.24) and the preceding steps, that

P

 1

n2

∥∥∥∥∥∥
n∑
j=1

[v(bj , bj)T v(bj , bj)
∗
T − Id]

∥∥∥∥∥∥
2→2

≥ δ

2

 ≤ ε

4
. (4.25)

This concludes the proof.

Remark 4.6. (a) In order to show (4.25), we used the assumption that
{

Φ2
k

}
k∈[N ]

is also a

BOS with respect to (D, ν). It might be that (4.25) also holds under weaker assumptions
on the BOS, however, it does not hold if we choose for example the Hadamard system.

(b) Assuming the special case of the scattering matrix (2.7), the terms in (4.21) take the
form

Φ`(bk)Φ˜̀(bk) = exp

(
πi

λz0

(
‖r`‖22 −

∥∥r˜̀

∥∥2

2

))
exp

(
2πi

λz0
〈(r˜̀− r`), bk〉

)
,

where due to the aperture condition (2.4)

θ̃k := exp

(
2πi

λz0
〈(r˜̀− r`), bk〉

)
is a Steinhaus random variable and θ̃ := (θ̃1, . . . , θ̃n) is a Steinhaus sequence. We can
therefore apply Hoeffding’s inequality for Steinhaus sequences, see [26], Corollary 6.13.
This inequality states that, for arbitrary v ∈ Cn and κ ∈ (0, 1),

P
(∣∣∣〈v, θ̃〉∣∣∣ > t

)
≤ 1

1− κ
exp

(
−κ t2

‖v‖22

)
. (4.26)

Applying this result with κ = 4/5 instead of Theorem 4.4 in (4.21), one obtains that the
claimed spectral norm estimate (4.3) holds under the slightly improved condition

n2 ≥ 320δ−2s log

(
288s

ε

)
log

(
720s3

ε

)
, (4.27)

where we have also taken into consideration the precise form of (4.22).

5 Nonuniform Recovery of Scatterers with Random Phase

Proof of Theorem 2.3. The key idea of the proof is to apply Theorem 3.1. Note first that (2.14)
is equivalent to

argmin
z∈CN

‖z‖1 subject to

∥∥∥∥ 1

n
Az − 1

n
y

∥∥∥∥ ≤ η. (5.1)

Let T ⊂ [N ] be the index set corresponding to the s largest absolute entries of x and assume
that sgn(x)T is either a Rademacher or a Steinhaus sequence. Suppose we are on the event

E :=

{∥∥∥∥ 1

n2
A∗TAT − Id

∥∥∥∥
2→2

≤ 1

2

}
. (5.2)
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Theorem 4.1 states that P [Ec] ≤ ε/2 if

n2 ≥ 4096s log2
(
1152s3/ε

)
. (5.3)

Set Ã := 1
nA. The event E means in particular that ÃT fulfills condition (3.1). We define the

vector v ∈ Cn
2

in Theorem 3.1 via

v :=
(
Ã†
)∗

sgn(x)T = ÃT

(
Ã∗T ÃT

)−1
sgn(x)T , (5.4)

where Ã† denotes the pseudo-inverse of ÃT . Setting u := Ã∗v, we have uT = Ã∗T v = sgn(x)T ,
so that (3.2) is satisfied. Since we are on the event E, the smallest singular value of ÃT satisfies
σmin(ÃT ) ≥ 1/

√
2 and therefore

‖v‖2 ≤ ‖Ã†‖2→2‖ sgn(x)T ‖2 ≤ σmin(ÃT )−1√s ≤
√

2s.

Hence, also (3.4) is satisfied. It remains to check (3.3). To this end, note that

‖uT c‖∞ = max
`∈T c

∣∣∣∣〈(Ã∗T ÃT)−1
Ã∗T ã`, sgn(x)T

〉∣∣∣∣ = max
`∈T c

∣∣∣〈Ã†T ã`, sgnxT 〉
∣∣∣ .

As in the previous section, we denote b = (b1, . . . , bn). Since sgn(x)T =: (θ`)`∈T =: θ is
a Rademacher or a Steinhaus sequence, condition (5.3), Fubini’s Theorem and Hoeffding’s
inequality for Rademacher resp. Steinhaus sequences together with the union bound give

P
(

max
`∈T c

∣∣∣〈Ã†T ã`, sgn(x)T 〉
∣∣∣ > 1

2

)
≤ P

({
max
`∈T c

∣∣∣〈Ã†T ã`, sgn(x)T 〉
∣∣∣ > 1

2

}
∩ E

)
+
ε

2

≤Eb

[
χE

∑
`∈T c

Pθ

(∣∣∣〈Ã†T ã`, sgn(x)T 〉
∣∣∣ > 1

2

)]
+
ε

2

≤Eb

χE ∑
`∈T c

2 exp

− 1

8
∥∥∥Ã†T ã`∥∥∥2

2


+

ε

2

≤2(N − s)Eb

χE exp

− 1

8 max`∈T c

∥∥∥Ã†T ã`∥∥∥2

2


+

ε

2
. (5.5)

Since we are on the event E from (5.2), it follows as before that

∥∥∥∥(Ã∗T ÃT)−1
∥∥∥∥

2→2

≤ 1

σmin(ÃT )
2 ≤

2 and therefore

max
`∈T c

∥∥∥Ã†T ã`∥∥∥2

2
≤ 4 max

`∈T c

∥∥∥Ã∗T ã`∥∥∥2

2
≤ 4s max

`∈T c,˜̀∈T

∣∣〈ã`, ã˜̀〉
∣∣2 .

