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Abstract

As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication
systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of
intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in
signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal
sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will
thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing
paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded
security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially
play a key role in their solution.
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I. WHAT DRIVES 5G?

The introduction of 4G clearly marked a first peak of the smartphones’ revolution, offering high bandwidth mobile radio
access almost anywhere and anytime. However, as it becomes increasingly apparent that 4G will not be able to meet the
emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the key
drivers, is still open and part of intensive discussions. Actually with 5G and related visions, we believe, mobile communications
research is on the brink towards a new innovation cycle [1] (see also www.metis2020.com, www.5gnow.de):

• The Internet of Things (IoT) will connect billions of devices, i.e., the things of our everyday life, which is far more than
4G can technically and economically accommodate. This will then open up new ways to monitor, assist, secure, control
e.g. in the tele-medicine area, smart homes, smart factory etc. In fact, the IoT could change the way we see the Internet
as a human-to-human interface towards a more general machine-to-machine platform.

• Security, privacy, and data integrity will be a key issue in the 5G market. Current security solutions e.g. for the IoT fall
short due to the sheer number of nodes which must be flexibly managed and distributed in the network.

• Moreover, the Tactile Internet (TI) comprises a vast amount of real-time applications with extremely low latency require-
ments including industrial wireless applications such as Smart Grids. Motivated by the human tactile sense, which requires
round-trip times in the order of 1ms, 5G can then be applied for steering and control scenarios implying a disruptive
change from today’s content driven communications. This is far shorter than current 4G cellular systems allow for, missing
the target by nearly two orders of magnitude.

• Gigabit wireless connectivity is required in large crowd gatherings with possibly interactively connected devices using
angle-controlled 3D video streaming, augmented reality, etc.

These examples make it very clear that 5G networks are not only just about providing higher rates for the next smartphone
generation (although certainly important!), but more about enabling, integrating services and embedded security which both
implement very different (virtually contradicting) application requirements. From a technical perspective it seems to be utmost
challenging to provide such uniform service experience to users under the premises of future heterogeneous networking and
small cell scenarios. Consequently, the radio access has to be flexible, scalable, content aware, robust, reliable and efficient
in terms of energy and spectrum. Actually, with the limitations of current 4G system, this would put further pressure on the
common value chains on which the operators rely in order to compensate for investment costs for future user services. Hence,
there is a clear motivation for an innovative and disruptive re-design of current mobile communication networks from scratch.

Having the short-comings (i.e., high latency, no embedded security, very bulky control signalling architecture) of 4G in
mind, we develop the elements of a 5G research agenda based on sparse signal processing. Here, sparsity typically means that
only a few samples of the signal are actually non-zero but their locations may not be known. This new paradigm has been an
intriguing topic in mathematics and signal processing in recent years. Note that sparsity-based concepts have been succesfully
applied in specific communication problems, e.g. the peak power control problem (see [2]). We will argue that sparsity in
communication signals is a viable source for innovation in 5G wireless system design and will, hence, appear as our basic
methodology.

II. ENABLING 5G TECHNICAL CONCEPTS

Let us first identify a series of enabling 5G concepts and corresponding research challenges which shall be approached with
the new paradigm:

i) Fast and scalable random access is one 5G key concept to handle the massive number of sporadic traffic generating
devices (e.g. IoT devices, but also Smartphones’ Apps etc.) which are most of the time inactive but regularly access the
network for minor updates with no human interaction. Sporadic traffic will dramatically increase in the 5G market and,
obviously, cannot be handled with the bulky 4G random access procedures. Two major challenges must be addressed to
leverage successful 5G business models: i) unprecedented number of devices asynchronously access the network over a
limited resource, ii) the same resource carries control signaling and users’ payload. Dimensioning the channel according
to classical theory results in a severe waste of resources which, even worse, does not scale towards the requirements of the
IoT (low-cost, deep indoor coverage, long life time of devices). Yet, since typically user activity [3], channel profiles [4]



and message sizes are compressible within a very large receive space, sparse signal processing methodology is a natural
framework to support sporadic traffic, cf. Sec. IV.
In addition, the TI requires ultra-fast acquisition in the order of 100µs on the physical layer to enable the 1ms round-trip
time [1]. Notably, this implies that even small, say 1kBit data bursts, result in a huge bandwidth requirement. Again, we
will argue that classical theory requires that for each real-time connected device a significant control signaling overhead is
necessary to allow for swift channel estimation, equalization and demodulation. Since, in addition, this traffic class must
be also extremely reliable, control signaling must be separated from the data which is very inefficient and can be much
better handled by sparse signal processing.

