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Abstract

We consider a multiple-input-multiple-output radar system and derive a theoretical framework
for the recoverability of targets in the azimuth-range domain and the azimuth-range-Doppler do-
main via sparse approximation algorithms. Using tools developed in the area of compressive sens-
ing, we prove bounds on the number of detectable targets and the achievable resolution in the
presence of additive noise. Our theoretical findings are validated by numerical simulations.
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1 Introduction

While radar systems have been in use for many decades, radar is far from being a ‘solved
problem’. Indeed, exciting new developments in radar pose great challenges both to engineers
and mathematicians [6]. Two such developments are the advent of MIMO (multi-input multi-
output) radar [10], and the application of compressed sensing to radar signal processing [15].

MIMO radar is characterized by using multiple antennas to simultaneously transmit diverse,
usually orthogonal, waveforms in addition to using multiple antennas to receive the reflected
signals. MIMO radar has the potential for enhancing spatial resolution and improving interference
and jamming suppression. The ability of MIMO radar to shape the transmit beam post facto
allows for adapting the transmission based on the received data in a way which is not possible in
non-MIMO radar.

A radar system illuminates a given area and attempts to detect and determine the location of
objects of interest in its field of view, and to estimate their strength (radar reflectivity). The space
of interest may be divided into range-azimuth (distance and direction) cells, or range-Doppler-
azimuth (distance, direction and speed) cells in the case there is relative motion between the radar
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and the object. In many cases the radar scene is sparse in the sense that only a small fraction
(often a very small fraction) of the cells is occupied by the objects of interest.

Conventional radar processing does not take into account the a-priori knowledge that the radar
scene is sparse. Recent works, such as [15, 21] developed techniques which attempt to exploit
this sparsity using tools from the area of compressed sensing [4, 8]. The exploitation of sparsity
has the potential to improve the performance of radar systems under certain conditions and is
therefore of considerable practical interest.

In this paper we study the issue of sparsity in the specific context of a MIMO radar system
employing multiple antennas at the transmitter the receiver, where the two arrays are co-located.
We note that related work on the application of compressive sensing techniques to MIMO radar
can be found in [30, 31]. Our emphasis here is on developing the basic theory needed to apply
sparse recovery techniques for the detection of the locations and reflectivities of targets for MIMO
radar.

The basic model for the problem we are considering involves a linear measurement equation
y = Ax + w where y is a vector of measurements collected by the receiver antennas over an
observation interval, A is a measurement matrix whose columns correspond to the signal received
from a single unit-strength scatterer at a particular range-azimuth (or range-azimuth-Doppler)
cell, x is a vector whose elements represent the complex amplitudes of the scatterers, and w is
a noise vector. The measurement equation is assumed to be under-determined, possibly highly
under-determined. The sparsity of the radar scene is introduced by assuming that only K elements
of the vector x are non-zero, where K is much smaller than the dimension of the vector. The
measurement matrix A embodies in it the details of the radar system such as the transmitted
waveforms and the structure of antenna array.

In this paper we study the conditions under which this problem has a satisfactory solution.
This is a fundamental issue of both theoretical and practical importance. More specifically, the
analysis presented in the following sections addresses the following issues:

• It is known from the theory of compressed sensing [4, 8] that the matrix A must satisfy
certain conditions in order that the solution computed via an appropriate convex program
will indeed coincide with the desired sparsest solution (whose computation is in general an
NP-hard problem). In our problem the characteristics of this matrix depend on the choice
of the radar waveforms and the number and positions of the transmit and receive antennas.
We develop the results necessary for understanding how the selection of the parameters of
the radar system affects the conditions mentioned above.

• The ability of the algorithm to correctly detect targets depends on the number of these
targets, K, and the signal to noise ratio. We show that as long as the number of the targets
is less than a maximal value Kmax, and the signal to noise is larger than some minimal
value SNRmin, the targets can be correctly detected with high probability by solving an
ℓ1-regularized least squares problem known under the name lasso. Explicit formulas are
presented for Kmax and SNRmin as a function of the number of transmit and receive antennas
and the number of azimuth and range cells.

The structure of the paper is as follows. Subsection 1.1 introduces notation used throughout the
paper. In Section 2 we describe the problem formulation and the setup. We derive conditions for
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the recovery of targets in the Doppler-free case in Section 3, and the case of detecting targets in
presence of Doppler is analyzed in Section 4. Our theoretical results are supported by numerical
simulations, see Section 5. We conclude in Section 6. Finally, some auxiliary results are collected
in the appendices.

1.1 Notation

Let v ∈ C
n. As usual, we define ‖v‖1 :=

∑n
k=1 |vk| and ‖v‖2 :=

√∑n
k=1 |vk|2. For a given

matrix A we denote its k-th column by Ak and the element in the i-th row and k-th column by
A[i,k]. The operator norm of A is the largest singular value of A and is denoted by ‖A‖op, the

Frobenius norm of A is ‖A‖F =
√∑

i,k |A[i,k]|2. The coherence of A is defined as

µ(A) := max
k 6=l

|〈Ak,Al〉|
‖Ak‖2‖Al‖2

. (1)

For x ∈ C
n, let Tτ denote the circulant translation operator, defined by

Tτx(l) = x(l − τ), (2)

where l − τ is understood modulo n, and let Mf be the modulation operator defined by

Mfx(l) = x(l)e2πilf . (3)

2 Problem formulation and signal model

We refer to [24, 6] for the mathematical foundations of radar and to [18] for an introduction
to MIMO radar. However, the reader needs only a very basic knowledge of the mathematical
concepts underlying radar to be able to follow our approach.

We consider a MIMO radar employing NT antennas at the transmitter and NR antennas at the
receiver. We assume that the element spacing is sufficiently small so that the radar return from a
given scatterer is fully correlated across the array. In other words, this is a coherent propagation
scenario.

To simplify the presentation we assume that the two arrays are co-located, i.e. this is a mono-
static radar. The extension to the bi-static case is straightforward as long as the coherency
assumption holds for each array. The arrays are characterized by the array manifolds: aR(β) for
the receive array and aT (β) for the transmit array, where β = sin(θ) is the direction relative to the
array. We assume that the arrays and all the scatterers are in the same 2-D plane. The extension
to the 3-D case is straightforward and all of the following results hold for that case as well.

For convenience we formulate our theorems and analysis in terms of delay τ instead of range
r. This is no loss of generality, as delay and range are related by τ = 2r/c, with c denoting the
speed of light.

2.1 The model for the azimuth-delay domain

The i-th transmit antenna repeatedly transmits the signal si(t). Let Z(t; β, τ) be the NR × Nt

noise-free received signal matrix from a unit strength target at direction β and delay τ , where Nt
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is the number of samples in time. Then

Z(t; β, τ) = aR(β)aT
T (β)ST

τ ,

where Sτ is an Nt×NT matrix whose columns are the circularly delayed signals si(t−τ), sampled
at the discrete time points t = n∆t, n = 1, . . . , Nt. If τ = 0, we often write simply S instead of
S0.

Assuming uniformly spaced linear arrays, the array manifolds are given by

aT (β) =








1
ej2πdT β

...
ej2πdT β(NT−1)








(4)

and

aR(β) =








1
ej2πdRβ

...
ej2πdRβ(NR−1)








(5)

where dT and dR are the normalized spacings (distance divided by wavelength) between the
elements of the transmit and receive arrays, respectively.

The spatial characteristics of a MIMO radar are closely related to that of a virtual array with
NT NR antennas, whose array manifold is a(β) = aT (β)⊗aR(β). It is known [11] that the following
choices for the spacing of the transmit and receive array spacing will yield a uniformly spaced
virtual array with half wavelength spacing:

dR = 0.5, dT = 0.5NR; (6)

dT = 0.5, dR = 0.5NT .

Both of these choices lead to a virtual array whose aperture is 0.5(NT NR − 1) wavelengths. This
is the largest virtual aperture free of grating lobes. The choices (6) and (7) will also show up in
our theoretical analysis, e.g. see Theorem 1.