Set

µ := max
`∈T c,˜̀∈T

∣∣∣∣∣
n∑
k=1

Φ`(bk)Φ˜̀(bk)

∣∣∣∣∣ .
Since ∣∣〈ã`, ã˜̀〉

∣∣ =

∣∣∣∣∣
n∑
k=1

Φ`(bk)Φ˜̀(bk)

∣∣∣∣∣
2

,
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we have

max
`∈T c

∥∥∥Ã†T ã`∥∥∥2

2
≤ 4

s

n4
µ4.

We then obtain

2(N − s)Eb

χE exp

− 1

8 max`∈T c

∥∥∥Ã†T ã`∥∥∥2

2




≤ 2(N − s)Eb

[
χE exp

(
− 1

32 s
n4µ4

)]
≤ ε

4
+ 2(N − s)Pb

(
s1/4

n
µ >

1

(32 log (8(N − s)/ε))1/4

)
.

Applying the union bound and Hoeffding’s inequality as in (4.22) gives

2(N − s)Pb

(
s1/4

n
µ >

1

(32 log (8(N − s)/ε))1/4

)

≤ 8(N − s)2s exp

(
− n

16
√

2s log (8(N − s)/ε)

)
. (5.6)

The condition
n ≥ 32

√
s log1/2 (8(N − s)/ε) log

(
576(N − s)2s/ε

)
(5.7)

implies that the right hand side of equation (5.6) is less than ε/4. Assuming s ≤ N/3 and
8(N − s)/ε ≥ e4, (5.7) implies (5.3) and therefore also P (Ec) ≤ ε/2, where E is the event
from (5.2). We have thus verified that under condition (5.7), all conditions of Theorem 3.1 are
satisfied with probability at least 1 − ε. Since we work with the rescaled version (5.1) of A,
the solution x̂ satisfies (2.19) with the required probability. This finishes the proof of Theorem
2.3.

Remark 5.1. In the special case of the scattering matrix (2.7), we can apply the same technique
as in Remark 4.6 (b) to obtain a slight improvement of (5.7). In fact, assuming also the mild
condition 8(N − s)/ε ≥ e7, all conditions of Theorem 3.1 are satisfied with probability at least
1− ε under the improved condition

n ≥ 5
√

2s log1/2 (8(N − s)/ε) log
(
576s(N − s)2/ε

)
.

6 Nonuniform Recovery of Scatterers with Deterministic Phase

6.1 Set partitions

To prove the central result of this section, we will require a few facts on certain partitions
of the set [N ], N ∈ N. As in [25, Section 2.2] we define P (N, k) as the set of all partitions
of [N ] into exactly k blocks such that each block contains at least two elements. Note that
then necessarily k ≤ N/2. The numbers S2(N, k) := |P(N, k)| are called associated Stirling
numbers of the second kind. In [25, Section 3.5] it was shown that

S2(N, k) ≤
(

3N

2

)N−k
. (6.1)
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For our purposes, we will also need partitions of [N ] in which not necessarily all blocks contain
at least two elements.

Definition 6.1. For N ≥ 1, t ≤ k ≤ N , we define P (N, k, k − t) as the set of all partitions
of [N ] into k blocks such that k− t of these blocks contain at least two elements. Moreover, we
define Pex (N, k, k − t) as the set of all partitions of [N ] into k blocks such that exactly k − t
blocks contain at least two elements and exactly t blocks contain exactly one element.

The above definition of P (N, k, k − t) implies that necessarily 2(k−t) ≤ N−t and therefore

k ≤ N + t

2
. (6.2)

Our next goal is a convenient estimate of the numbers S (N, k, k − t) := |P (N, k, k − t)|. We
first observe that

S (N, k, k − t) =

t∑
r=0

|Pex (N, k, k − r)| .

Moreover, we have

|Pex (N, k, k − r)| =
(
N

r

)
S2(N − r, k − r) ≤

(
N

r

)(
3N

2

)N−k
, (6.3)

where the last inequality follows from the estimate (6.1). Since t ≤ N and therefore
∑t

r=0

(
N
r

)
≤

2N , this yields

S (N, k, k − t) ≤ (3N)N
(

3N

2

)−k
. (6.4)

This estimate will become crucial in the next section.

6.2 Construction of a dual certificate

We will use combinatorial estimates inspired by the analysis in [4, 27, 25, 8] in order to construct
a dual certificate. Hereby, we exploit the estimates on set partitions stated above. In this way,
we will extend the recovery result of Section 2 to a vector x ∈ CN with deterministic phase
pattern sgn(x)T – recall that T is the set of indices corresponding to the s largest absolute
entries of x. Since the phases are now deterministic we can no longer use the additional
concentration of measure coming from the independent randomness in the signs. In particular,
we have to estimate the probability of the event{

max
`∈T c

∣∣∣〈Ã†T ã`, sgn(x)T 〉
∣∣∣ > 1

2

}
using only the randomness in Ã. Throughout this subsection, we will assume that the sampling
matrix A ∈ Cn

2×N is given by (2.7). However, we note that exactly the same proof applies
if we take the Fourier system {Φk} from [25] instead and construct the random matrix as in
(2.17).

