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Abstract

Matrices with off-diagonal decay appear in a variety of fields in mathematics and in numerous appli-
cations, such as signal processing, statistics, communications engineering, condensed matter physics, and
quantum chemistry. Numerical algorithms dealing with such matrices often take advantage (implicitly
or explicitly) of the empirical observation that this off-diagonal decay property seems to be preserved
when computing various useful matrix factorizations, such as the Cholesky factorization or the QR-
factorization. There is a fairly extensive theory describing when the inverse of a matrix inherits the
localization properties of the original matrix. Yet, except for the special case of band matrices, surpris-
ingly very little theory exists that would establish similar results for matrix factorizations. We will derive
a comprehensive framework to rigorously answer the question when and under which conditions the ma-
trix factors inherit the localization of the original matrix for such fundamental matrix factorizations as
the LU-, QR-, Cholesky, and Polar factorization.

1 Introduction

Matrices with off-diagonal decay appear in numerous areas of mathematics including PDEs, numerical anal-
ysis, pseudo-differential operator theory, and applied harmonic analysis. They also play a prominent role
in applications, including signal processing, statistics, condensed matter physics, quantum chemistry, and
communications engineering. For instance, such matrices arise naturally from the fact that, in many systems,
perturbations are localized. That is, local disturbances are not felt globally. One way to study such matrices
is via various non-commutative generalizations of Wiener’s Lemma, of which [25] provides an overview. How-
ever in a number of applications one is not interested in just the decay properties of the matrix describing
the system and its inverse, but also in the decay properties of various fundamental factorizations of that
matrix. We give a few such examples below.

In quantum chemistry, the so-called density matrix is a vital tool to determine the electronic structure of
(possibly large) molecules [41, 38]. Many of the important values in electronic structure theory can be
obtained as functionals of the density matrix. The typical basis vectors used to discretize the Hamiltonian
give rise to a matrix which, while not sparse, exhibits off-diagonal decay. For non-metallic systems the off-
diagonal decay of the density matrix is exponential, while for metallic systems the decay is algebraic [21, 10].
This decay is exploited to devise fast numerical algorithms for electronic structure calculations. Many of
these algorithms implicitly assume that the (inverses of the) Cholesky factors of the density matrix inherit
the decay properties of the density matrix. Benzi, Boito, and Razouk recently showed that this assumption
is indeed justified in case of exponential decay [10]. However, for other types of decay, such as algebraic
decay, it has been an open problem whether the Cholesky factors do indeed possess the same off-diagonal
decay as the density matrix.

In astronomy, the detection and identification of signals must be done in the presence of cosmic microwave
background radiation. This is a specific instance of detecting sparse, and possibly faint, signals in the
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presence of noise. In [31], methods are developed to detect signals in the case that the noise is correlated.
Such methods work within bounds which depend on the sparsity and strength of the signal, and require
off-diagonal decay of the correlation matrix. Essential to this method is that the Cholesky factors of the
correlation matrix exhibit the same form of decay.

In many applications one is interested in constructing an orthonormal system consisting of vectors that are
well localized, e.g. see [16, 47, 20] and [40, Chapter 9] for some examples. A standard approach is to apply
the Gram-Schmidt algorithm to a set of vectors, which is of course nothing else than computing the QR-
factorization of a matrix A, where A contains the initial set of vectors as its columns. When the matrix A
is localized, then it would be desirable to know (and often it is tacitly assumed, without any proof) that the
orthonormal vectors obtained via Gram-Schmidt inherit these localization properties. In numerical analysis,
the off-diagonal decay of the Cholesky factors or of matrix functions such as the matrix exponential, can be
exploited to construct efficient preconditioners [11, 32, 12]. Current theory only covers the case where the
matrix is banded or has exponential off-diagonal decay.

Furthermore, various signal processing algorithms for wireless communications involve the QR-factorization
of a large matrix that represents the wireless communication channel [43] as an efficient form of “precoding”.
Moreover, the LU-factorization and the Cholesky factorization plays a prominent role in signal processing,
filter design, and digital communications [35], often in connection with the concept of causality. In all these
applications, knowledge about the off-diagonal decay behavior of the matrix factors can greatly help to
reduce computational complexity and mitigate truncation errors, as well as simplify hardware design.

The results presented in this paper can be seen as fundamental extensions of noncommutative versions of the
famous Wiener’s Lemma. Recall that these noncommutative generalizations of Wiener’s Lemma state that
under certain conditions the inverse A−1 of a matrix A will indeed inherit the off-diagonal decay properties
of A, see e.g. [34, 4, 13, 37, 28, 48, 25]. Informally, this Wiener property can be stated as “if A is localized,
then so is A−1”. It has been an open problem whether and under which conditions the Wiener property
extends to matrix factorizations. The results in this paper provide affirmative answers.

We will show that for a wide range of off-diagonal decay, localized matrices give rise to LU-, Cholesky, QR-,
and polar factorizations, whose factors inherit this localization. Below we state two examples of the type of
results we prove in this paper. In both theorems the algebra A represents a Banach algebra that describes
localized matrices in the form of some off-diagonal decay. To give a concrete example, we might assume that
A ∈ A satisfies polynomial off-diagonal decay, i.e., there exists a parameter s > 1 and a constant C > 0
such that the entries ajk of A obey

|ajk| ≤ C(1 + |j − k|)−s, ∀j, k ∈ Z.

The precise statements of the theorems with the accompanying definitions are given in the following sec-
tions.
Theorem 1.1. Let Bc be the closure of the algebra of band matrices with respect to the operator norm. Let
A ⊂ Bc be an inverse-closed sub-algebra satisfying certain technical conditions, given in Section 3. Suppose
A ∈ A . Then, if A = LU in Bc, we have L,U ∈ A .
Theorem 1.2. Let A be one of the decay algebras specified in Section 4, such as the algebra with polynomial
off-diagonal decay discussed above. Assume that A ∈ A . Then, if A = QR, we have Q,R ∈ A .