Next let z(t; β, τ) = vec{Z}(t; β, τ) be the noise-free vectorized received signal. We set up
a discrete delay-azimuth grid {(βi, τj)}, 1 ≤ i ≤ Nβ, 1 ≤ j ≤ Nτ , where ∆β and ∆τ denote
the corresponding discretization stepsizes. Using vectors z(t; βi, τj) for all grid points (βi, τj)
we construct a complete response matrix A whose columns are z(t; βi, τj) for 1 ≤ i ≤ Nβ and
1 ≤ j ≤ Nτ . In other words, we have Nτ delay values and Nβ azimuth values, so that A is a
NRNt × NτNβ matrix.

Assume that the radar illuminates a scene consisting of K scatterers located on K points of
the (β, τj) grid. Let x be a sparse vector whose non-zero elements are the complex amplitudes of
the scatterers in the scene. The zero elements corresponds to grid points which are not occupied
by scatterers. We can then define the radar signal y received from this scene by

y = Ax + v (7)

where y is a NRNt × 1 vector, x is a NτNβ × 1 sparse vector, v is a NRNt × 1 complex Gaussian
noise vector, and A is a NRNt × NτNβ matrix.
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2.2 The model for the azimuth-delay-Doppler domain

The discussion so far was for the case of a stationary radar scene and a fixed radar, in which
case there is no Doppler shift. The extension of this signal model to include the Doppler effect is
conceptually straightforward, but leads to a significant increase in the problem dimension.

The signal model for the return from a unit strength scatterer at direction β, delay τ , and
Doppler f (corresponding to its radial velocity with respect to the radar) is given by

Z(t; β, τ, f) = aR(β)aT
T (β)ST

τ,f ,

where Sτ,f is a Nt × NT matrix whose columns are the circularly delayed and Doppler shifted
signals si(t − τ)ej2πft.

As before we let z(t; β, τ, f) = vec{Z}(t; β, τ, f) be the noise-free vectorized received signal.
We extend the discrete delay-azimuth grid by adding a discretized Doppler component (with
stepsize ∆f and corresponding Doppler values f = k∆f , k = 1, . . . , Nf ) and obtain a uniform
delay-azimuth-Doppler grid {(βi, τj, fk)}. Using vectors z(t; βi, τj, fk) for all discrete (βi, τj, fk)
we construct a complete response matrix A whose columns are z(t; βi, τj, fk) for 1 ≤ i ≤ Nβ,
1 ≤ j ≤ Nτ , 1 ≤ k ≤ Nf .

Assume that the radar illuminates a scene consisting of K scatterers located on K points of the
(β, τj, fk) grid. Let x be a sparse vector whose non-zero elements are the complex amplitudes of
the scatterers in the scene. The zero elements corresponds to grid points which are not occupied
by scatterers. We can then define the radar signal received from this scene y by

y = Ax + v (8)

where y is a NRNt×1 vector, x is a NτNβNf ×1 sparse vector, v is a NRNt×1 complex Gaussian
noise vector, and A is a NRNt × NτNβNf matrix.

2.3 The target model

We define the sign function for a vector z ∈ C
n as

sgn(zk) =

{

zk/|zk| if zk 6= 0,

0 else.
(9)

We introduce the following generic K-sparse target model:

• The support IK ⊂ {1, . . . , NτNβ} of the K nonzero coefficients of x is selected uniformly at
random.

• The non-zero coefficients of sgn(x) form a Steinhaus sequence, i.e., the phases of the non-zero
entries of x are random and uniformly distributed in [0, 2π).

We do not impose any condition on the amplitudes of the non-zero entries of x. We do assume
however that the targets are exactly located at the discretized grid points. This is certainly an
idealized assumption, that is not satisfied in this strict sense in practice, resulting in a “gridding
error”. We refer the reader to [16, 7] for an initial analysis of the associated perturbation error,
and to [9] for an interesting numerical approach to deal with this issue.
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2.4 The recovery algorithm – Debiased Lasso

A standard approach to find a sparse (and under appropriate conditions the sparsest) solution
to a noisy system y = Ax + w is via

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1, (10)

which is also known as lasso [26]. Here λ > 0 is a regularization parameter.
In this paper we adopt the following two-step version of lasso. In the first step we compute an

estimate Ĩ for the support of x by solving (10). In the second step we estimate the amplitudes of
x by solving the reduced-size least squares problem min ‖AĨxĨ − y‖2, where AĨ is the submatrix
of A consisting of the columns corresponding to the index set Ĩ, and similarly for xĨ . This is a
standard way to “debias” the solution, we thus will call this approach in the sequel debiased lasso.

3 Recovery of targets in the Doppler-free case

We assume that si(t) is a periodic, continuous-time white Gaussian noise signal of period-
duration T seconds and bandwidth B. The transmit waveforms are normalized so that the total
transmit power is fixed, independent of the number of transmit antennas. Thus, we assume that
the entries of si(t) have variance 1

NT
. It is convenient to introduce the finite-length vector si

associated with si, via si(l) := si(l∆t), l = 1, . . . , Nt, where ∆t = 1
2B

and Nt = T/∆t.

Theorem 1 Consider y = Ax+w, where A is as defined in Subsection 2.1 and wi ∈ CN (0, σ2).
Choose the discretization stepsizes to be ∆β = 2

NRNT
and ∆τ = 1

2B
. Let dT = 1/2, dR = NT /2 or

dT = NR/2, dR = 1/2, and suppose that

Nt ≥ 128, Nτ ≥
√

Nβ, and
(
log(NτNβ)

)3 ≤ Nt. (11)

If x is drawn from the generic K-sparse target model with

K ≤ Kmax :=
c0NτNR

3NT log(NτNβ)
(12)

for some constant c0 > 0, and if

min
k∈I

|xk| >
10σ√
NRNt

√

2 log NτNβ, (13)

then the solution x̃ of the debiased lasso computed with λ = 2σ
√

2 log(NτNβ) obeys

supp(x̃) = supp(x), (14)

with probability at least
(1 − p1)(1 − p2)(1 − p3)(1 − p4),

and
‖x̃ − x‖2

‖x‖2

≤ σ
√

12NtNR

‖y‖2

(15)
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with probability at least
(1 − p1)(1 − p2)(1 − p3)(1 − p4)(1 − p5),

where

p1 = e−
(1−

√
1/3)2Nt
2 + N1−CNT

t ,

p2 = 2e−
Nt(

√
2−1)2

4 + 2(NRNT )−1 − 6(NtNβ)−1,

p3 = e−
(1−

√
1/3)2Nt
2 , p4 = NRNT e−

NRNt
25 ,

and
p5 = 2(NτNβ)−1(2π log(NτNβ) + K(NτNβ)−1) + O((NτNβ)−2 log 2).

Remark:

(i) While the expressions for the probability of success in the above theorem are admittedly
somewhat unpleasant, we point out that the individual terms are fairly small. Moreover,
the probabilities can easily be made smaller by slightly increasing the constants in the
assumptions on Nt, NR, NT .

(ii) The assumptions in (11) are fairly mild and easy to satisfy in practice.

(iii) We emphasize that there is no constraint on the dynamic range of the target amplitudes.
The lasso estimate will recover all target locations correctly as long as they exceed the noise
level (13), regardless of the dynamical range between the targets.

(iv) We note that |xk|2/σ2 is the signal-to-noise ratio for the k-th scatterer at the receiver array in-
put. The measurement vector y provides NRNt measurements of xk. Therefore it is useful to
define the signal-to-noise ratio associated with the k-th scatterer as SNRk = NRNt|xk|2/σ2.
This is often referred to as the output SNR because it is the effective SNR at the output
of a matched-filter receiver. Equation (13) can thus be written as SNRk > 200 log NτNβ,
However, the factor 200 is definitely way too conservative. As is evident from the comments
following Theorem 1.3 in [3], one can replace the factor 10 in (13) by a factor (1+ε) for some
ε > 0, at the cost of a somewhat reduced probability of success and some slightly stronger
conditions on the coherence and sparsity. This indicates that the SNR condition for which
perfect target detection can be achieved is

SNR ≥ SNRmin := C log NτNβ, (16)

where C is a constant of size O(1).