Let us state the central result of this section.
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Theorem 6.1. Let A ∈ Cn
2×N be the random sampling matrix from (2.7) and let x ∈ CN . Let

T ⊂ [N ] with |T | = s be the index set of the s largest absolute entries of x. Set Ã := 1
nA. If

n2 ≥ Cs log2 (cN/ε) , (6.5)

then with probability at least 1− ε

(i) there is a v ∈ Cn
2

such that u := Ã∗v and v satisfy Conditions (3.2),(3.3) and (3.4) of
Theorem 3.1;

(ii) for the matrix Ã, it holds that ∥∥∥Ã∗T ÃT − Id
∥∥∥

2→2
≤ 1

e
. (6.6)

The constants satisfy C ≤
(
800e3/4

)2
, c ≤ 6.

Proof. Suppose we are on the event

E :=

{∥∥∥Ã∗T ÃT − Id
∥∥∥

2→2
≤ 1

e

}
,

where the constant 1/e in the probability is chosen to ease computations later on. Theorem 4.1
implies that P [Ec] ≤ ε/4 if Condition (6.5) holds. Our aim is an estimate for the probability
of the event

Ẽ :=

{∥∥∥∥Ã∗T cÃT

(
Ã∗T ÃT

)−1
sgn(x)T

∥∥∥∥
∞
>

1

2

}
. (6.7)

By expanding the Neumann series, we observe that, for m ∈ N,(
Id−

(
Id−Ã∗T ÃT

)m)−1
= Id +

∞∑
r=1

(
Id−Ã∗T ÃT

)rm
.

With

Am :=
∞∑
r=1

(
Id−Ã∗T ÃT

)rm
we obtain(

Ã∗T ÃT

)−1
=
(

Id−
(

Id−Ã∗T ÃT
))−1

=
(

Id−
(

Id−Ã∗T ÃT
)m)−1 m−1∑

k=0

(
Id−Ã∗T ÃT

)k
= (Id +Am)

m−1∑
k=0

(
Id−Ã∗T ÃT

)k
.

An application to sgn(x)T yields

Ã∗T cÃT

(
Ã∗T ÃT

)−1
sgn(x)T = Ã∗T cÃT

m−1∑
k=0

(
Id−Ã∗T ÃT

)k
sgn(x)T

+ Ã∗T cÃTAm

m−1∑
k=0

(
Id−Ã∗T ÃT

)k
sgn(x)T .
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An application of the pigeon hole principle yields

P
(
Ẽ
)
≤ P

(∥∥∥∥∥Ã∗T cÃT

m−1∑
k=0

(
Id−Ã∗T ÃT

)k
sgn(x)T

∥∥∥∥∥
∞

>
1

4

)
(6.8)

+ P

(∥∥∥∥∥Ã∗T cÃTAm

m−1∑
k=0

(
Id−Ã∗T ÃT

)k
sgn(x)T

∥∥∥∥∥
∞

>
1

4

)
. (6.9)

We now choose
m := d2 log (6N/ε)e . (6.10)

For the treatment of the event

E :=

{∥∥∥∥∥Ã∗T cÃTAm

m−1∑
k=0

(
Id−Ã∗T ÃT

)k
sgn(x)T

∥∥∥∥∥
∞

>
1

4

}
, (6.11)

in (6.9) we denote by a` the columns of the unnormalized sampling matrix A and set

µ2 := max
`∈T c,˜̀∈T

∣∣〈a`, a˜̀〉
∣∣ .

For a matrix B ∈ Cm×k, we denote by

‖B‖∞→∞ := sup
‖x‖∞=1

‖Bx‖∞ = max
`∈[m]

∑
n∈[k]

|b`n|

the operator norm of B on `∞. We then obtain∥∥∥Ã∗T cÃT

∥∥∥
∞→∞

≤ s

n2
µ2.

Moreover, for an arbitrary matrix B ∈ Cs×s, it follows from the definition of ‖·‖∞→∞ that
‖B‖∞→∞ ≤

√
s ‖B‖2→2. Conditionally on the event E, this inequality gives

‖Am‖∞→∞ ≤
√
s ‖Am‖2→2 ≤

√
s
∞∑
r=1

∥∥∥(Id−Ã∗T ÃT
)∥∥∥rm

2→2
≤
√
s
∞∑
r=1

(
1

em

)r
=
√
s

1

em − 1
.

Similarly, we obtain ∥∥∥∥∥
m−1∑
k=0

(
Id−Ã∗T ÃT

)k∥∥∥∥∥
∞→∞

≤
√
s

e

e− 1
.