ii) Densification of cells together with cloud-powered baseband processing and wireless network virtualization (so-called
Cloud-RAN) is another 5G key concept to increase spectrum and energy efficiency and handle the projected traffic growth
[1]. It is based on the deployment of many light base stations with overlapping coverage, performing only signal conversion
to/from the digital domain, connected through a high capacity link to a cloud of data centers. Coordinated processing of
signals by multiple network nodes is a key design element in such a virtualized cellular network. Yet, it is still mostly
overlooked in the literature that existing cooperative designs do not scale in terms of run time requirements and required
control information. In Sec. V we analyze existing schemes and discuss a new control signaling architecture thereby
efficiently exploiting not only the compressible channels but also the number of effectively coordinated nodes (out of the
total number of nodes). We will also discuss the beneficial interacting role of sparse prediction and coordination in this
scenario.

iii) 5G source coding concepts for the massive number of distributed sensors and actuators will be very different as well.
Shannon’s famous separation theorem states that under appropriate conditions data compression (source coding) and
error protection (channel coding) can be performed separately and sequentially, without any performance loss. While the
separation theorem has has tremendous impact on the design of communication systems, in several practical scenarios
the conditions of the Shannon’s separation theorem neither hold nor can be used as a good approximation. Naturally, this
raises the question whether and in which form Shannon’s separation theorem holds true and can serve as a guiding design
principle for the communication scenarios we expect to encounter in 5G. In Sec. VI we discuss the related concepts.

iv) Security will play a central role in 5G networks. In today’s communication systems there is an architectural separation
between data encryption and error correction. The encryption module is based on cryptographic principles and views
the underlying communication channel as an ideal bit pipe. The error correction module is typically implemented at the
physical layer. It adds redundancy into the source bits in order to combat channel impairments or multiuser interference
and transforms the noisy communication channel into a reliable bit pipe. While such a separation based architecture has
long been an obvious solution in most systems, a number of applications have emerged in recent years where encryption
mechanisms must be embedded in the physical layer (called physical layer security/ or embedded security [5]). Embedded
security is a relatively new research area exploiting the stochastic and physically unclonable nature of the wireless channel
including noise and the hardware, e.g. for symmetric key and fingerprint generation. It is a further 5G vision to embed
security into the concepts of Sec. IV – Sec. VI from scratch and to explore the benefits and tradeoffs in such innovative
designs to enable scalable, fast security mechanism implemented without user interaction, see Sec. VII.

The scenarios are depicted in Fig. 1.
Notation: For a vector x ∈ Cn, ‖x‖p denotes standard `p–norm and ‖x‖0 counts the number of non–zero elements in x.

For sets/matrices we use capital/calligraphic letters and vec(X) denotes the vectorization of the matrix X . For a given vector
x, diag(x) and circ(x) refer to a diagonal matrix with x on its diagonal and to a circulant matrix (of appropriate size) with x
as its first row, respectively. The nuclear norm ‖X‖∗ of a matrix X is the `1–norm of the vector of its singular values.

III. THE SPARSE SIGNAL PROCESSING PARADIGM

At the core of compressive sensing (CS) lies the discovery, that it is possible to reconstruct a sparse signal exactly from
an underdetermined linear system of equations and that this can be done in a computationally efficient manner via convex
programming [6]. Consider Φx = y, where Φ is an m× n matrix of rank m with m < n. Here, Φ models the measurement
(or sensing) process, y ∈ Cm is the vector of observations and x ∈ Cn is the signal of interest. Conventional linear algebra



Fig. 1. Considered 5G deployment scenarios and respective ”location” of compressive sensing (CS) entities.

wisdom tells us that in principle the number of measurements m has to be at least as large as the signal length n, otherwise
the system would be underdetermined and there would be infinitely many solutions. Most data acquisition devices of current
technology obey this principle in one way or another.