(v) The condition that the target locations are assumed to be random can likely be removed by
using a different proof technique that relies on a dual certificate approach (e.g. see [5]) and
tools developed in [22]. We do not pursue this direction in this paper.

The proof of Theorem 1 is carried out in several steps. We need two key estimates, one concerns
a bound for the operator norm of A, the other one concerns a bound for the coherence of A. We
start with deriving a bound for ‖A‖op.
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Lemma 2 Let A be as defined in Theorem 1. Then

P

(

‖A‖2
op

≥ NtNRNT (1 + log Nt)
)

≤ N1−CNT
t , (17)

where C > 0 is some numerical constant.

Proof: There holds ‖A‖2
op = ‖AA∗‖op. It is convenient to consider AA∗ as block matrix






B1,1 B1,2 . . . B1,NR

...
. . .

...
B∗

NR,1 BNR,NR




 ,

where the blocks {Bi,i′}NR

i,i′=1 are matrices of size Nt ×Nt. We claim that AA∗ is a block-Toeplitz
matrix (i.e., Bi,i′ = Bi+1,i′+1, i = 1, . . . , NR−1) and the individual blocks Bi,i′ are circulant matri-
ces. To see this, recall the structure of A and consider the entry B[i,l;i′,l′], i, i′ = 1, . . . , NR; l, l′ =
1, . . . , Nt:

B[i,l;i′,l′] = (AA∗)[i,l;i′,l′] =
∑

β

∑

τ

A[i,l;β,τ ]A[i′,l′;β,τ ]

=
∑

β

Nτ∑

n=1

aR(β)i

NT∑

k=1

aT (β)ksk(l∆t − n∆τ )aR(β)i′

NT∑

k′=1

aT (β)k′sk′(l′∆t − n∆τ )

=
∑

β

aR(β)iaR(β)i′

NT∑

k=1

NT∑

k′=1

aT (β)kaT (β)k′

Nτ∑

n=1

sk(l∆t − n∆τ )sk′(l′∆t − n∆τ )

=
∑

β

ej2πdR(i−i′)β

NT∑

k=1

NT∑

k′=1

ej2πdT (k−k′)β

Nτ∑

n=1

sk(l∆t − n∆τ )sk′(l′∆t − n∆τ ), (18)

where we used the delay discretization τ = n∆τ , n = 1, . . . , Nτ . The block-Toeplitz structure,
Bi,i′ = Bi+1,i′+1, follows from observing that the expression (18) depends on the difference i − i′,
but not on the individual values of i, i′. The circulant structure of an individual block Bi,i′ (i, i′

are now fixed) follows readily from noting that

Nτ∑

n=1

sk(l∆t − n∆τ )sk′(l′∆t − n∆τ ) =
Nτ∑

n=1

sk((l + 1)∆t − n∆τ )sk′((l′ + 1)∆t − n∆τ ),

since we have chosen ∆t = ∆τ and since the shifts are circulant in this case.
We will now show that the blocks Bi,i′ are actually zero-matrices for i 6= i′. For convenience we

introduce the notation

Gk,k′(l, l′) :=
Nτ∑

n=1

sk(l∆t − n∆τ )sk′(l′∆t − n∆τ ), l, l′ = 1, . . . , Nt; k, k′ = 1, . . . , NT ,
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Substituting dT = 1/2, dR = NT /2 (the very similar calculation for dR = 1/2, dT = NR/2 is left to
the reader) and the discretization β = n∆β, n = 1, . . . , Nβ, with ∆β = 2

NRNT
in (18) we can write

B[i,l;i′,l′] =

NRNT
2

−1
∑

n=−NRNT
2

e
j2π

NT
2

(i−i′) 2n
NRNT

NT∑

k=1

NT∑

k′=1

e
j2π 1

2
(k−k′) 2n

NRNT Gk,k′(l, l′)

=

NT∑

k=1

NT∑

k′=1

Gk,k′(l, l′)

NRNT−1∑

n=0

e
j2πNT (i−i′) n

NRNT e
j2π(k−k′) n

NRNT . (19)

We analyze the inner summation in (19) separately.

NRNT−1∑

n=0

e
j2πNT (i−i′) n

NRNT e
j2π(k−k′) n

NRNT =

NT−1∑

n1=0

NR−1∑

n2=0

e
j2π(k−k′)

n1NR+n2
NRNT e

j2πNT (i−i′)
n1NR+n2

NRNT

=

NR−1∑

n2=0

e
j2π(k−k′)

n2
NRNT e

j2π(i−i′)
n2NT
NRNT

NT−1∑

n1=0

e
j2π(k−k′)

n1NR
NRNT e

j2π(i−i′)
n1NRNT

NRNT

=

NR−1∑

n2=0

e
j2π(k−k′)

n2
NRNT e

j2π(i−i′)
n2
NR

NT−1∑

n1=0

e
j2π(k−k′)

n1
NT ej2π(i−i′)n1

︸ ︷︷ ︸

= 1 for all i, i′

=

NR−1∑

n2=0

e
j2π(k−k′)

n2
NRNT e

j2π(i−i′)
n2
NR

NT−1∑

n1=0

e
j2π(k−k′)

n1
NT

=

NR−1∑

n2=0

e
j2π(k−k′)

n2
NRNT e

j2π(i−i′)
n2
NR NT δk−k′ .

Hence

B[i,l;i′,l′] = NT

NT∑

k=1

NT∑

k′=1

δk−k′Gk,k′(l, l′)

NR−1∑

n2=0

e
j2π(k−k′)

n2
NRNT

︸ ︷︷ ︸

= 1 for k = k′

e
j2π(i−i′)

n2
NR

= NT

NT∑

k=1

Gk,k(l, l
′)

NR−1∑

n2=0

e
j2π(i−i′)

n2
NR = NT NR

NT∑

k=1

Gk,k(l, l
′)δi−i′ .

Thus, Bi,i′ = 0 for i 6= i′, and A∗A is indeed a block-diagonal matrix, which in turn implies
‖A‖2

op = maxi ‖Bi,i‖op. But due to the block-Toeplitz structure of A∗A we have B1,1 = B2,2 =
· · · = BNR,NR

. Therefore
‖A‖2

op = ‖B1,1‖op. (20)

To bound ‖B1,1‖op we utilize its circulant structure as well as tail bounds of quadratic forms.

Let b be the first column of B1,1, then ‖B1,1‖op =
√

Nt‖b̂‖∞ where b̂ is the Fourier transform of
b. From our previous computations we have (after a change of variables)

b(l) = NT NR

NT∑

k=1

Gk,k(l, 0) = NT NR

NT∑

k=1

Nτ∑

n=1

sk(n∆τ − l∆t)sk(n∆τ ), l = 0, . . . , Nt − 1.
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We will rewrite this expression so that we can apply Lemma 12 to bound ‖b̂‖∞. Let TNt denote
the translation operator on C

Nt as introduced in (2) and define the NtNT ×NtNT block-diagonal

matrix U(l) = {u(l)
ii′} by

U(l) := NRNT

√

NtINT
⊗ Tl

Nt
, for l = 0, . . . , Nt − 1. (21)

Furthermore, let z = [sT
1 , sT

2 , . . . , sT
NT

]T , then

√

Ntb(l) =
√

NtNT NR

NT∑

k=1

〈sk,T
l
Nt

sk〉 = 〈z,U(l)z〉, =
NtNT∑

i,i′=1

u
(l)
ii′ z̄izi′ .

and therefore

√

Ntb̂(k) =
1√
Nt

Nt−1∑

l=0

NtNT∑

i,i′=1

u
(l)
ii′ z̄izi′e

j2πkl/Nt =

NtNT∑

i,i′=1

z̄izi′
1√
Nt

Nt−1∑

l=0

u
(l)
ii′ e

j2πkl/Nt =

NtNT∑

i,i′=1

z̄izi′v
(k)
ii′ ,

where we have denoted v
(k)
ii′ := 1√

Nt

∑Nt−1
l=0 u

(l)
ii′ e

j2πkl/Nt for i, i′ = 0, . . . , NtNT − 1 and k =

0, . . . , Nt − 1. It follows from (21) and standard properties of the Fourier transform that the

matrix V(k) := {v(k)
ii′ } is a block-diagonal matrix with NT blocks of size Nt × Nt, where each

non-zero entry of such a block has absolute value NRNT . Furthermore, a little algebra shows that
‖V(k)‖F =

√

N2
t N2

RN3
T , ‖V(k)‖op = NtNRNT , trace(V(k)) = NtNRN2

T , and

E
(

NtNT∑

i,i′=1

z̄izi′v
(k)
ii′

)
=

1

NT

trace(V(k)) = NtNRNT .