Combining these estimates, we obtain, conditionally on the event E,∥∥∥∥∥Ã∗T cÃTAm

m−1∑
k=0

(
Id−Ã∗T ÃT

)k
sgn(x)T

∥∥∥∥∥
∞→∞

≤
∥∥∥Ã∗T cÃT

∥∥∥
∞→∞

‖Am‖∞→∞

∥∥∥∥∥
m−1∑
k=0

(
Id−Ã∗T ÃT

)k∥∥∥∥∥
∞→∞

≤ s
2

n2

e

(e− 1)

1

em − 1
µ2 ≤ 4

s2

em
1

n2
µ2 ≤ ε2

9n2
µ2,
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where we have applied (6.10) and the fact that s ≤ N in the last line. Hence, the probability
of the event E in (6.11) can be bounded by

P
(
E
)

= P
(
E ∩ E

)
+ P

(
E ∩ Ec

)
≤ P

(
ε2

9n2
µ2 >

1

4

)
+
ε

4

≤ 4s(N − s) exp

(
− 9n

8ε2

)
+
ε

4
≤ ε

2
,

where we have applied Hoeffding’s inequality Theorem 4.4 and the union bound together with
(6.5) in the last line. It remains to estimate the term in (6.8). To this end, we define, for
` ∈ T c,

E` :=

{∣∣∣∣∣
m−1∑
k=0

ã∗` ÃT

(
Id−Ã∗T ÃT

)k
sgn(x)T

∣∣∣∣∣ > 1

4

}
. (6.12)

Let {βk}k=0,...,m−1 ⊂ (0, 1) such that
∑m−1

k=0 βk ≤ 1/4 and let Mk ∈ N to be chosen below.
According to the pigeon hole principle, we have

P (E`) ≤
m−1∑
k=0

P
(∣∣∣∣ã∗` ÃT (Id−Ã∗T ÃT

)k
sgn(x)T

∣∣∣∣ ≥ βk)

=

m−1∑
k=0

P

(∣∣∣∣ã∗` ÃT (Id−Ã∗T ÃT
)k

sgn(x)T

∣∣∣∣2Mk

≥ β2Mk
k

)

≤
m−1∑
k=0

β−2Mk
k E

[∣∣∣∣ã∗` ÃT (Id−Ã∗T ÃT
)k

sgn(x)T

∣∣∣∣2Mk
]
,

where we have applied Markov’s inequality in the last step. With r(·) denoting the function
that rounds to the closest integer, we introduce

Mk := r

(
m

k + 1

)
for k = 0, . . . ,m− 1, qk := 2Mk(k + 1).

Then 2m/3 ≤Mk(k+1) ≤ 4m/3 and therefore 4m/3 ≤ qk ≤ 8m/3 and alsom/Mk ≥ 3(k+1)/4.
For some β ∈ (0, 1), we further set

βk := β
m
Mk .

Then with β = 1/(54/3), we have
∑m−1

k=0 βk ≤ 1/4, so that we have found valid choices for the
βk. The rest of the proof is a straightforward consequence of the following statement.

Lemma 6.2. Let k,M ∈ N be given and set q = 2M(k + 1). If

n ≥ 3q
√
s, (6.13)

then

E

[∣∣∣∣ã∗` ÃT (Id−Ã∗T ÃT
)k

sgn(x)T

∣∣∣∣2M
]
≤ 6q

(
6q
√
s

n

)q
. (6.14)
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Before we prove Lemma 6.2, let us first see how one can deduce Theorem 6.1 from it.
Condition (6.5) implies

n ≥ 800e3/4√s log

(
6N

ε

)
,

which, according to the choice m = d2 log (6N/ε)e of m and the definition of q implies (6.13).
Then (6.14) yields the series of inequalities

m−1∑
k=0

β−2Mk
k E

[∣∣∣∣ã∗` ÃT (Id−Ã∗T ÃT
)k

sgn(x)T

∣∣∣∣2Mk
]
≤ β−2m

m−1∑
k=0

6qk

(
6qk
√
s

n

)qk

≤β−2m
m−1∑
k=0

16m

(
16m
√
s

n

) 4
3
m

≤ 16m2

(
16β−3/2m

√
s

n

) 4
3
m

.

With E` denoting the events from (6.12), we further obtain, using (6.5) once more,

∑
`/∈T

P [E`] ≤ 16(N − s)m2

(
16β−3/2m

√
s

n

) 4
3
m

≤ 16(N − s)m2e−m ≤ ε

2
.

This finishes the proof of Theorem 6.1.

What remains is the following
Proof of Lemma 6.2. So far, we have not used that the bounded orthonormal system underlying
the random scattering matrix has the specific structure defined in (2.7). In what follows, we
will use the letter ` ∈ Z2, possibly indexed further, to denote the rescaled positions (without
the distance coordinate) on the resolution grid where the targets can be. We furthermore
identify [N ] with [

√
N ]2 in the canonical way, thereby recovering the square grid of resolution

cells (recall that we set N := b2L/d0c2, where L > 0 is the size of the target domain and d0 > 0
denotes the meshsize of the resolution grid, so that

√
N is actually the number of resolution

cells along one axis of the square array). We fix ` ∈ T c and set `
(h)
0 := ` for h = 1, . . . , 2M . A

lengthy but straightforward calculation gives with ω := 2πd0/(λz0)∣∣∣∣ã∗` ÃT (Id−Ã∗T ÃT
)k

sgn(x)T

∣∣∣∣2M =
1

n4M(k+1)

×
n∑

j
(1)
1 ,...,j

(1)
k+1=1

...
j
(2M)
1 ,...,j

(2M)
k+1 =1

n∑
m

(1)
1 ,...,m

(1)
k+1=1

...
m

(2M)
1 ,...,m

(2M)
k+1 =1

∑
`
(1)
1 ,...,`

(1)
k+1∈T
...