Assume now that x is k–sparse, i.e., x satisfies ‖x‖0 ≤ k � n but we do not know the locations of the non-zero entries
of x. Due to the sparsity of x one could try to compute x via an exhaustive search, which however is NP-hard. Instead, the
CS paradigm tells us that that under certain conditions on the matrix Φ and the sparsity of x we can reconstruct x from its
measurements via linear or quadratic programming techniques [6]. While x may not be sparse with respect to the standard
basis, in many cases we are dealing compressible signals which are well–approximated by signals which are sparse in some
specific domain (e.g. in the Fourier or wavelet domain). Thus, let Ψ be a n× n matrix which sparsifies x and y = ΦΨx+ z,
where z is a noise vector. To recover x we consider the convex optimization problem:

x̃ = arg min‖x‖1 s.t. ‖y − ΦΨx‖2 ≤ ε (1)

with ε depending on variance of z. Here, the `1–norm appears as the convex relaxation of ‖·‖0.
A particularly important subject for the application in multi-node/multi-terminal scenarios is the separation, respectively

demixing of multiple sparse signal contributions from the compressed superimposed receive signal (compressive demixing).
Consider the model:

y = Φ

P∑
p=1

Ψpxp + e (2)

where each contribution Ψpxp is compressible in its own domain. Here, the synthesis matrices {Ψp} must essentially ensure



that there is no common intersecting subspace. Following [7] a condition for exact (and/or stable) recovery is to avoid nontrivial
(well-separated) intersections between the per-user `1-descent cones at the true but unknown signals. See also [8] for a quite
general formulation of this problem.

In recent years, the idea of compressive sensing has been extended and generalized in several ways. Adopting such a more
general viewpoint (see e.g. [9]) we may assume that the objects of interest x (for example n–dimensional vectors or n× n–
matrices) can be well–approximated by superpositions

∑
j cjψj of a few fixed atoms taken from an atomic set A ≡ {ψj}.

Compared to the full linear span of all atoms A the feasible set of objects has then substantially reduced complexity. In the
standard CS problem A corresponds to Ψ.

A more advanced set A is given by the superposition of a few rank–one n × n–matrices. The nuclear norm ‖·‖∗ will
serve as convex relaxation of the rank–function, see e.g. [10], [11]. Assume that we observe the n × n matrix x by taking
m Hilbert–Schmidt inner products of the form (ΦX)l := 〈Φl, X〉. In analogy to (1), we can attempt to recover x via nuclear
norm minimization, i.e., via:

X̃ = arg min‖X‖∗ s.t. ‖y − ΦX‖2 ≤ ε (3)

which can be solved e.g. by semidefinite programming.
While by now we have a fairly good theoretical understanding of such low-rank matrix recovery (LMR) problems as in (3),

only preliminary results are known for the practical relevant combination of simultaneously low–rank and sparse structures, as
present for example in (sparse) compressive phase retrieval or compressive blind deconvolution discussed in Sec. V and Sec.
IV. Multi-objective (`1 and nuclear norm) convex programs for simultaneously sparse and low-rank matrices are limited by
the so called rank-sparsity incoherence and stable recovery cannot be achieved at the theoretically optimal (for non–convex
recovery) number of measurements [12].

In several applications we are confronted with nonlinear measurements, such as intensity or quantized measurements. Thus,
we may consider the more general case where we get information about the object x by taking m non–adaptive, linear or
nonlinear noisy observations of the form (y)l = f(〈φl, x〉) + (z)l. The famous phase retrieval problem falls in this setting,
here f(〈φl, x〉) = |〈φl, x〉|2. Recently it has been shown [13] that the phase retrieval problem can be casted as a linear
matrix–estimation problem under rank–constraints and exploiting the LMR framework with further cone constraints, i.e., A is
the set of rank–one positive–semidefinite matrices. The approach in [13], called PhaseLift, proceeds by lifting the absolute–
square map on vectors to a linear map on rank-one matrices. To be explicit, with Φl = φlφ

∗
l and X = xx∗ one has

(y)l = 〈Φl, X〉+ (z)l = (ΦX)l + (z)l which matches the LMR model, i.e., algorithms related to (3) can be used for recovery.
An even more constrained form of (noisy) phase retrieval problem is to recover a sparse complex vector from noisy intensity
measurements. See [14] for some recent theoretical results and further references.

IV. COMPRESSIVE MULTI-ANTENNA RANDOM ACCESS

In this section we will introduce a general compressive multiple antenna random access. In this model each device
asynchronously accesses the network thereby carrying overlapping data and control signals. In such a system, data detectibility
becomes increasingly erroneous the more control is interfering with the data. Yet, the control must somehow interfere with
data in order to allow for (swift) estimation of the channel. This seems to be a contradicting, irresolvable task at first sight.
However, we show how we can cope with this task by exploiting sparse signaling principles.

A. Random access: A key application for sparse signal processing

A key 5G application of the sparse signal processing paradigm is the evolution of the random access channel (RACH) with
asynchronous short–message support which explicitly exploits compressibility. In RACH, sparse structures are present in many
directions: (i) due to user activity and the near/far–behavior only a small but unknown subset of users participate in the random
access at a particular base station (ii) the mobile channels (its spreading function) from the terminals to base stations are sparse
in delay and Doppler and (iii) MIMO channel matrices are often low–rank due to collocation of antennas and (iv) sporadic
traffic with short-message type payload is intrinsically sparse.