We can now apply Lemma 12 (keeping in mind that xi ∼ CN (0, 1
NT

)) and obtain

P
(
|
√

Ntb̂(l)| ≥ NtNRNT + t
)
≤ exp

(

− C min
{ tNT

NtNRNT

,
t2N2

T

N2
t N2

RN3
T

})

,

where C > 0 is some numerical constant.
Choosing t = NtNRNT log Nt gives

P
(
|
√

Ntb̂(l)| ≥ NtNRNT (1 + log Nt)
)
≤ exp(−CNT log Nt),

for l = 0, . . . , Nt − 1. Forming the union bound over the Nt possibilities for l gives

P
(
max

l
{|

√

Ntb̂(l)|} ≥ NtNRNT (1 + log Nt)
)
≤

Nt−1∑

l=0

exp(−C
√

NT log Nt) = N1−CNT
t . (22)

We recall that ‖B1,1‖op = maxl |
√

Ntb̂(l)|, and substitute (22) into (20) to complete the proof.
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Next we estimate the coherence of A. Since the columns of A do not all have the same norm,
we will proceed in two steps. First we bound the modulus of the inner product of any two columns
of A and then use this result to bound the coherence of a properly normalized version of A. Since
the columns of A depend on azimuth and delay, we index them via the double-index (τ, β). Thus
the (τ, β)-th column of A is Aτ,β.

Lemma 3 Let A be as defined in Theorem 1. Assume that

Nτ ≥
√

Nβ and log(NτNβ) ≤ Nt

30
, (23)

then

max
(τ,β) 6=(τ ′,β′)

∣
∣〈Aτ,β,Aτ ′,β′〉

∣
∣ ≤ 3NR

√

Nt log(NτNβ) (24)

with probability at least 1 − 2(NRNT )−1 − 6(NτNRNT )−1.

Proof: We assume dT = 1
2
, dR = NT

2
and leave the case dT = NR

2
, dR = 1

2
to the reader. We need

to find an upper bound for

max |〈Aτ,β,Aτ ′,β′〉| for (τ, β) 6= (τ ′, β′).

It follows from the definition of z(t; β, r) via a simple calculation that

Aτ,β = aR(β) ⊗ (SτaT (β)),

from which we readily compute

〈Aτ,β,Aτ ′,β′〉 = 〈aR(β), aR(β′)〉〈SτaT (β),Sτ ′aT (β′)〉. (25)

We use the discretization β = n∆β, β′ = n′∆β, where ∆β = 2
NRNT

, n, n′ = 1, . . . , Nβ, with
Nβ = NRNT , and obtain after a standard calculation

〈aR(β), aR(β′)〉 =

{

NR if n − n′ = kNR for k = 0, . . . , NT − 1,

0 if n − n′ 6= kNR,
(26)

and

〈aT (β), aT (β′)〉 =

{

0 if n − n′ = kNR for k = 1, . . . , NT − 1,

〈aT (β), aT (β)〉 if n − n′ = 0.
(27)

As a consequence of (26), concerning β, β′ we only need to focus on the case n − n′ = kNR for
k = 1, . . . , NT − 1. Moreover, since

〈SτaT (β),Sτ ′aT (β′)〉 = 〈Sτ−τ ′aT (β),SaT (β′)〉, for τ, τ ′ = 0, . . . , Nτ − 1,

and |〈SτaT (β), aT (β′)〉| = |〈SNt−τaT (β), aT (β′)〉|, we can confine the range of values for τ, τ ′ to
τ ′ = 0, τ = 0, . . . , Nt/2.

We split our analysis into three cases, (i) β 6= β′, τ = 0, (ii) β 6= β′, τ 6= 0, and (iii) β = β′, τ 6= 0.

11



Case (i) β 6= β′, τ = 0: We will first find a bound for |〈aR(β), aR(β′)〉〈aT (β), aT (β′)〉| and then
invoke Lemma 11 to obtain a bound for |〈aR(β), aR(β′)〉〈SaT (β),SaT (β′)〉|.

Based on (26) and (27), to bound |〈aR(β), aR(β′)〉〈SaT (β),SaT (β′)〉| we only need to consider
those n, n′ for which n−n′ is not a multiple of NR, in which case aT (β) and aT (β′) are orthogonal.
We have

|〈aR(β), aR(β′)〉〈SaT (β),SaT (β′)〉| ≤ NR |〈S∗SaT (β), aT (β′)〉|. (28)

By Lemma 11 there holds

P

(

|〈S∗SaT (β), aT (β′)〉| ≥ tNt

)

≤ 2 exp
(

− Nt
t2

C1 + C2t
)
)

(29)

for all 0 < t < 1, where C1 = 4e√
6π

and C2 =
√

8e. We choose t = 3
√

1
Nt

log(NτNRNT ) in (29) and

get

P

(

|〈S∗SaT (β), aT (β′)〉| ≥ 3
√

Nt log(NτNRNT )
)

≤ 2 exp
(

− 9 log(NτNRNT )

C1 + 3C2√
Nt

√

log(NτNRNT )

)

. (30)

We claim that
9 log(NτNRNT )

C1 + 3C2√
Nt

√

log(NτNRNT )
≥ 2 log(NRNT ). (31)

To verify this claim we first note that (31) is equivalent to

9 log Nτ ≥ log(NRNT )(2C1 +
6C2√

Nt

√

log(NτNβ) − 9).

Using both assumptions in (23) and the fact that 2C1 + 6C2√
30

− 9 ≤ 9
2

we obtain

9 log Nτ ≥ log Nβ(2C1 +
6C2√

30
− 9) ≥ log Nβ(2C1 +

6C2√
Nt

√

log(NtNβ) − 9),

which establishes (31). Substituting now (31) into (30) gives

P

(

|〈S∗SaT (β), aT (β′)〉| ≥ 3
√

Nt log(NτNRNT )
)

≤ 2 exp
(
− 2 log(NRNT )

)
. (32)

To bound max |〈Aτ,β,Aτ,β′〉| we only have to take the union bound over NRNT different possi-
bilities associated with β, β′, as τ = τ ′ = 0. Forming now the union bound, and using (28),
yields

P

(

|〈Aτ,β,Aτ,β′〉| ≤ 3NR

√

Nt log(NτNRNT )
)

≥ 1 − 2(NRNT )−1. (33)

Case (ii) β 6= β′, τ 6= 0: We need to consider the case |〈SτaT (β),SaT (β′)〉| where β = n∆β,
β′ = n′∆β, with n − n′ = kNR for k = 1, . . . , NT − 1. Since the entries of S are i.i.d. Gaussian
random variables, it follows that the entries of SτaT (β) are i.i.d. CN (0, 1)-distributed, and similar
for SaT (β′). Moreover, the fact that 〈aT (β), aT (β′)〉 = 0 implies that SτaT (β) and SaT (β′) are
independent. Consequently, the entries of

∑Nt−1
l=0 (SτaT (β))l(SaT (β′))l are jointly independent.