The LU-factorization turns out to be the most challenging one for which to prove that the matrix factors
exhibit the same localization properties as the original matrix. We present two quite different methods
for obtaining such localization results for the LU-factorization, see Sections 3 and 4. The first method
is more abstract and algebraic, while the second is more concrete and computational. The first method
has the advantage of being applicable to a broad array of types of decay. To prove our theorem, we only
need to assume that the matrix belongs to some inverse closed Banach algebra, and that it possesses an
LU-factorization in a very weak decay algebra. The second method requires us to consider each form of
decay separately, but it gives a better quantitative understanding of the decay properties of the factors.
Moreover, we need to assume only that the matrix possesses an LU-factorization, but nothing about the
factors themselves. In Section 5 we prove similar localization results for the QR-factorization, the Cholesky
factorization, and the polar factorization. In fact, for the latter the result is quickly obtained from basic facts

2



and does not actually require the main machinery developed in this paper. Finally, localization of matrix
functions, such as the matrix exponential, is the topic of Section 6.

Prior work on the topic of localized matrix factorizations starts with the seminal work of Wiener on spectral
factorization, see e.g. [49]. His research has led to a plethora of extensions, generalizations, and refinements,
which we cannot possibly review here. This work, however, is firmly rooted in the commutative setting, as the
operators under consideration correspond to convolution operators (including even those papers dealing with
matrix-valued convolution operators). To our knowledge the first result that truly addresses localization of
matrix factorizations in the noncommutative setting is due to Gohberg, Kasshoek, and Woerdeman. In [23],
the authors show if a positive definite matrix is in the so-called non-stationary Wiener algebraW (in current
terminology, W is the unweighted Baskakov-Gohberg-Sjöstrand algebra, see Definition 2.2, item 4), then
the Cholesky factors belong to the same algebra. Our research was definitely influenced by their paper as
well as by its notable precursors [24, 22]. We also gladly acknowledge inspiration by the work of Benzi
and coauthors, who have analyzed the localization of (inverses of) Cholesky factors for the case of band
matrices [10]. Finally, Baskakov’s work on the spectral theory of Banach modules [6] and especially causal
operators [9, 7] (in collaboration with one of the authors of this paper), has paved the way for one of the
approaches presented in this paper.

The reader may wonder why we have not yet mentioned the eigenvalue decomposition and the singular
value decomposition. It is easy to see that localization of the matrix is in general not sufficient to ensure
localization of its eigenvectors or singular vectors. Take for example a bi-infinite Laurent matrix (also called
Toeplitz matrix), then we know that its (generalized) eigenvectors are given by the complex exponentials,
which have no decay whatsoever, regardless of how strong the off-diagonal decay of the Laurent matrix may
be. Nevertheless, under certain conditions the eigenvectors or singular vectors of a matrix do inherit the
localization properties of a matrix. We will report on these results in a forthcoming paper.

2 Preliminaries

2.1 Notation

For a vector y = {yk}k∈Z ∈ `2(Z) we define its projection Pny to be

Pny = (. . . , 0, y−n, y−n+1, . . . , yn−1, yn, 0, . . . ). (1)

The range of Pn is written as ImPn. Since ImPn is a subspace of `2(Z) of dimension 2n + 1, it can be
identified with C2n+1. Given a matrix A = (aij), i, j ∈ Z we denote A(n) = PnAPn restricted to ImPn, that
is

A(n) : ImPn → ImPn ⊂ `2(Z). (2)

By definition A(n) is an operator acting on ImPn, and we can interpret A(n) as a finite (2n+ 1)× (2n+ 1)
matrix with entries {aij}|i|,|j|≤n, acting on C2n+1.

Recall that a matrix A is lower triangular if aij = 0 for i > j, and A is upper triangular if aij = 0 for i < j.
We shall use the notations L ,L ∗,D to refer to the sub-algebras of B(`2) consisting of lower-triangular,
upper-triangular, and diagonal matrices, respectively. We shall denote by L0 and L ∗0 the sub-algebras of
strictly lower-triangular and strictly upper-triangular matrices, respectively.

2.2 Matrix Factorizations

For the convenience of the reader we briefly review the definitions of the matrix factorizations under consid-
eration.
Definition 2.1. Let A be a Banach algebra of matrices in B(`2) and assume that A ∈ A .
1) We say that A ∈ A admits an LU-factorization in A if A = LU, where L,L−1 ∈ L ∩A and U,U−1 ∈
L ∗ ∩A .
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2) A ∈ A admits a QR-factorization in A if A = QR, where R,R−1 ∈ L ∗ ∩A and Q ∈ A is a unitary
matrix.
3) Assume A is hermitian positive definite. We say that A ∈ A admits a Cholesky factorization in A if
A = CC∗, where C,C−1 ∈ L ∩A and the diagonal entries of C are positive.
4) The polar factorization of A ∈ A is given by A = UP, where U is a unitary matrix and P is a positive-
semidefinite Hermitian matrix, and U,P ∈ A .
Remark 1. For bi-infinite matrices the existence and uniqueness of some of these matrix factorizations is
non-trivial, see [2, 15, 42, 46] for more detailed discussions1. The existence of the QR-factorization and the
Cholesky factorization follows for instance from the results of Section 3 in Arveson’s seminal paper [2]. The
existence of the LU-factorization is less clear (unless we consider finite matrices), the interested reader may
want to consult [1] and the references therein. A necessary condition that a matrix A has an LU-factorization
on `p, 1 ≤ p ≤ ∞, is that A and all A(n) are uniformly invertible, i.e., supn{‖(A(n))−1‖B(`2), ‖A−1‖B(`2)} <
∞, see [3, 1]. However, this condition is not sufficient as a counter example in [1] shows. We observe