`
(2M)
1 ,...,`

(2M)
k+1 ∈T

`
(p)
h 6=`

(p)
h−1,h∈[k+1]

M∏
t=1

sgn

(
x
`
(2t−1)
k+1

)
sgn

(
x
`
(2t)
k+1

)

× exp

iω
2

2M∑
p=1

(−1)p
∥∥∥`(p)k+1

∥∥∥2

2

 exp

iω 2M∑
p=1

(−1)p
k+1∑
h=1

〈(
`
(p)
h−1 − `

(p)
h

)
, b
j
(p)
h

〉
× exp

iω 2M∑
p=1

(−1)p
k+1∑
h=1

〈(
`
(p)
h−1 − `

(p)
h

)
, b
m

(p)
h

〉 . (6.15)

23



In order to evaluate the above term, we will use combinatorial arguments inspired by [4, 25].

To a given word
(
j

(p)
h

)p=1,...,2M

h=1,...,k+1
we associate the partition Q of [k+1]×[2M ] with the property

that (h, p) and (h′, p′) are in the same block if and only if j
(p)
h = j

(p′)
h′ . Analogously, we associate

the partition R to the word
(
m

(p)
h

)p=1,...,2M

h=1,...,k+1
. To each Q ∈ Q resp. R ∈ R there exists exactly

one jQ ∈ {1, . . . , n} resp. mR ∈ {1, . . . , n} such that j
(p)
h = jQ for all (h, p) ∈ Q resp. m

(p)
h = mR

for all (h, p) ∈ R. We define

Q∩R := {(Q,R) ∈ Q×R : jQ = mR} ,
Q∩ :=

{
Q ∈ Q : there exists R = R(Q) ∈ R such that mR(Q) = jQ

}
,

R∩ :=
{
R ∈ R : there exists Q = Q(R) ∈ Q such that jQ(R) = mR

}
.

With this notation, we can write

E

exp

iω 2M∑
p=1

(−1)p
k+1∑
h=1

〈(
`
(p)
h−1 − `

(p)
h

)
, b
j
(p)
h

〉
× exp

iω 2M∑
p=1

(−1)p
k+1∑
h=1

〈(
`
(p)
h−1 − `

(p)
h

)
, b
m

(p)
h

〉
=E

 ∏
Q∈Q\Q∩

exp

iω〈 ∑
(h,p)∈Q

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
, bjQ

〉
×E

 ∏
R∈R\R∩

exp

iω〈 ∑
(h,p)∈R

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
, bmR

〉
×E

 ∏
Q∈Q∩

exp

iω〈 ∑
(h,p)∈Q

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
, bjQ

〉

+iω

〈 ∑
(h,p)∈R(Q)

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
, bmR(Q)

〉 .
Observe that

E

 ∏
Q∈Q\Q∩

exp

iω〈 ∑
(h,p)∈Q

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
, bjQ

〉
=

∏
Q∈Q\Q∩

δ

 ∑
(h,p)∈Q

(−1)p
(
`
(p)
h−1 − `

(p)
h

) ,

where δ is the Kronecker delta, that is δ(0) = 1 and δ(x) = 0 for x 6= 0. Since `
(p)
h 6= `ph−1, this

implies that each Q ∈ Q\Q∩ must contain at least two elements in order to provide a nonzero
contribution to the overall expectation of the expression in (6.15). The same is true for each
R ∈ R \ R∩. However, the blocks Q ∈ Q∩ may contain just one element, since they have a
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corresponding block R(Q) with matching index. Therefore, we can break the evaluation of the
right hand side of (6.15) down to three basic questions.

1. What are the numbers t1 resp. t2 of the distinct indices appearing in the words w1 :=(
j

(p)
h

)p=1,...,2M

h=1,...,k+1
resp. w2 :=

(
m

(p)
h

)p=1,...,2M

h=1,...,k+1
?

2. What is the number t of indices that the words w1 and w2 have in common?

3. Given 1. and 2., which constraints must be fulfilled by the partitions Q and R corre-
sponding to w1 and w2?

In the following, we identify partitions of [k + 1] × [2M ] with partitions of [2M(k + 1)] in
the canonical way. Moreover, if we have a partition Q = {Q1, . . . , Qt, Qt+1, . . . , Qt1}, we
enumerate it without loss of generality such that Qt+1, . . . , Qt1 are the blocks containing at
least two elements and Q1, . . . , Qt are the blocks which might contain just one element. The
same is done for the partition R = {R1, . . . , Rt, Rt+1, . . . , Rt2}. We define

E := E

[∣∣∣∣ã∗` ÃT (Id−Ã∗T ÃT
)k

sgn(x)T

∣∣∣∣2M
]
.