Therefore, we can apply Lemma 14 with t = 3
√

Nt log(NτNRNT ), form the union bound over

12



the NτNRNT possibilities associated with τ (we do not take advantage of the fact we actually
have only Nτ − 1 and not Nτ possibilities for τ) and β, β′ (here, we take again into account
property (26)), and eventually obtain

P

(

|〈Aτ,β,Aτ ′,β′〉| ≤ 3NR

√

Nt log(NτNRNT )
)

≥ 1 − 2(NτNRNT )−1. (34)

Case (iii) β = β′, τ 6= 0: We need to find an upper bound for |〈SτaT (β),SaT (β)〉| where
τ = 1, . . . , Nt − 1. Since Since each of the entries of SτaT (β) and of SaT (β) is a sum of NT i.i.d.
Gaussian random variables of variance 1/NT , we can write

|〈SτaT (β),SaT (β)〉| = |
Nt−1∑

l=0

ḡl−τgl|, (35)

where gl ∼ N (0, 1). Note that the terms ḡl−τgl in this sum are no longer all jointly independent.
But similar to the proof of Theorem 5.1 in [20] we observe that for any τ 6= 0 we can split the
index set 0, . . . , Nt − 1 into two subsets Λ1

τ , Λ
2
τ ⊂ {0, . . . , Nt − 1}, each of size Nt/2, such that

the Nt/2 variables ḡ(l − τ)g(l) are jointly independent for l ∈ Λ1
τ , and analogous for Λ2

τ . (For
convenience we assume here that Nt is even, but with a negligible modification the argument also
applies for odd Nt.) In other words, each of the sums

∑

l∈Λr
τ
ḡ(l − τ)g(l), r = 1, 2, contains only

jointly independent terms. Hence we can apply Lemma 14 and obtain

P

(∣
∣
∑

l∈Λr
τ

ḡ(l − τ)g(l)
∣
∣ > t

)

≤ 2 exp
(

− t2

Nt/2 + 2t)

)

for all t > 0. Choosing t = 3
2

√

Nt log(NtNRNT ) gives

P

(∣
∣
∑

l∈Λr
τ

ḡ(l − τ)g(l)
∣
∣ >

3

2

√

Nt log(NtNRNT )
)

≤ 2 exp
(

−
9
4
Nt log(NtNRNT )

Nt

2
+ 3

√

Nt log(NtNRNT )

)

≤ 2 exp
(

− 9 log(NtNRNT )

2 + 12
√

log(NtNRNT )
Nt

)

. (36)

Condition (23) implies that 12
√

log(NtNRNT )
Nt

≤ 5
2
, hence the estimate in (36) becomes

P

(∣
∣
∑

l∈Λr
τ

ḡ(l − τ)g(l)
∣
∣ >

3

2

√

log(NtNRNT )
√

Nt

)

≤ 2 exp
(

− 9 log(NtNRNT )

2 + 5
2

)

= 2 exp
(
− 2 log(NtNRNT )

)

= 2(NtNRNT )−2. (37)

Using equation (35), inequality (37), and the pigeonhole principle, we obtain

P

(

|〈SτaT (β),SaT (β)〉| > 3
√

Nt log(NtNRNT )
)

≤ 4(NtNRNT )−2,

13



Combining this estimate with (25) yields

P

(

|〈Aτ,β,Aτ ′,β〉| ≥ 3NR

√

Nt log(NτNRNT )
)

≤ 4(NtNRNT )−2,

We apply the union bound over the Nt

2
NT NR different possibilities and arrive at

P

(

max |〈Aτ,β,Aτ ′,β〉| ≤ 3NR

√

Nt log(NτNRNT )
)

≥ 1 − 4(NtNRNT )−1, (38)

where the maximum is taken over all τ, τ ′, β, β′ with τ 6= τ ′.
An inspection of the bounds (33), (34), and (38) establishes (24), which is what we wanted to

prove.

The key to proving Theorem 1 is to combine Lemma 2 and Lemma 3 with Theorem 15. The
latter theorem requires the matrix to have columns of unit-norm, whereas the columns of our
matrix A have all different norms (although the norms concentrate nicely around

√
NtNRNT ).

Thus instead of Ax = y we now consider

Ãz = y, where Ã := AD−1 and z := Dx. (39)

Here D is the NτNβ × NτNβ diagonal matrix defined by

D(τ,β),(τ,β) = ‖Aτ,β‖2. (40)

In the noise-free case we can easily recover x from z via x = D−1z. In the noisy case we will utilize
the fact that for proper choices of λ the associated lasso solutions of (10) and (50), respectively,
have the same support, see also the proof of Theorem 1.

The following lemma gives a bound for µ(Ã) and ‖Ã‖op in terms of the corresponding bounds
for A.

Lemma 4 Let Ã = AD−1, where the D the diagonal matrix is defined by (40). Under the
conditions of Theorem 1, there holds

P

(

‖Ã‖2
op

< 3(1 + log Nt)
)

≥ 1 − p1, (41)

where p1 = e−Nt
(
√

1/3−1)2

2 − N1−C
√

NT
t , and

P

(

µ
(
Ã

)
≤ 6

√
1

Nt

log(NτNRNT )
)

≥ 1 − p2, (42)

where p2 = 2e−
Nt(

√
2−1)2

4 − 2(NRNT )−1 − 6(NtNRNT )−1.

Proof: We have

‖Ã‖2
op ≤ ‖A‖2

op

maxτ,β ‖Aτ,β‖2
2

. (43)

Recall that
Aτ,β = aR(β) ⊗ (SτaT (β)), (44)
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hence ‖Aτ,β‖2
2 = ‖aR(β)‖2

2‖SτaT (β)‖2
2. Since the entries (SτaT (β))k ∼ CN (0, NT ), we have

E‖SτaT (β)‖ =
√

Nt, and thus by Lemma 9

P

(√

Nt − ‖SτaT (β)‖2 > t
)

≤ e−
t2

2 , (45)

for all t > 0, hence

P

( 1

‖SτaT (β)‖2
2

<
1

(
√

Nt − t)2

)

≥ 1 − e−
t2

2 , (46)

Choosing t = (1−
√

1/3)
√

Nt in (46) and forming the union bound only over the NRNT different
possibilities associated with β (note that ‖SτaT (β)‖2 = ‖SaT (β)‖2 for all τ), gives

P

( 1

max
τ,β

‖Aτ,β‖2
2

<
3

NtNR

)

≥ 1 − NRNT e−
Nt(1−

√
1/3)2

2 . (47)

The diligent reader may convince herself that the probability in (47) is indeed close to one under
the condition (11). We insert (17) and (47) into (43) and obtain

P

(

‖Ã‖2
op < 3NT (1 + log Nt)

)

≥ 1 − e−
Nt(1−

√
1/3)2

2 − N1−C
√

NT
t . (48)

which proves (41).
To establish (42) we first note that

µ(Ã) ≤ max
(τ,β) 6=(τ ′,β′)

{

D−1
(τ,β),(τ,β)|(A∗A)(τ,β),(τ ′,β′)|D−1

(τ ′,β′),(τ ′,β′)

}

, (49)

where D−1
(τ,β),(τ,β) = ‖Aτ,β‖−1

2 . Using Lemma 9 and (44) we compute

P

(

‖Aτ,β‖2 >
√

NtNR −
√

NRt
)

≥ 1 − e−
t2

2 .

Therefore

P

( 1

‖Aτ,β‖2

<
1√

NtNR −√
NRt

)

≥ 1 − e−
t2

2 ,

and thus

P

(

|Ã∗Ã)(τ,β),(τ ′,β′)| ≤
1

(
√

NtNR −√
NRt)2

|(A∗A)(τ,β),(τ ′,β′)|
)

≥ 1 − 2e−
t2

2 ,

By choosing t = (1 − 1/
√

2)
√

Nt, we can write (50) as

P

(

|Ã∗Ã)(τ,β),(τ ′,β′)| ≤
2

NtNR

|(A∗A)(τ,β),(τ ′,β′)|
)

≥ 1 − 2e−
Nt(

√
2−1)2

4 .

Finally, plugging (50) into (49) and using (24) we arrive at

P

(

µ(Ã) ≤ 6

√
1

Nt

log(NτNRNT )
)

≥ 1 − 2e−
Nt(

√
2−1)2

4 − 2(NRNT )−1 − 6(NtNRNT )−1.
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We are now ready to prove Theorem 1. Among others it hinges on a (complex version of a)
theorem by Candès and Plan [3], which is stated in Appendix B.