On the other hand, multiple challenging tasks have to performed simultaneously in such an improved compressive RACH
architecture. Firstly, (i) the active user set has to be identified. Then, (ii) the associated channel coefficients for these users



have to be estimated. The separate determination of the channel characteristics is important for possible resource assignment
for successive high data rate uplink. Finally, (iii) the RACH data payload for each active user has to be reconstructed. Without
explicitly exploiting the sparse structures discussed above, it seems to be practically impossible to achieve steps (i),(ii), and
(iii) in a single or few transmission steps. Therefore, traditionally, only step (i) is accomplished in the RACH and steps (ii) and
(iii) are postponed to a synchronized uplink channel which comes then with the already mentioned control overhead. Thus,
exploiting the system sparsity can be a key enabler for IoT and, by similar reasons as we pointed out in Sec. II, for the TI on
the physical layer.

Sparse reconstruction methods have been used here already in all these steps separately. For example, step (i) user activation—
also known as on-off RACH—can be cast as a CS problem [15], see also [16]. Multipath channel estimation is meanwhile
a classical field for CS methods [4]. Compressive demodulation or demixing of superimposed signals, step (iii), is a further
field of research [7], [8].

Let us discuss suitable detection strategies in the following. We will distinguish between coherent concepts and incoherent
concepts where the receiver estimates the multi-antenna channel separately prior to data demodulation or not, respectively.

B. Coherent multiantenna receiver concepts

Our target system to be investigated is described as follows: We adopt a general model where multiple receive antennas
nr are incorporated from scratch. Transmission is on a frame by frame basis where the signal space dimension n within the
frame can be very large, say several thousands samples due to large bandwidth or large observation times. The time-space
(rows-columns) signal to be compressively sensed in some slot is given by the matrix Y ∈ Cn×nr . Let us assume that the
channel coherence time is essentially larger than the slot time. There are three sources for sparsity or compressibility that
should be exploited:

• Sporadic (Sparse) Traffic: The communication in random access is sporadic so that out of nt nodes only an unknown
small subset of size k0 are actually active. Alternatively, we can assert certain probabilities to each node. This is our
primary source for sparsity within the receive space Cn×nr .

• Multipath Channels: Communication is over a multipath channel with delay spread nd. For each p-th/q-th transmit/receive
pair, the channel vector hpq contains the nd coefficients of the channel impulse response (CIR) which form the matrix:

Hp =


...

...
...

(hp1)i ... (hpq)i ... (hpnr
)i

...
...

...

 ∈ Cnd×nr (4)

We assume that out of the nd channel coefficients in each column, only k1 in the CIRs are non-zero and the exact positions
of the coefficients within Hp are unknown. This sparsity assumption is fulfilled in most wireless communication scenarios
and, indeed, channel estimation was one of the first CS applications here [4]. Meanwhile, CS estimation methods have
been extended towards sparsity in the delay-Doppler domain (see e.g. [17]). Large bandwidth channels tend to exhibit
sparsity only in the delay domain where the support of the pathes is invariant though [18]. This is our second source for
sparsity.

• Compressible Short Messages: Each user transmits a sequence xp = Cpdp where dp ∈ M ∪ {0} ≡ M0 is from some
modulation alphabet which, by the activity model includes a zero energy symbol as well. The matrix Cp ∈ Cn×n is
some designed or random code matrix. We assume that k2 data symbols out of the n are actually non-zero. This is our
third source of sparsity. Note that in the random case the transmitter has to be informed about the code matrices Further
reasoning for this assumption follows when taking intrinsic compressibility of the data payload into account as it will be
explained, for example, in Sec. VI.

• Spatial corelations: Another source of sparsity is the spatial domain particularly when the number of antennas is large
(the so-called massive antenna regime). In this situation the covariance matrix is sparse but in some domain which is
typically unknown; only in some special cases this matric can be decomposed in the Fourier domain, e.g. for the linear
array [19]. A natural question is then how to measure this such (huge) covariance matrix or alternatively how to select



a proper basis to exploit the sparsity in the process. Additionally, this cannot be done independent of the data detection
process.

• Topology: Due to sparse connectivity, users will be separated by their received transmission powers. This is e.g. a possible
way to inherently distinguish relevance of certain nodes in a cooperative design (see also the Sec. V).