that if LU = L̄Ū are two different LU-factorizations then L̄
−1

L = ŪU−1 is a diagonal matrix, i.e. the
LU-factorization is unique up to multiplication by a diagonal matrix. In Section 4 we shall assume that the
diagonal entries of L are all equal to 1 to avoid ambiguity. For positive definite matrices the existence of
such an LU-factorization follows immediately from the existence of the Cholesky factorization. Indeed, one
simply rescales C via multiplication by a diagonal matrix, i.e., if A = CC∗ then A = LU, where L = CD−1

and the main diagonal of D coincides with the main diagonal of C.

2.3 Decay Algebras

We first consider some typical matrix norms that express various forms of off-diagonal decay. In applications,
one might encounter such forms of decay in signal and image processing, digital communication, quantum
chemistry and quantum physics. Off-diagonal decay is quantified by means of weight functions.
Definition 2.2. A non-negative function v on Z is called an admissible weight if it satisfies the following
properties:

1. v is even and normalized so that v(0) = 1;

2. v is sub-multiplicative, i.e. v(j + k) ≤ v(j)v(k) for all j, k ∈ Z;

3. v satisfies the Gelfand-Raikov-Shilov (GRS) condition [19]: lim
n→∞

v(nk)
1
n = 1 for all k ∈ Z.

The assumption that v is even assures that the corresponding Banach algebra is closed under taking the
adjoint. The GRS property is crucial for the inverse-closedness of the Banach algebra, as we will see below.
The standard weight functions on Z are of the form

v(k) = ea·d(k)b(1 + d(k))s,

where d(k) is a norm on Z. Such a weight is sub-multiplicative when a, s ≥ 0 and 0 ≤ b ≤ 1, and satisfies
the GRS condition if and only if 0 ≤ b < 1.
Definition 2.3. We consider the following types of off-diagonal decay.

1. The Jaffard Class [34], denoted As, is the collection of matrices A = (ajk), j, k ∈ Z such that

|ajk| ≤ C(1 + |j − k|)−s, (3)

endowed with the norm
‖A‖As

:= sup
j,k∈Z

|ajk(1 + |j − k|)s.

1The definitions of the factorizations in Definition 2.1 imply that A is invertible in B(`2). Some of the factorizations could
be defined slightly more generally than we have don here. For instance in the QR-factorization and the polar factorization we
could replace the unitary matrix by a partial isometry. Many of the results in our paper can be extended to hold for these more
general factorizations, but for clarity of presentation we prefer to work with the factorizations as defined in Definition 2.1.

4



2. More generally, let v be an admissible weight such that v−1 ∈ `1(Z) and v−1 ∗ v−1 ≤ Cv−1. Then we
denote by Av the collection of matrices satisfying

|ajk| ≤ Cv−1(j − k), (4)

endowed with the norm
‖A‖Av := sup

j,k∈Z
|ajk|v(j − k).

3. Schur-type algebras: Let v be an admissible weight. Then we denote by A 1
v the collection of matrices

A = (ajk), j, k ∈ Z such that

sup
j∈Z

∑
k∈Z
|ajk|v(j − k) <∞ and sup

k∈Z

∑
j∈Z
|ajk|v(j − k) <∞, (5)

endowed with the norm

‖A‖A 1
v

:= max

sup
j∈Z

∑
k∈Z
|ajk|v(j − k) <∞, sup

k∈Z

∑
j∈Z
|ajk|v(j − k) <∞

 .

4. Let v be an admissible weight. Then, the Gohberg-Baskakov-Sjöstrand class, denoted by Cv, is the
collection of matrices such that the norm

‖A‖Cv :=
∑
j∈Z

sup
k∈Z
|ak,k−j |v(j) = inf

α∈`1v

{
‖α‖`1v : |ajk| ≤ α(j − k)

}
is finite.

If A is one of the Banach algebras defined in 2.3, then any matrix A ∈ A is bounded on `p, 1 ≤ p ≤ ∞,
see [30]. The results derived in this paper hold for a variety of other Banach algebras that describe off-
diagonal decay, such as the ones in [48]. But for clarity of presentation we mainly focus on the Banach
algebras introduced in Definition 2.3.

We recall that a Banach algebra A is inverse-closed in B(`2(Z)) if for every A ∈ A that is invertible
on `2(Z) we have that A−1 ∈ A . The matrix algebras above are inverse-closed essentially when v is an
admissible weight. The precise statement is slightly more involved, because we need to be a bit meticulous
about the weights.
Theorem 2.4. Let v be an admissible weight.

1. Assume that v−1 ∈ `1(Z) and v−1∗v−1 ≤ Cv−1. Then Av is inverse-closed in B(`2(Z)). In particular,
As possesses this property if s > 1.

2. If v(k) ≥ C(1 + |k|)δ for some δ > 0, then A 1
v is inverse-closed in B(`2(Z)).

3. Cv is inverse closed in B(`2(Z)) for arbitrary admissible weights.

While for C∗-(sub)algebras inverse-closedness is easy to prove and always true, it is highly non-trivial to
establish inverse-closedness of a Banach algebra. Inverse-closedness for As is due to Jaffard [34] and Baskakov
[4, 5]. For Av it was proved by Baskakov [5], and a different proof is given in [29]. The result for A 1

v is
proven in [28]. Inverse-closedness for Cv with v ≡ 1 is due to Gohberg, Kaashoek, and Woerdeman [23],
and was rediscovered by Sjöstrand [44]. The case of arbitrary weights is due to Baskakov [4, 5], but see also
Kurbatov [37] and Blatov [13].
Remark 2. We note that for a singly-infinite matrix A ∈ Av with admissible weight v, the existence of the
LU-factorization of A can be derived from Theorem 2 in [1]. This follows essentially from the fact that
condition (5) together with the inverse-closedness of Av imply the decay condition in Theorem 2 of [1].