Proof of Theorem 1: We first point out that the assumptions of Theorem 1 imply that the
conditions of Lemma 2 and Lemma 3 are fulfilled. For Lemma 2 this is obvious. Concerning
Lemma 3, an easy calculation shows that the conditions (log(NτNRNT ))3 ≤ Nt and Nt ≥ 128
indeed yield that log(NtNRNT ) ≤ Nt

23
.

Note that the solution x̃ of (10) and the solution z̃ of the following lasso problem

min
z

1

2
‖AD−1z − y‖2

2 + λ‖z‖1, with λ = 2σ
√

2 log(NτNRNT ), (50)

satisfy supp(x̃) = supp(D−1z̃).
We will first establish the claims in Theorem 1 for the system Ãz = y in (39) where Ã = AD−1,

z = Dx and then switch back to Ax = y.
We verify first condition (77). Property (13) and the fact that z = Dx imply that

|zk| ≥
10‖Aτ,β‖2√

NRNt

σ
√

2 log(NτNβ), for (τ, β) ∈ S. (51)

Using Lemma 9 we get that

P

(

‖Aτ,β‖ ≥
√

NRNt − t
)

≥ 1 − e−
t2

2 . (52)

Choosing t = 2
10

√
NRNt and combining (52) with (51) gives

|zk| ≥ 8σ
√

2 log(NτNβ), for k ∈ S,

with probability at least 1 − e−
NRNt

25 , thus establishing condition (77).
Note that Ã has unit-norm columns as required by Theorem 15. It remains to verify condi-

tion (75). Using the assumption (11), and the coherence bound (42) we compute

µ2(Ã) ≤ 36
1

Nt

log(NτNRNT ) ≤ 36
log(NτNRNT )

log3(NτNRNT )
=

36

log2(NτNRNT )
,

which holds with probability as in (42), and thus the coherence property (75) is fulfilled.
Furthermore, using (41) we see that condition (12) implies

K ≤ c0NτNR

3(1 + log Nt) log(NτNRNT )
≤ c0NτNR

‖Ã‖2
op log(NτNRNT )

with probability as stated in (41). Thus assumption (76) of Theorem 15 is also fulfilled (with high
probability) and we obtain that

supp(z̃) = supp(z). (53)

We note that the relation supp(x̃) = supp(x) holds with the same probability as the relation
supp(z̃) = supp(z) (see equation (53)), since supp(z) = supp(x) and multiplication by an in-
vertible diagonal matrix does not change the support of a vector. This establishes (14) with the
corresponding probability.
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As a consequence of (79) we have the following error bound

‖z̃ − z‖2

‖z‖2

≤ 3σ
√

NτNβ

‖y‖2

(54)

which holds with probability at least

(
1 − p1)(1 − p2

)
(1 − e−

NRNt
25 )

(
1 − 2(NτNβ)−1(2π log(NτNβ) + K(NτNβ)−1) −O((NτNβ)−2 log 2)

)
,

where the probabilities p1, p2 are as in Lemma 4. Using the fact that z̃ = Dx̃, we compute

1

κ(D)

‖x̃ − x‖2

‖x‖2

≤ ‖D(x̃ − x)‖2

‖Dx‖2

=
‖z̃ − z‖2

‖z‖2

,

or, equivalently,
‖x̃ − x‖2

‖x‖2

≤ κ(D)
‖z̃ − z‖2

‖z‖2

. (55)

Proceeding along the lines of (45)-(47), we estimate

P
(
κ(D) ≤ 2

)
≥ 1 − NRNT e−

Nt(1−
√

1/3)2

2 . (56)

The bound (15) follows now from combining (54) with (55) and (56).

4 Recovery of targets in the Doppler case

In this section we analyze the case of moving targets/antennas, as described in 2.2. As in the
stationary setting, we assume that si(t) is a periodic, continuous-time white Gaussian noise signal
of period-duration T seconds and bandwidth B. The transmit waveforms are normalized so that
the total transmit power is fixed, independent of the number of transmit antennas. Thus, we
assume that the entries of si(t) have variance 1

NT
.

Theorem 5 Consider y = Ax+w, where A is as defined in Subsection 2.2 and wi ∈ CN (0, σ2).
Choose the discretization stepsizes to be ∆β = 2

NRNT
, ∆τ = 1

2B
and ∆f = 1

T
. Let dT = 1/2, dR =

NT /2 or dT = NR/2, dR = 1/2, and suppose that

Nt ≥ 128, max{Nτ , Nf ,
√

Nτ , Nf} ≥
√

Nβ, and
(
log(NτNβ)

)3 ≤ Nt.

If x is drawn from the generic K-sparse target model with

K ≤ Kmax :=
c0NτNfNR

6 log(NτNfNβ)

for some constant c0 > 0, and if

min
k∈I

|xk| >
10σ√
NRNt

√

2 log NτNfNβ,
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then the solution x̃ of the debiased lasso computed with λ = 2σ
√

2 log(NτNfNβ) obeys

supp(x̃) = supp(x),

with probability at least
(1 − p1)(1 − p2)(1 − p3)(1 − p4),

and
‖x̃ − x‖2

‖x‖2

≤ σ
√

12NtNR

‖y‖2

with probability at least
(1 − p1)(1 − p2)(1 − p3)(1 − p4)(1 − p5),

where

p1 = e−
(1−

√
1/3)2Nt
2 + NT e−(

√
3/2−

√
2)Nt ,

p2 = 2(NRNT )−1 + 2(NτNRNT )−1 + 2(NfNRNT )−1 + 6(NτNfNRNT )−1 + 2e−
Nt(

√
2−1)2

4 ,

p3 = NRNT e−
(1−

√
1/3)2Nt
2 , p4 = e−

NRNt
25 ,

and
p5 = 2(NτNβ)−1(2π log(NτNβ) + S(NτNβ)−1) + O((NτNβ)−2 log 2).

Proof: The proof is very similar to that of Theorem 1. Below we will establish the analogs of
the key steps, Lemma 2, Lemma 3, and Lemma 4, and leave the rest to the reader.

Lemma 6 Let A be as defined in Theorem 5. Then

P

(

‖A‖2
op

≤ 2NtNfNRNT

)

≥ 1 − NT e−Nt(
3
2
−
√

2). (57)

Proof: We proceed as in the proof of Lemma 2. There holds ‖A‖2
op = ‖AA∗‖op. It is convenient

to consider AA∗ as block matrix





B1,1 B1,2 . . . B1,NR

...
. . .

...
B∗

NR,1 BNR,NR




 ,

where the blocks {Bi,i′}NR

i,i′=1 are matrices of size Nt ×Nt. We claim that AA∗ is a block-Toeplitz
matrix (i.e., Bi,i′ = Bi+1,i′+1, i = 1, . . . , NR−1) and the individual blocks Bi,i′ are circulant matri-
ces. To see this, recall the structure of A and consider the entry B[i,l;i′,l′], i, i′ = 1, . . . , NR; l, l′ =

18



1, . . . , Nt:

B[i,l;i′,l′] = (AA∗)[i,l;i′,l′] =
∑

β

∑

τ

∑

f

A[i,l;τ,f,β]A[i′,l′;τ,f,β]

=
∑

β

ej2πdR(i−i′)β

NT∑

k=1

NT∑

k′=1

ej2πdT (k−k′)βGk,k′(l, l′)

Nf∑

m=1

ej2π(l−l′)∆tm∆f

=

NRNT−1∑

n=0

e
j2π(i−i′)

nNT
NRNT

NT∑

k=1

NT∑

k′=1

e
j2π(k−k′) n

NRNT Gk,k′(l, l′)Nfδl−l′ (58)

= NT NRNf

NT∑

k=1

‖sk‖2δi−i′δl−l′ (59)

where we have used in (58) that Nf = 2B
∆f

= 2BT , whence
∑Nf

m=1 ej2π(l−l′)m∆t∆f = Nfδl−l′ . Thus

AA∗ = (NT NRNf

NT∑

k=1

‖sk‖2) I, (60)

i.e., AA∗ is just a scaled identity matrix. Since sk is a Gaussian random vector with sk(j) ∼
CN (0, 1), Lemma 9 yields

P

(

‖sk‖2
2 − (E‖sk‖2)

2 ≥ t(t + 2E‖sk‖2)
)

≤ e−t2/2, (61)

where we note that E‖sk‖2 =
√

Nt

NT
. We choose t = (

√
2 − 1)

√
Nt, and obtain, after forming the

union bound over k = 1, . . . , Nt − 1,

P

( NT∑

k=1

‖sk‖2
2)

2 ≥ 2Nt

)

≤ NT e−Nt(
3
2
−
√

2). (62)

The bound (57) now follows from (60).