Using the triangle inequality and n > 2M(k+1) implied by (6.13) together with the definitions
from Subsection 6.1 we obtain

E ≤ 1

n4M(k+1)

2M(k+1)∑
t=0

M(k+1)+bt/2c∑
t1=t

M(k+1)+bt/2c∑
t2=t

∑
j1,...,jt1 pw different
m1,...,mt2 pw different

|{j1,...,jt1}∩{m1,...,mt2}|=t∑
Q∈P(2M(k+1),t1,t1−t)

∑
R∈P(2M(k+1),t2,t2−t)

∑
`
(1)
1 ,...,`

(1)
k+1∈T
...

`
(2M)
1 ,...,`

(2M)
k+1 ∈T

`
(p)
h 6=`

p
h−1,h∈[k+1]

∏
Q∈{Qt+1,...,Qt1}

δ

 ∑
(h,p)∈Q

(−1)p
(
`
(p)
h−1 − `

(p)
h

) (6.16)

×
∏

R∈{Rt+1,...,Rt2}
δ

 ∑
(h,p)∈R

(−1)p
(
`
(p)
h−1 − `

(p)
h

) (6.17)

×
t∏

j=1

δ

 ∑
(h,p)∈Qj

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
+

∑
(h,p)∈Rj

(−1)p
(
`
(p)
h−1 − `

(p)
h

) . (6.18)

For the product
∏
Q∈{Qt+1,...,Qt1} δ

(∑
(h,p)∈Q(−1)p

(
`
(p)
h−1 − `

(p)
h

))
to be nonzero, we must have∑

(h,p)∈Q(−1)p
(
`
(p)
h−1 − `

(p)
h

)
= 0 for all Q ∈ {Qt+1, . . . , Qt1} , and analogously for the other

two products appearing in (6.17), (6.18). Therefore, the expressions (6.16)-(6.18) give at least
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t1 ∨ t2 := max{t1, t2} linearly independent constraints. Recalling that q = 2M(k + 1), this
observation yields

∑
`
(1)
1 ,...,`

(1)
k+1∈T
...

`
(2M)
1 ,...,`

(2M)
k+1 ∈T

`
(p)
h 6=`

p
h−1,h∈[k+1]

∏
Q∈{Qt+1,...,Qt1}

δ

 ∑
(h,p)∈Q

(−1)p
(
`
(p)
h−1 − `

(p)
h

)

×
∏

R∈{Rt+1,...,Rt2}
δ

 ∑
(h,p)∈R

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
×

t∏
j=1

δ

 ∑
(h,p)∈Qj

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
+

∑
(h,p)∈Rj

(−1)p
(
`
(p)
h−1 − `

(p)
h

) ≤ sq−t1∨t2 .
Using (6.4), we arrive at∑

j1,...,jt1 pw different
m1,...,mt2 pw different

|{j1,...,jt1}∩{m1,...,mt2}|=t

∑
Q∈P(2M(k+1),t1,t1−t)

∑
R∈P(2M(k+1),t2,t2−t)

∑
`
(1)
1 ,...,`

(1)
k+1∈T
...

`
(2M)
1 ,...,`

(2M)
k+1 ∈T

`
(p)
h 6=`

p
h−1,h∈[k+1]

∏
Q∈{Qt+1,...,Qt1}

δ

 ∑
(h,p)∈Q

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
×

∏
R∈{Rt+1,...,Rt2}

δ

 ∑
(h,p)∈R

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
×

t∏
j=1

δ

 ∑
(h,p)∈Qj

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
+

∑
(h,p)∈Rj

(−1)p
(
`
(p)
h−1 − `

(p)
h

)
≤

∑
j1,...,jt1 pw different
m1,...,mt2 pw different

|{j1,...,jt1}∩{m1,...,mt2}|=t

(9q2)q
(

3q

2

)−t1−t2
sq−t1∨t2

≤
(
n

t1

)(
t1
t

)(
n− t1
t2 − t

)
(9q2)q

(
3q

2

)−t1−t2
sq−t1∨t2

≤ nt1tt1nt2−t(9q2)q
(

3q

2

)−t1−t2
sq−t1∨t2

≤ (9q2s)q
( q
n

)t( n
3
2q

)t1+t2

s−t1∨t2 ,
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where we have applied t1 ≤ q in the last step. Putting these pieces together, we obtain

E ≤
(

9q2s

n2

)q q∑
t=0

( q
n

)t q/2+bt/2c∑
t1=t

q/2+bt/2c∑
t2=t

(
n
3
2q

)t1+t2

s−t1∨t2

=

(
9q2s

n2

)q q∑
t=0

( q
n

)t q/2+bt/2c∑
t1=t

t1−1∑
t2=t

(
n
3
2q

)t1+t2

s−t1 +

q/2+bt/2c∑
t2=t1

(
n
3
2q

)t1+t2

s−t2

 . (6.19)

Let us evaluate the inner sums in (6.19). Since n ≥ (3/2)q by (6.13) we have

q/2+bt/2c∑
t2=t1

(
n
3
2q

)t1+t2

s−t2 =

(
n
3
2q

)t1 q/2+bt/2c∑
t2=t1

(
n

3
2qs

)t2

=

(
n2(

3
2q
)2
s

)t1 q/2+bt/2c−t1∑
t2=0

(
n

3
2qs

)t2
≤ 2

(
n2(

3
2q
)2
s

)q/2+t/2

.