Furthermore we will make use of the following two classes of matrices. The class of band matrices, denoted
Bb, is the collection of matrices A = (ajk), j, k ∈ Z, such that there is some natural number N = N(A)
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with the property ajk = 0 if |j − k| > N . The class of matrices with exponentially decaying diagonals,
denoted Bγ , is the collection of matrices A = (ajk), j, k ∈ Z, such that |ajk| ≤ Cγ|j−k| for some constants
C = C(A) > 0 and γ = γ(A) ∈ (0, 1).

All of the Banach algebras described in Definition 2.3 are contained in a larger Banach algebra, which we
will denote Bc. In some sense, Bc defines the weakest sort of off-diagonal decay, but we will need to lay a
little more groundwork before we are ready to give it a formal definition.

For θ ∈ T and x ∈ `2(Z), the modulation representation M : T→ `2(Z) is defined by

M(θ)x(n) = θnx(n).

Given any A ∈ B(`2) we shall denote by fA ∈ L∞(T,B(`2)) the function

fA(θ) = M(θ)AM(θ−1), θ ∈ T. (6)

The Fourier series of the operator A is defined [17, 5] as the Fourier series of the function fA(θ) ∼
∑
k θ

kAk.
An easy computation shows that the operators Ak are the diagonals of the matrix A ∈ B(`2).
Definition 2.5. The algebra of M-continuous matrices, denoted Bc, is the collection of all matrices such
that the function fA defined above is a continuous map from T to B(`2), i.e. fA ∈ C(T,B(`2)).

In the following proposition we collect some useful known relationships between the above subalgebras,
see [8, 9] and references therein, as well as [26, 27].
Proposition 2.6. The following properties hold:

1. Bc(`
2) = Bb(`2), (because of this property Bc(`

2) is sometimes also referred to as the algebra of
band-dominated operators, see e.g. [39]);

2. Bb(`
2) ⊆ {A ∈ B(`2): fA admits an extension to an entire function};

3. Bγ(`2) = {A ∈ B(`2): fA admits a holomorphic extension to an annulus {1 − ε < |z| < 1 + ε} for
some ε > 0 depending on γ}.

4. Bb(`
2) ⊂ Bγ(`2) ⊂ C1 ⊂ Bc(`

2);

5. L ∩Bc(`
2) = {A ∈ B(`2): fA admits a holomorphic extension into the unit disc D = {z ∈ C : |z| < 1}

that is continuous in D};

6. L ∗ ∩Bc(`
2) = {A ∈ B(`2): fA admits a bounded holomorphic extension outside the unit disc D that

is continuous in C\D};

7. L0 and L ∗0 are two-sided ideals in L and L ∗ respectively.

By A we shall denote some Banach algebra of matrices in B(`2). Typically we shall assume that

Bγ(`2) ⊂ A ⊆ Bc(`
2) ⊂ B(`2) (7)

and
‖A‖B(`2) ≤ c‖A‖A , (8)

where the constant c is independent of A. These conditions are satisfied for the Banach Algebras of Defini-
tion 2.3. Indeed, for condition (7) this is obvious and for condition (8) see [30].
Definition 2.7. We say that an algebra A is strongly decomposable if there exists a bounded projection
P : A → A which maps A onto L ∩ A parallel to L ∗0 . In this case, we let Q = I − P ∈ B(A ) be the
projection onto L ∗0 ∩A parallel to L .
Remark 3. It is easy to check that the Banach algebras of Definition 2.3 are strongly decomposable. In most
cases, B ⊆ C1 will imply strong decomposability.

In order to prove the main result in Section 3, we need to embed the algebra A into the algebra of (uniformly)
continuous operator valued functions C(T,B(`2)). The above definitions transfer to the realm of such
functions in the following way.
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Definition 2.8. [24]. Let A be a subalgebra of C(T,B(`2)). Let A+ be the set of all functions in A
that admit holomorphic extensions into D that are continuous in D. Similarly, let A− be the set of all
functions in A that admit bounded holomorphic extensions into C\D that are continuous in C\D. Let also
A−0 = {f ∈ A− : f(∞) = 0}. The algebra A is decomposing if A = A+ ⊕ A−0 . We shall denote by P and Q
the projections in B(A) associated with this decomposition.
Definition 2.9. [24]. A function f ∈ A admits a canonical factorization if f = f`fu, where f`, f

−1
` ∈ A+

and fu, f
−1
u ∈ A−.

Remark 4. We observe that an algebra A is inverse closed in C(T,B(`2)) if and only if the function f−1

defined by f−1(θ) = [f(θ)]−1 is in A whenever f ∈ A and [f(θ)]−1 ∈ B(`2) for all θ ∈ T. In particular, a
subalgebra AA = {fA: A ∈ A } is inverse closed in C(T,B(`2)) if fA is defined by (6) and A is inverse
closed in Bc(`

2). We also note that the algebra AA is decomposing if A is strongly decomposable.

3 Abstract Harmonic Analysis Approach

In this section we present our first theorem concerning the off-diagonal decay of the LU-factors. Our abstract
approach, which is based on some advanced harmonic analysis results, leads to a fairly short proof, albeit at
the cost of more conceptual effort.
Theorem 3.1. Let A be a strongly decomposable inverse closed subalgebra of B(`2) that satisfies condi-
tions (7) and (8). Assume also that A ∈ A admits an LU-factorization A = LU in Bc(`

2). Then A admits
an LU-factorization in A .