Next we establish a coherence bound for A.

Lemma 7 Let A be as defined in the Doppler case. Assume that

N ≥
√

Nβ log(NNβ) <
Nt

30
, (63)

where N := max{Nτ , Nf ,
√

NτNf}. Then

max
(τ,f,β) 6=(τ ′,f ′,β′)

∣
∣〈Aτ,f,β,Aτ ′,f ′,β′〉

∣
∣ ≤ 3NR

√

Nt log(NτNfNβ)

with probability at least 1 − 2(NRNT )−1 − 2(NτNRNT )−1 − 2(NfNRNT )−1 − 6(NτNfNRNT )−1.
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Proof:
We have that Aτ,f,β = aR(β) ⊗ (Sτ,faT (β)). A standard calculation shows that

|〈Sτ,faT (β),Sτ ′,f ′aT (β′)〉| = |〈Sτ−τ ′,f−f ′aT (β), aT (β′)〉| (64)

for τ, τ ′ = 0, . . . , Nτ −1, f, f ′ = 0, . . . , Nf −1, thus we only need to consider |〈Sτ,faT (β),SaT (β′)〉|.
As in the proof of Lemma 3 we distinguish several cases.
Case (a) β 6= β′, τ = 0, f = 0: In this case we are concerned with |〈SaT (β),SaT (β′)〉|, which is
the same as Case (i) of Lemma 3, except that in the present case we have a bit more flexibility in

choosing t in the analogous version of (29). Here we can choose t = 3
√

1
Nt

log(NNRNT ), where

N = max{Nτ , Nf ,
√

NτNf}. Proceeding then as in the proof of Case (i) of Lemma 3 we obtain

P

(

|〈Aτ,f,β,Aτ,f,β′〉| ≤ 3NR

√

Nt log(NτNRNT )
)

≥ 1 − 2(NRNT )−1. (65)

Case (b) β 6= β′, τ 6= 0, f = 0: This is exactly the same as Case (ii) of Lemma 3. We obtain

P

(

|〈Aτ,f,β,Aτ ′,f,β′〉| ≤ 3NR

√

Nt log(NτNRNT )
)

≥ 1 − 2(NτNRNT )−1. (66)

Case (c) β 6= β′, τ = 0, f 6= 0: It is well known that (Tτx)∧ = M−τ x̂. Hence, by Parseval’s the-
orem, 〈Tτx,y〉 = 〈M−τ x̂, ŷ〉. Since the normal distribution is invariant under Fourier transform,
this case is therefore already covered by Case (b), and we leave the details to the reader. We get

P

(

|〈Aτ,f,β,Aτ,f ′,β′〉| ≤ 3NR

√

Nt log(NfNRNT )
)

≥ 1 − 2(NfNRNT )−1. (67)

Case (d) β 6= β′, τ 6= 0, f 6= 0: This is similar to Case (ii) of Lemma 3. The only difference is
that we have NtNfNRNT different possibilities to consider when forming the union bound (the
additional factor Nf is of course due to frequency shifts associated with the Doppler effect). Thus
in this case the bound reads

P

(

|〈Aτ,f,β,Aτ ′,f ′,β′〉| ≤ 3NR

√

Nt log(NτNfNRNT )
)

≥ 1 − 2(NτNfNRNT )−1. (68)

Case (e) β = β′: We need to bound |〈TτMfSaT (β),SaT (β)〉|, where we recall that SaT (β) is a
Gaussian random vector with variance NT . (We note that a related case is covered by Theorem
5.1 in [20], which considers 〈TτMfh, h〉, where h is a Steinhaus sequence.) This case is essentially
taken care off by Case (iii) of Lemma 3, by noting that a Gaussian random vector of variance
σ remains Gaussian (with the same σ) when pointwise multiplied by a fixed vector with entries
from the torus. The only difference is that, as in Case (d) above, we have NtNfNRNT different
possibilities to consider when forming the union bound. Hence, the bound in this case becomes

P

(

max |〈Aτ,f,β,Aτ ′,f ′,β〉| ≤ 3NR

√

Nt log(NτNfNRNT )
)

≥ 1 − 4(NtNfNRNT )−1. (69)
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Lemma 8 Let Ã = AD−1, where the entries of the NτNfNβ × NτNfNβ diagonal matrix are
given by D(τ,f,β),(τ,f,β) = ‖Aτ,β‖2. Under the conditions of Theorem 1 there holds

P

(

‖Ã‖2
op

< 6NT

)

≥ 1 − p1, (70)

where

p1 = e−
(1−

√
1/3)2Nt
2 + NT e−(

√
3/2−

√
2)Nt ,

and

P

(

µ
(
Ã

)
≤ 6

√
1

Nt

log(NτNfNRNT )
)

≥ 1 − p2, (71)

where

p2 = 2(NRNT )−1 + 2(NτNRNT )−1 + 2(NfNRNT )−1 + 6(NτNfNRNT )−1 + 2e−
Nt(

√
2−1)2

4 ,

Proof: Since the proof of this lemma follows closely that of Lemma 4, we omit it.

5 Numerical Experiments

Next we illustrate the performance of the compressive MIMO radar developed in previous
sections. We consider a Doppler-free scenario. The following parameters are used in this example:
NT = 8 transmit antennas, NR = 8 receive antennas, Nt = 64 samples, Nτ = Nt range values.

At each experiment K scatterers of unit amplitude are placed randomly on the range/azimuth
grid, i.e the vector x has K unit entries at random locations along the vector. White Gaussian
noise is added to the composite data vector Ax with variance σ2 determined to as to produce
the specified output signal-to-noise ratio (see also item (iv) of the Remark after Theorem 1).
The lasso solution x̂ is calculated with λ as specified in Theorem 1. The numerical algorithm to
solve (10) was implemented in Matlab using TFOCS [1]. The experiment is repeated 100 times
using independent noise realizations.

The probabilities of detection Pd and false alarm Pfa are computed as follows. The values of
the estimated vector x̂ corresponding to the true scatterer locations are compared to a threshold.
Detection is declared whenever a value exceeds the threshold. The probability of detection is
defined as the number of detections divided by the total number of scatterers K. Next the values
of the estimated vector x̂ corresponding to locations not containing scatterers are compared to
a threshold. A false alarm is declared whenever one of these values exceeds the threshold. The
probability of false alarm is defined as the number of false alarms divided by the total number of
scatterers K. The probabilities of detection and false alarm are averaged over the 100 repetitions
of the experiment.

The probabilities are re-computed for a range of values of the threshold to produce the so-called
Receiver Operating Characteristics (ROC) [14, 28, 25] - the graph of Pd vs. Pfa. As the threshold
decreases, the probability of detection increases and so does the probability of false alarm. In
practice the threshold is usually adjusted to as to achieve a specified probability of false alarm.

Figures 1, 2, 3 and 4 depict the ROC for different values of the output signal to noise ratio.
We note that the probability of detection increases as the SNR increases and decreases as K, the
number of scatterers increases.
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Figure 1. Probability of detection vs. probability of false alarm for SNR = 15 dB, and three values of
K: Kmax/2, Kmax, 2Kmax.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

P
d

Pd vs Pfa,  SNR = 20,  Kmax = 20,  N_T = 8,  N_R = 8,  N_t = 64

 

 

K=10
K=20
K=40

Figure 2. Probability of detection vs. probability of false alarm for SNR = 20 dB, and three values of
K: Kmax/2, Kmax, 2Kmax.
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Figure 3. Probability of detection vs. probability of false alarm for SNR = 25 dB, and three values of
K: Kmax/2, Kmax, 2Kmax.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

P
d

Pd vs Pfa,  SNR = 30,  Kmax = 20,  N_T = 8,  N_R = 8,  N_t = 64

 

 

K=10
K=20
K=40

Figure 4. Probability of detection vs. probability of false alarm for SNR = 30 dB, and three values of
K: Kmax/2, Kmax, 2Kmax.