Similarly, using once more (6.13) in the form n ≥ (3/2)q
√
s, we obtain

t1−1∑
t2=t

(
n
3
2q

)t1+t2

s−t1 ≤

(
n2(

3
2q
)2
s

)t1
and

q/2+bt/2c∑
t1=t

(
n2(

3
2q
)2
s

)t1
≤ 2

(
n2(

3
2q
)2
s

)q/2+t/2

.

Plugging everything into (6.19) finishes the proof of the lemma.

6.3 Proof of Theorem 2.1

According to Theorem 6.1, all conditions of Theorem 3.1 are satisfied with probability at least
1− ε provided

n2 ≥ Cs log2 (cN/ε) ,

where C, c > 0 are numerical constants satisfying the bounds claimed in Theorem 2.1. This
concludes the proof.

7 Numerical simulations

7.1 Chambolle and Pock’s iterative primal dual algorithm

For the numerical simulations, we use Chambolle and Pock’s primal dual algorithm [9] to com-
pute the solution of (2.9) and (2.11). The algorithm is suited for a general convex optimization
problem of the form

min
x∈CN

F (Ax) +G(x) (7.1)

with A ∈ Cm×N , F : Cm → (−∞,∞] and G : CN → (−∞,∞] lower semi-continuous convex
functions. The dual problem to (7.1) is given by

max
ξ∈Cm

−F ∗(ξ)−G∗(−A∗ξ), (7.2)
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where F ∗, G∗ denote the convex conjugates of F,G. Here, we recall that the convex conjugate
function F ∗ : Cm → (−∞,∞] is defined as

F ∗(y) := sup
x∈Cm

{Re (〈x, y〉)− F (x)} .

In the cases of interest to us, strong duality holds, meaning that the optimal values of (7.1)
and (7.2) coincide. For describing Chambolle and Pock’s algorithm, we require the proximal
mappings of F and G defined as

PG(τ ; z) := argmin
x∈CN

{
τG(x) +

1

2
‖x− z‖22

}
,

and analogously for F . The iterative primal dual algorithm then reads as follows. We select
parameters θ ∈ [0, 1], τ, σ > 0 such that τσ‖A‖2→2 < 1 and initial vectors x0 ∈ CN , ξ0 ∈ Cm,
x̄0 = x0. Then one iteratively computes

ξn+1 := PF ∗(σ; ξn + σAx̄n) ,

xn+1 := PG(τ ;xn − τA∗ξn+1) ,

x̄n+1 := xn+1 + θ(xn+1 − xn) .

In [9], it is shown that for the parameter choice θ = 1 the algorithm converges in the sense that
xn converges to the minimizer of the primal problem (7.1) and ξn converges to the solution of
the dual problem (7.2) as n tends to∞. Moreover, [9] also gives an estimate of the convergence
rate for a partial primal dual gap.

7.2 The algorithm for `1-minimization

Let us now specialize to the case of `1-minimization. We remark that to the best of our knowl-
edge, Chambolle and Pock’s algorithm has not yet been specialized to equality-constrained
and noise-constrained `1-minimization before, so we provide the first numerical tests of the
algorithm in this setup.

Let us first consider the problem

min
x∈CN

‖x‖1 subject to Ax = y.

This is a special case of (7.1) with G(x) = ‖x‖1 and F (z) = 0 if z = y and ∞ otherwise.
Straightforward computations show that for all ξ ∈ Cm, ζ ∈ CN ,

F ∗(ξ) = Re(〈ξ, y〉), G∗(ζ) = χB‖·‖∞ (ζ) =

{
0 if ‖ζ‖∞ ≤ 1,
∞ otherwise ,

PF (σ; ξ) = y, PF ∗(σ; ξ) = ξ − σy.

The proximal mapping of G(x) = ‖x‖1 can be evaluated coordinatewise, so that it is enough to
compute the proximal of the modulus function |·| on C. The latter is given by the well-known
soft-thresholding operator Sτ defined as

Sτ (z) := P|·|(τ, z) = argmin
x∈C

{
1

2
|x− z|2 + τ |x|

}
=

{
sgn(z)(|z| − τ) if |z| ≥ τ ,
0 otherwise ,
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so that
PG(τ, z)` = Sτ (z`), ` ∈ [N ] . (7.3)

With these computations at hand, the algorithm for noise-free `1-minimization is given by the
iterations

ξn+1 = ξn + σ(Ax̄n − y) ,

xn+1 = Sτ (xn − τA∗ξn+1) ,

x̄n+1 = xn+1 + θ(xn+1 − xn) .

In the noisy case, we aim at solving

min
x∈CN

‖x‖1 subject to ‖Ax− y‖2 ≤ η.

In this setup, G(x) = ‖x‖1 and

F (z) = χB(y,η)(z) =

{
0 if ‖z − y‖2 ≤ η ,
∞ otherwise .

Carrying out analogous computations as in the noise-free case, we find that the corresponding
algorithm for the noisy case consists in iteratively computing

ξn+1 =

{
0 if ‖σ−1ξn +Ax̄n − y‖2 ≤ η ,(
1− ησ

‖ξn + σ(Ax̄n − y)‖2
)
(ξn + σ(Ax̄n − y)) otherwise ,

xn+1 = Sτ (xn − τA∗ξn+1) ,

x̄n+1 = xn+1 + θ(xn+1 − xn) .