The proof of this result relies heavily on the following two abstract results.
Theorem 3.2. [9, Theorem 8.14]. Let A ∈ L ∩Bc(`

2). The following are equivalent:

1. A−1 ∈ L ;

2. fA(z) is invertible in B(`2) for all z ∈ D.
Theorem 3.3. [24, Theorem 1.1]. Assume that A is a decomposing inverse closed subalgebra of C(T,B(`2))
that satisfies the following two conditions:

1. For all f ∈ A
max
θ∈T
‖f(θ)‖B(`2) ≤ c‖f‖A,

where c > 0 is a constant independent of f ;

2. If f ∈ C(T,B(`2)) admits a holomorphic extension to an annulus {1− ε < |z| < 1 + ε} for some ε > 0
then f ∈ A and the set of all such operator-valued functions is dense in A.

Then any function f ∈ A that satisfies

max
θ∈T
‖f(θ)− I‖B(`2) < 1 (9)

admits a canonical factorization f = f`fu and

f−1
` (θ) = f`(θ)

−1 = I −Pg(θ) + P[g(θ)Pg(θ)]− . . . , (10)

f−1
u (θ) = fu(θ)−1 = I −Qg(θ) + Q[(Qg(θ))g(θ)]− . . . , (11)

where g(θ) = f(θ)− I, and the series converge in A.

The relationships between various subalgebras mentioned in Proposition 2.6 and Remark 4 allow us to apply
the above result to the algebras of the form

AA = {f ∈ C(T,B(`2)) : f = fA,A ∈ A }.

As a result, we obtain the following special case of Theorem 3.3.
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Theorem 3.4. Assume that A is a strongly decomposable inverse closed subalgebra of B(`2) that satisfies
conditions (7) and (8). Then any matrix A ∈ A that satisfies ‖A− I‖B(`2) < 1 admits an LU-factorization
A = LU in A such that

L−1 = I− PM + P[MPM]− P[MP[MPM]] + . . . , (12)

U−1 = I−QM +Q[[QM]M]−Q[Q[[QM]M]M] + . . . , (13)

where M = A− I and the series converge in A .

Proof of Theorem 3.1. Let A = LU and consider the holomorphic extensions fL(z) =
∑
k z

kLk, z ∈ D, and
fU(z) =

∑
k z

kUk, z ∈ C\D. Pick ε ∈ (0, 1) such that

‖[fL(ε)]−1LU[fU(1/ε)]−1 − I‖ < 1.

Such an ε exists because L,U ∈ Bc(`
2) and invertibility is stable under small perturbations. Hence, Theorem

3.4 implies that A′ := [fL(ε)]−1LU[fU(1/ε)]−1 admits an LU-factorization A′ = L′U′ in A . On the other
hand, since L−1 ∈ L and U−1 ∈ L ∗, Theorem 3.2 implies [fL(ε)]−1 ∈ L and [fU(1/ε)]−1 ∈ L ∗. Hence,
A′ admits two LU-factorizations in Bc(`

2) and Remark 1 implies that there exists an invertible diagonal
matrix D ∈ D such that

(L′)−1[fL(ε)]−1L = U′fU(1/ε)U−1 = D.

Moreover, since fL(ε), fU(1/ε) ∈ Bγ(`2), we have L = fL(ε)L′D ∈ A and U = D−1U′fU(1/ε) ∈ A .

Remark 5. From the proofs above it is not hard to see that an analogous result holds in a much more general
setting than just for matrix algebras. However, this general result is beyond the scope of this paper as it
would require introduction of too much heavy machinery. We cite [9, 8] which describe the setup for the
general result.
Remark 6. If in Theorem 3.1, we additionally required that ‖I − A‖A < 1, then the result would follow
immediately from the observation that the series in (12) and (13) would converge in A under this additional
assumption. However, the condition ‖I−A‖A < 1 is rather restrictive, as it cannot be enforced by a simple
rescaling of A, even not if we assumed A to be positive definite. Indeed, it is highly non-trivial that we can
switch from the A -norm to the operator norm in the condition ‖I−A‖ < 1 in Theorem 3.4. Note furthermore
that for a non-positive definite matrix A even the condition ‖I−A‖B(`2) < 1 cannot be enforced by simple
rescaling. Instead we need to resort to a smart choice of “preconditioning” by [fL(ε)]−1. Establishing the
existence of such a preconditioner with all the right properties involves some advanced results from abstract
harmonic analysis.

4 Linear Algebra Approach

As pointed out in Section 2, if the LU-factorization of a matrix exists, then it is unique up to multiplication
by an invertible diagonal matrix. In this section we assume that A has an LU-factorization A = LU, and
to avoid ambiguity we stipulate that the diagonal entries of L are equal to 1.

In what follows it will be useful to write our matrices in block form, i.e.