23



6 Conclusion

Techniques from compressive sensing and sparse approximation make it possible to exploit
the sparseness of radar scenes to potentially improve system performance of MIMO radar. In
this paper we have derived a mathematical framework that yields explicit conditions for the
radar waveforms and the transmit and receive arrays so that the radar sensing matrix has small
coherence and robust sparse recovery in the presence of noise becomes possible. Our approach
relies on a deterministic (and very specific) positioning of transmit and receive antennas and
random waveforms. It seems plausible that results similar to the ones derived in this paper can be
established for the case where the antenna locations are chosen at random and the transmission
signals are deterministic. This would be of interest, since one could then potentially take advantage
of specific properties of recently designed deterministic radar waveforms such as in [2, 19].

Appendix A

In this appendix we collect some auxiliary results.

Lemma 9 [29, Proposition 34] Let x ∈ C
n be a vector with xk ∼ CN (0, σ2), then for every t > 0

one has

P

(

‖x‖2 − E‖x‖2 > t
)

≤ e−
t2

2σ2 . (72)

The following lemma, which relates moments and tails, can be found e.g. in [22, Proposition
6.5].

Lemma 10 Suppose Z is a random variable satisfying

(E|Z|p)1/p ≤ αβ1/pp1/γ for all p ≥ p0

for some constants α, β, γ, p0 > 0. Then

P(|Z| ≥ e1/γαu) ≤ βe−uγ/γ

for all u ≥ p
1/γ
0 .

The following lemma is a rescaled version of Lemma 3.1 in [23].

Lemma 11 Let A ∈ C
n×m be a Gaussian random matrix with Ai,j ∼ CN (0, σ2). Then for all

x,y ∈ C
m with ‖x‖2 = ‖y‖2 =

√
m and all t > 0

P

{

| 1

nσ2
〈Ax,Ay〉 − 〈x,y〉| > tm

}

≤ 2 exp
(

− n
t2

C1 + C2t

)

,

with C1 = 4e√
6π

and C2 =
√

8e.

The next lemma is a slight generalization of a result by Hanson and Wright on tail bounds for
quadratic forms [12].
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Lemma 12 Let M = {mij}n
i,j=1 be a normal matrix and let Xi, i = 0, . . . , n − 1 be independent,

CN (0, 1)-distributed random variables. Denote

Sn =
n−1∑

i,j=0

mijXiX̄j.

Then for all t > 0

P

(

Sn ≥ t + ESn

)

≤ exp
(
− C min{ t

σ‖M‖op

,
t2

σ2‖M‖2
F

}
)
,

where C is a numerical constant independent of M and n.

Proof: The proof follows essentially the same steps as the proof of the main theorem in [12],
which considers the case where M is hermitian and the xi are real-valued. Extending the xi to
the complex case is trivial, thus the only modification that needs to be addressed is the extension
of M from the hermitian to the normal case. But Lemma 5 in [12] holds for normal matrices as
well, therefore the lemma follows.

For convenience we state the following version of Bernstein’s inequality, which will be used in
the proof of Lemma 14.

Theorem 13 (See e.g. [27]) Let X1, . . . , Xn be independent random variables with zero mean
such that

E|Xi|p ≤
1

2
p!Kp−2vi, for all i = 1, . . . , n; p ∈ N, p ≥ 2,

for some constants K > 0 and vi > 0, i = 1, . . . , n. Then, for all t > 0

P

(∣
∣

n∑

i=1

Xi| ≥ t
)
≤ 2 exp

(

− t2

2v + Kt

)

, (73)

where v :=
∑n

i=1 vi.

We also need the following deviation inequality for unbounded random variables. It is a complex-
valued and slightly sharpened version of Lemma 6 in [13], the better constant will be useful when
we apply Lemma 14 in the proof of Lemma 3.

Lemma 14 Let Xi and Yi, i = 1, . . . , n, be sequences of i.i.d. complex Gaussian random variables
with variance σ. Then,

P

(∣
∣

n∑

i=1

X̄iYi

∣
∣ > t

)

≤ 2 exp
(
− t2

σ2(nσ2 + 2t)

)
. (74)

Proof: In order to apply Bernstein’s inequality, we need to compute the moments E|XiYi|p.
Since Xi and Yi are independent, there holds

E(|XiYi|p) = E(|Xi|p)E(|Yi|p) = (E(|Xi|p))2.
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The moments of Xi are well-known:

E|Xi|2p = p! σ2p,

hence

(E|Xi|2p)2 = (2p!)2(σ2p)2 ≤ 1

4
(2p)!(σ2)2p ≤ 1

2
(2p)!(σ2)2p−2 (σ2)2

2
.

We apply Bernstein’s inequality (73) with K = σ2 and vi = (σ2)2

2
, i = 1, . . . , n and obtain (74).

Appendix B

We consider a general linear system of equations Ψx = y, where Ψ ∈ C
n×m, x ∈ C

m and
n ≤ m. We introduce the following generic K-sparse model:

• The support I ⊂ {1, . . . ,m} of the K nonzero coefficients of x is selected uniformly at
random.

• The non-zero entries of sgn(x) form a Steinhaus sequence, i.e., sgn(xk) := xk/|xk|, k ∈ I, is
a complex random variable that is uniformly distributed on the unit circle.

The following theorem is a slightly extended version of Theorem 1.3 in [3].

Theorem 15 Given y = Ψx + w, where Ψ has all unit-ℓ2-norm columns, x is drawn from the
generic K-sparse model and wi ∼ CN (0, σ2). Assume that

µ(Ψ) ≤ C0

log m
, (75)

where C0 > 0 is a constant independent of n,m. Furthermore, suppose

K ≤ c0m

‖Ψ‖2
op

log m
(76)

for some constant c0 > 0 and that

min
k∈I

|xk| > 8σ
√

2 log m. (77)

Then the solution x̂ to the debiased lasso computed with λ = 2σ
√

2 log m obeys

supp(x̂) = supp(x), (78)

and
‖x̂ − x‖2

‖x‖2

≤ σ
√

3n

‖y‖2

(79)

with probability at least

1 − 2m−1(2π log m + Km−1) −O(m−2 log 2). (80)
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Proof: The paper [3] treats only the real-values case. However it is not difficult to see that
the results by Candès and Plan can be extended to the complex setting if their definition of the
sign-function is replaced by (9) and consequently their generic sparse model is replaced by the
generic sparsity model introduced in the beginning of this appendix. The proofs of the theorems
in [3] can then be easily adapted to the complex case via some straightforward modifications, such
as replacing in many steps 〈·, ·〉 by its real part, Re〈·, ·〉 and replacing certain scalar quantities by
its conjugate analogs. To give a concrete example of such a modification, consider (in the notation
of [3]) the inequality right before eq.(3.10) in [3],

|β̂i| = |βi + hi| ≥ |βi| + sgn(βi)hi.

This inequality needs to be replaced by its complex counterpart

|β̂i| = |βi + hi| ≥ |βi| + Re(sgn(βi)hi).

By carrying out these easy modifications (the details of which are left to the reader) we can readily
establish (78) analogous to (1.11) of Theorem 1.3 in [3].

Once we have recovered the support of x, call it I, we can solve for the coefficients of x by
solving the standard least squares problem min ‖AIxI − y‖2, where AI is tbe submatrix of A
whose columns correspond to the support set I, and similarly for xI . Statement (79) follows by
noting that the proof of Theorem 3.2 in [3] yields as side result that with high probability the
eigenvalues of any submatrix A∗

IAI with |I| ≤ K are contained in the interval [1/2, 3/2], which
of course implies that κ(AI) ≤

√
3. The statement follows now by substituting this bound into

the standard error bound, eq. (5.8.11) in [17].
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