7.3 Numerical results

We apply the above algorithm for `1-minimization to the sensing matrices given by (2.7). We
choose the wavelength λ = 0.03m, the resolution d0 = 10m, the distance z0 = 10000m and
the size of the aperture B = 30m. Note that in this scenario, we have d0B/(λz0) = 1. To
speed up the algorithm, we exploit the fact that the matrix A ∈ Cn

2×N from (2.7) can be
factorized into a product of diagonal matrices and a nonequispaced Fourier matrix. In fact,
assuming a square resolution grid, we can write the grid parameter as double index (`, ˜̀) with
`, ˜̀∈ [N1] where N2

1 = N . For j, k ∈ [n] and aj = (ξj , ηj), ak = (ξk, ηk) we then have

(Az)jk = exp

(
πi

λz0

(
‖(ξj , ηj)‖22 + ‖(ξk, ηk)‖22

))
∑

`,˜̀∈[N1]

exp

(
−2πi

〈
(`, ˜̀),

(
ξj + ξk
B

,
ηj + ηk
B

)〉)
exp

(
2πid0

λz0

(
`2 + ˜̀2

))
z̃(`,˜̀).

Since the nonequispaced Fourier transform can be implemented at computational costs that
are only slightly larger than that of the Fast Fourier Transform, it gives rise to fast approximate
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matrix-vector multiplication algorithms, see [24] and reference therein. We use an implemen-
tation of S. Kunis, which can be found in the Matlab toolbox associated to the paper [20]. The
algorithm is run with the renormalized matrix Ã = 1√

N
A and the parameter choices θ = 1,

σ = 1 and τ = 0.5. For fixed sparsity s, we generate a random vector in the following way:
We choose the support set uniformly at random, then we sample a Steinhaus vector on this
support and multiply its nonzero entries independently by a dynamic range coefficient uni-
formly distributed on [1, 10]. With a fixed number of resolution cells, we vary the number n of
antennas and compute empirical recovery rates by choosing the n antenna positions uniformly
at random from the domain [−B/2, B/2]2, where we leave the vector to be recovered fixed for
the whole period.
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Fig. 3 Empirical recovery rates for fixed sparsity s = 100 and varying number n of antennas:
(a) N = 6400 resolution cells (b) N = 16900 resolution cells

With the resulting noise-free measurement vector y we compute the `1-minimizer with
Chambolle and Pock’s algorithm (which takes about 300 iterations), and we record whether the
original vector is recovered (up to numerical errors of at most 10−3 measured in the `2-norm).
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Repeating this test 100 times for each choice of parameters (s, n,N) provides an empirical
estimate of the success probability. In Figure 3, we display the result of noiseless recovery
for fixed sparsity s = 100 and for N = 6400 respectively N = 16900 resolution cells. The
transition from the unsuccessful regime to the successful regime occurs at about 28 antennas,
corresponding to 784 measurements, for N = 6400, so in practice, the algorithm works even
better than predicted by our theoretical results. In the situation with more resolution cells, the
transition occurs at a slightly increased number of antennas. The illustration in Figure 3 was
produced with the version of the algorithm for equality constrained `1-minimization. To test
the robustness of our recovery scheme with respect to noise, we compute receiver operating
characteristic curves for various parameter choices, see [28, Chapter 6] and [23, Chapter II.D],
using the noise-constrained version of Chambolle and Pock’s algorithm algorithm. We start
by simulating a target vector x ∈ C6400 with ‖x‖0 = 100, that is we simulate 100 targets in
6400 resolution cells. We do this as described above, that is we select the support uniformly
at random, then simulate random phases on the support and multiply them independently by
a dynamic range coefficient uniformly distributed on [1, 10]. We then leave the vector x fixed,
draw a realization of our random scattering matrix A and run noise constrained basis pursuit
with the noisy measurements y = Ax + e, where e is a complex Gaussian noise vector. The
entries of the recovered solution x̂ are then compared to a threshold τ > 0. If |x̂k| < τ , then it
is set to zero, otherwise it remains unchanged. We then count how many of the actual targets
in x are detected. The detection probability is the number of detections divided by the true
number of targets, in our case 100. Moreover, we count the number of false alarms, that is the
number of positions k ∈ [6400] where x̂k 6= 0 but xk = 0. The false alarm probability is the
number of false alarms divided by the number of scatterers. For fixed x and τ , we repeat this
a 100 times and compute the empirical probability of detection Pd and the probability of false
alarm Pf . This is then again repeated for varying values of the threshold τ , resulting in a plot
of Pd versus Pf , which is called the receiver operating characteristic curve.
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Fig. 4 ROC-curves for a fixed 100-sparse vector x in 6400 resolution cells

In Figure 4, the results of the simulation are depicted. We see that if we choose the number
of antennas at the critical value 28 observed in Figure 3, then we get a significant number of
missed targets and false alarms. If we however slightly increase the number of antennas, we
get almost perfect detection and virtually no false alarms if we choose the threshold correctly,
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in our case as τ ≈ 0.5. So our recovery scheme is in fact very robust with respect to noise in
the sense that the support is very well recovered. However, the quality of the approximation
of the true reflectivities decreases with the SNR, as is to be expected.
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