A =

(
A11 A12

A21 A22

)
=

(
L11 0
L21 L22

)(
U11 U12

0 U22

)
,

with A11 = (aij)i<0,j<0, A12 = (aij)i<0,j≥0, A21 = (aij)i≥0,j<0, and A22 = (aij)i≥0,j≥0. Analogously,

A−1 = B =

(
B11 B12

B21 B22

)
=

(
Ω11 Ω12

0 Ω22

)(
Λ11 0
Λ21 Λ22

)
,

where each of the blocks is only singly infinite. It is sometimes convenient to consider the individual blocks
of A and A−1 as operators acting on `2(Z). Thus (with slight abuse of notation) we can think of, say, A11

as [
A11 0

0 0

]
.
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We will also make use of the relations Λ22 = U22B22, L11 = A11Ω11, Ω−1
22 = U22 and Λ−1

22 = L22,
and note that these relations imply invertibility of B22 and A11. Furthermore, for a singly-infinite matrix
M = (mjk)−∞j,k=−1 and n ∈ N, we use the notation M(n) to refer to the sub-matrix consisting of those entries
mjk such that j, k = −1, . . . ,−n. We will apply this notation to “upper-left” block matrices such as A11 and

B11. Similarly, for a singly-infinite matrix M = (mjk)∞j,k=0 and n ∈ N, we use the notation M(n) to refer
to the sub-matrix consisting of those entries mjk such that j, k = 0, . . . , n. We will apply this notation to
“lower-right’ block matrices such as A22 and B22. We use the notation mn−1 to refer to the column vector
consisting of the entries mk,−n such that −n < k ≤ 0 and m∗n−1 to refer to the row vector consisting of the
entries mn,k such that 0 ≤ k < n.
Theorem 4.1. Let A be one of the algebras Av,A 1

v ,Cv, introduced in Definition 2.3, and let A ∈ A . If
A = LU is the LU-factorization of A in B(`2), then L,U ∈ A .

The proof of Theorem 4.1 is quite different from the approach in the previous section, it is more concrete
(and longer) and implicitly utilizes the Schur complement. Before we proceed to the proof of this theorem
we need some preparation.

We first prove some estimates on the entries. We shall deal with the lower-right blocks (e.g. Λ22) and the
upper-left blocks (e.g. L11) separately. The following lemma is adapted and expanded from [31].
Lemma 4.2. 1) Let B−1

22 = (βjk). Then

|λkj | ≤
∣∣∣β∗k−1B

(k−1)
22 (j)

∣∣∣ (14)

for 0 ≤ j ≤ k − 1.
2) Let A−1

11 = (αjk). Then

|`jk| ≤
∣∣∣A(k−1)

11 α∗k−1(j)
∣∣∣ (15)

for 1− k ≤ j ≤ 0.

Proof. We first write

L22 =

 L
(k−1)
22 0 0
`∗k−1 `kk 0
M v D

 ,

from which we see

L−1
22 = Λ22 =

 Λ
(k−1)
22 0 0

λ∗k−1 λkk 0

N w D−1

 .

By observing that [
`∗k−1 `kk 0

] Λ
(k−1)
22

λ∗k−1

N

 = 0,

we obtain
λ∗k−1 = −`−1

kk `
∗
k−1Λ

(k−1)
22 . (16)
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Since Λ22 = U22B22, we see that L22 = B−1
22 Ω22. Hence,

`∗k−1Λ
(k−1)
22 = (`k1, . . . , `k,k−1)Λ

(k−1)
22 =

(
k−1∑
i=1

βkiωi1, . . . ,

k−1∑
i=1

βkiωi,k−1

)
Λ

(k−1)
22

=

k−1∑
j=1

k−1∑
i=1

βkiωijλj1, . . . ,

k−1∑
j=1

k−1∑
i=1

βkiωijλj,k−1


=

k−1∑
i=1

βki

k−1∑
j=1

ωijλj1, . . . ,

k−1∑
i=1

βki

k−1∑
j=1

ωijλj,k−1


=

(
k−1∑
i=1

βkibi1, . . . ,

k−1∑
i=1

βkibi,k−1

)
= β∗k−1B

(k−1)
22 . (17)

Combining (17) with (16) and noting that λkk = 1 (since the diagonal entries of L are 1), we arrive at (14).

The proof for (15) is similar.

Lemma 4.3. Assume A has the LU-factorization A = LU in B(`2) and let A be one of the algebras
in Definition 2.3. Suppose A ∈ A and the elements of L in the blocks L11 satisfy the appropriate decay
condition. Then the elements in the block L21 also satisfy that decay condition.

Proof. It is convenient for the proof of this lemma to consider the individual blocks of A and A−1 as
operators acting on `2(Z) as indicated in the beginning of this section. Clearly, L21 = A21Ω11, and due to
the upper-triangular structure of U we also have that Ω11 = U−1

11 . Moreover A11 = L11U11. Hence, since
the algebra A to which A11 and L11 belong is inverse-closed, we have that U11 ∈ A . Thus Ω11 ∈ A and
therefore L21 ∈ A .

Now, to prove Theorem 4.1, we only need to show that if A ∈ A , then L11 and L22 are also in A .

Proof of Theorem 4.1. 1. Suppose that A ∈ Av. Then, by (14) of Lemma 4.2, we have

|λkj | ≤
∣∣∣β∗k−1B

(k−1)
22 (j)

∣∣∣ ,
for k, j ≥ 0. Since both B22 and B−1

22 have the appropriate decay property, we have

|λkj | ≤
∣∣∣β∗k−1B

(k−1)
22 (j)

∣∣∣ ≤ k−1∑
i=1

|βki||bij | ≤
k−1∑
i=1

1

v(k − i)
1

v(i− j)
≤ 1

v(k − j)
,

where the last inequality holds by the fact that v is sub-convolutive. Thus we have shown that the
entries of Λ22 satisfy the appropriate decay estimate. Then, since Av is inverse closed, we have that
L22 satisfies the decay estimate.

By (15) of Lemma 4.2 we have

|`jk| ≤
∣∣∣A(k−1)

11 αk−1(j)
∣∣∣ ,

for j, k ≤ −1. Since both A11 and A−1
11 have the appropriate decay, we have

|`jk| ≤
∣∣∣A(k−1)

11 αk−1(j)
∣∣∣ ≤ 1−k∑

i=−1

|aji||αik| ≤
k−1∑
i=1

1

v(j − i)
1

v(i− k)
≤ 1

v(j − k)
.

Hence L11 satisfies the decay estimate. Then, by Lemma 4.3, L21 satisfies the decay condition. So all
three blocks of L have the appropriate decay. Therefore, L ∈ Av. Then, since Av is inverse-closed,
Λ ∈ Av. Thus, since U = ΛA, we have that U ∈ Av.
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2. Suppose that A ∈ A 1
v . Then, by (14), we have

|λkj | ≤
∣∣∣β∗k−1B

(k−1)
22 (j)

∣∣∣ ,
for k, j ≥ 0. Since both B22 and B−1

22 have the appropriate decay property, we have

sup
k≥0

∑
j≥0

|λkj |v(k − j) ≤ sup
k≥0

∑
j≥0

∣∣∣β∗k−1B
(k−1)
22 (j)

∣∣∣ v(k − j)

≤ sup
k≥0

∑
j≥0

k−1∑
i=1

|βki||bij |v(k − j)

≤ sup
k≥0

∑
j≥0

∑
i≥0

|βki||bij |v(k − i)v(i− j)

≤ sup
k≥0

∑
i≥0

|βki|v(k − i)
∑
j≥0

|bij |v(i− j)

≤ sup
k≥0

∑
i≥0

|βki|v(k − i) sup
i≥0

∑
j≥0

|bij |v(i− j) <∞.

Note that the same argument applies if we take the supremum with respect to j and the sum with
respect to k instead. Hence we have shown that the entries of Λ22 satisfy the appropriate decay
estimate. Then, since A 1

v is inverse closed, we have that L22 satisfies the decay estimate.

Now, by (15) we have

|`jk| ≤
∣∣∣A(k−1)

11 αk−1(j)
∣∣∣ ,

for j, k ≤ −1. Since both A11 and A−1
11 have the appropriate decay, we have

sup
k≤−1

∑
j≤−1

|`jk|v(j − k) ≤ sup
k≤−1

∑
j≤−1

∣∣∣A(k−1)
11 αk−1(j)

∣∣∣ v(j − k)

≤ sup
k≤−1

∑
j≤−1

1−k∑
i=−1

|aji||αik|v(j − k)

≤ sup
k≤−1

∑
j≤−1

∑
i≤−1

|aji||αik|v(j − i)v(i− k)

≤ sup
k≤−1

∑
i≤−1

|αik|v(i− k)
∑
j≤−1

|aji|v(j − i)

≤ sup
k≤−1

∑
i≤−1

|αik|v(i− k) sup
i≤−1

∑
j≤−1

|aji|v(j − i) <∞.

Again, the same argument applies if we take the supremum with respect to j and the sum with respect
to k instead. Hence L11 satisfies the decay estimate. Then, by Lemma 4.3, L21 satisfies the decay
condition. So all three blocks of L have the appropriate decay. Therefore, L ∈ A 1

v . Then, since A 1
v is

inverse-closed, Λ ∈ Av. Hence, since U = ΛA, we have that U ∈ A 1
v .

3. Suppose that A ∈ Cv. By [27], we know that there is some γB ∈ `1v such that the entries of B22 and
B−1

22 are bounded by γB for all n. Then, by (17), we have

|λkj | ≤
k−1∑
i=1

|βkibij | ≤
∑
i∈Z

γB(k − i)γB(i− j) = [γB ∗ γB](k − j).

Since `1v is a convolution algebra, we have that Λ satisfies the appropriate decay estimate, and so does
L by inverse-closedness.
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Now consider L11. Then, there is some sequence γA ∈ `1v such that the entries of A11 and A−1
11 are

bounded by γA for all n. Then, by (15), we have

|`jk| ≤
1−k∑
i=−1

|ajiαik| ≤
∑
i∈Z

γA(j − i)γA(i− k) = [γA ∗ γA](j − k).

Again, the result follows from the fact that `1v is a convolution algebra.

5 Localization of the Cholesky, QR-, and Polar factorization

5.1 The Cholesky factorization

Corollary 5.1. Assume that A is a strongly decomposable inverse closed subalgebra of B(`2) that satisfies
(7) and (8) (for example we can choose A to be one of the algebras in Definition 2.3). Then any positive
definite matrix A ∈ A admits a Cholesky factorization in A .

Proof. Since A is positive definite we can always rescale A so that ‖I− αA‖B(`2) < 1 for some α > 0 (note
that we only claim ‖I − αA‖B(`2) < 1 and not ‖I − αA‖A < 1) . Hence, by Theorem 3.4 we know that
A = LU where L,U ∈ A and Lii = 1, i ∈ Z. Since A = A∗ = LU = U∗L∗, there holds A = LDL∗, where
D has to be positive definite, because A is. Then A = (LD

1
2 )(LD

1
2 )∗ is the Cholesky factorization of A,

and obviously LD
1
2 ∈ A .

We note that for the special case when A is the Jaffard algebra and A is finite-dimensional, Corollary 5.1
recovers Lemma A.1 in [31]. Furthermore, Corollary 5.1 contains as special case Lemma II.3.2. of [23], by
setting A = Cv with v ≡ 1.

5.2 The QR-factorization

Corollary 5.2. Assume that A is a strongly decomposable inverse closed subalgebra of B(`2) that satisfies
(7) and (8) (for example we can choose A to be one of the algebras in Definition 2.3). Let A ∈ A be such
that A is invertible and suppose that its QR-decomposition A = QR exists. Then Q,R ∈ A .

Proof. Consider the matrix V = A∗A = RQ∗QR = R∗R. Note that V ∈ A and it is invertible, positive
definite, and hermitian. Let V = C∗C be its Cholesky factorization. Then R = DC, where D is a unitary
diagonal matrix. So R ∈ A , which implies R−1 ∈ A . Since A is an algebra, it follows that Q ∈ A .

It is claimed (without proof) in Section II.B of [36] that the Gram-Schmidt orthogonalization would destroy
the localization properties of a given set of vectors, while applying the Löwdin orthogonalization procedure
(which essentially amounts to applying the inverse square root of a matrix) preserves localization. Corol-
lary 5.2 shows that this claim is incorrect, since Gram-Schmidt does preserve localization as well.

5.3 The Polar factorization

Theorem 5.3. Let A be one of the decay algebras in Definition 2.3. Let A ∈ A be invertible and suppose
its polar decomposition A = PU exists, where P is positive definite. Then P,U ∈ A .

Proof. Recall that P = (A∗A)
− 1

2 . Then, the Banach square root theorem [18] implies that P ∈ A . So,
since A is inverse-closed, we have P−1 ∈ A , which in turn implies U ∈ A .
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A close relative of the polar factorization is the singular value decomposition A = VΣW∗. Since VW∗ = U,
where U is the partial isometry from the polar decomposition of A, we can say that VW∗ inherits the decay
of A. Of course, this says nothing about the localization of V and W. Indeed, as already mentioned in the
introduction, it is clear that without any additional assumptions the individual factors V and W cannot
inherit the decay properties of A. For example, note that the identity matrix I can be written I = VIV∗

for any arbitrary unitary matrix V. Eigenvector localization is a heavily studied subject, in particular in
connection with the famous phenomenon of Anderson localization (see e.g. [45] and its many references).
We will report on eigenvector localization in connection with Banach algebras with off-diagonal decay in a
forthcoming paper.

6 Factorizations, Localization, and Functional Calculi

The question whether matrix functions, such as the matrix exponential, inherit the localization properties
of a matrix has been investigated for the cases of band matrices in [11, 32, 12]. This issue is of relevance in
various areas of numerical mathematics [11, 32]. What can we say about functions of a matrix if the matrix
is not banded, but has some form of off-diagonal decay?

In the previous sections we were able to prove that localization of various matrix factors is preserved in
general under reasonably mild conditions and regardless of how these factors were obtained. In practice, the
factors are often obtained via some kind of functional calculus. Since many useful functional calculi restrict
naturally to the inverse closed subalgebras, the factors will automatically inherit the property.

For example, in case of Laurent matrices a necessary and sufficient condition for factorization of a matrix
A = (ajk) ∈ C1 is given in terms of its symbol σA ∈ C(T), σA(θ) =

∑
n∈Z

cnθ
n, θ ∈ T, cn = aj,j−n, j, k, n ∈ Z.

Recall that in this case A is the matrix of an operator of multiplication by σA in L2(T) in the standard
Fourier basis. Thus, the LU-factorization of A is equivalent to the spectral factorization σA = σLσU, where
σL admits a non-vanishing continuous extension that is holomorphic in D and σU admits a non-vanishing
continuous extension that is holomorphic in C\D. The factorization condition then is the well-known Paley-
Wiener condition [33] ∫ π

−π
lnσA(eit)dt > −∞,

and the (extension of the) symbol of one of the factors, σL, is then computed via

σL(z) = exp

(
1

4π

∫ π

−π
lnσA(eit)

eit + z

eit − z
dt

)
, z ∈ D.

Since the series defining the matrix exponential will converge in any Banach algebra of matrices, the factors
will belong to a subalgebra A as long as the logarithm of the symbol of the matrix stays in the isomorphic
subalgebra of C(T). We cite [33, 14] for more information and detailed estimates on the coefficients of the
spectral factors.

Riesz-Dunford functional calculus is another natural example of a calculus that restricts to a Banach subal-
gebra. Indeed, if A ∈ A and A is inverse closed then

B =
1

2πi

∫
Γ

f(λ)(λI−A)−1dλ ∈ A ,

where f is holomorphic inside a positively oriented contour Γ surrounding the spectrum or a spectral com-
ponent of A. To give a concrete example, it now follows easily that the matrix exponential exp(A) ∈ A
if A ∈ A , whenever A is an inverse-closed Banach algebra, such as e.g. one of the Banach algebras in
Definition 2.3.

Yet another example of a useful functional calculus is in some sense a generalization of the approach in the
Laurent case. Given A ∈ Bc and h ∈ L1(R), we can define a Banach L1(R)-module structure [9] via

hA =

∫
T
h(θ)fA(θ−1)dθ =

∫
T
h(θ)M(θ−1)AM(θ)dθ.
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This structure extends to a closed operator calculus as in [8]. Again, we have hA ∈ A as long as A is in a
Banach algebra A that is invariant under the modulation representation.
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[29] K. Gröchenig and M. Leinert. Symmetry of matrix algebras and symbolic calculus for infinite matrices.
Trans. Amer. Math. Soc., 358:2695–2711, 2006.
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[35] T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice Hall, 2000.

[36] W. Kozek and A. Molisch. Nonorthogonal pulseshapes for multicarrier communications in doubly
dispersive channels. IEEE J. Sel. Areas Comm., 16(8):1579–1589, 1998.

[37] V.G. Kurbatov. Functional Differential Operators and Equations, volume 473 of Mathematics and Its
Applications. Kluwer Academic Publishers, Dotrecht, Boston, London, 1999.

15



[38] C. Le Bris. Computational chemistry from the perspective of numerical analysis. Acta Numerica,
14:363–444, 2005.

[39] M. Lindner. Infinite Matrices and their finite sections. Frontiers in Mathematics. Birkäuser, 2006.
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