As we outlined before, our goal is to achieve ”one shot” transmission, i.e., user detection, channel estimation and data
detection in one time slot. Therefore, for each node p, a control sequence sp ∈ Cn drawn from some pool of sequences known
to the access, and an unknown data sequence xp ∈Mn

0 is transmitted. Each transmit sequence has some individual power and
the power is split between the control and the data. The sampling equation for the receiver q can be mathematically expressed
with (4) as:

y = Φ

(
nt∑
p=1

(Sp +Xp)Hp + Z

)
=: Φ(Y ) (5)

whereby, for the sake of exposition, we use a circular matrix model Sp = circ(sp) and Xp = circ(xp) to represent all circular
convolutions between transmit signals sp+sq and channel impulse responses hpq . The matrix Z denotes additive white Gaussian
noise with variance σ2 per component. Measurement on this matrix signal Y is performed with a linear mapping Φ giving the
sample values y = Φ(Y ). If the same sampling is used independently for all receive antennas, one could take also Φ ∈ Cm×n

as the measurement (compression) matrix. Notably, compared with compressive demixing in Sec.III, the dictionary matrices
Ψp are now related to a circulant model. In CS for a single signal with a random measurement matrix model ΦΨp where
Φ is isotropically–distributed this is sometimes called the anisotropic case. Noteworthy, in the classical setting this model
resembles closely the overloaded multiple access channel which is well understood. Notably, in the overloaded case, optimal
mean squared error designs can be achieved [20] which is very different from the compressive case considered here where
such problems have not yet been touched.

The model in (5) is actually general enough to include several recent models and once Hp is assumed to be known or Xp

is zero the determination of the remaining unknowns under sparsity assumptions reduces (up to the anisotropy) to a standard
CS problem. For example, if Hp is already known at the receiver, user activity and data demodulation can be performed with
CS–based multiuser detection methods, see [3] and further references in [16]. However, in general Hp itself has to be estimated
within the same transmission frame which is a challenging task both from the algorithmic side as well es from the design point
of view. Random codebook and/or pilot assignments and spreading, respectively, could be a possible strategy for this problem
[16]. The limits of such compressive demixing strategies by convex methods has been characterized for the random orientation
model in [7] in a quite general setting. According to [7] reliable demixing is possible whenever the number measurements m
is sufficiently above the total sum of all contributing statistical dimensions. In the sparse case the statistical dimension of a
single signal contribution amounts for the effective dimension of `1-descent cones at the unknown signal and scales linearly
with signal sparsity. A greedy approach to demixing for more general signal manifolds is contained in [8].

Another partial randomization strategy could be a clever combination of illumination and subsampling as already proposed
for the random demodulator [21][22]. Using the different cancellation properties of stochastic i.i.d. data with deterministic
pilots, it is possible (i) to cumulate sufficient pilot power for sparsity–aware channel estimation in a fixed window at the output
of the random demodulator and then (ii) to demodulate the whole data payload. To show the potential of such approach let us
consider the following 5G–like situation using LTE-A 4G parameters:

An LTE-A 4G frame consists of a number of subframes with 20MHz bandwidth; the first subframe contains the RACH with
one ”big” OFDM symbol of 839 dimensions located around the frequency center of the subframe. The FFT size is 24578=24k
corresponding to the 20MHz bandwidth whereby the remainder bandwidth outside PRACH is used for scheduled transmission
in LTE-A. The prefix of the OFDM symbol accommodates delays up to 100µs (or 30km cell radius) which equals 3000
dimensions. In the standard the RACH is responsible for user aquisition by correlating the received signal with preambles from
a given set. Here, to mimic a 5G situation, we equip the transmitter with the capability of sending information in ”one shot”,
i.e., in addition to user aquisition, channel estimation is performed and the data is detected.

In our setting, a limited number of users is detected out of a maximum set (here 10 to 50). Please note the rather challenging
scanrio of only 839 subcarrier in the measurement window versus almost 24k data payload subcarriers. We assume that the
delay spread is below 300 dimensions of which only a set of 6 pathes are actually relevant. Each active user sends 1000



Fig. 2. Averaged BPSK SER in 5G ”one-shot” random access in a 20MHz LTE-A standard setting at SNR=20dB. Out of n = 24576 dimensions m = 839
dimension are used for CS

bits in some predefined frequency slot. Hence, in the classical Shannon setting 50 users x (300 pathes + 1000 bits) = 65000
dimensions are needed while there are only 24k available! The performance results are depicted in Fig.2 where we show show
symbol error rates (SER) over the pilot-to-data power ratio α. Moreover, in In Fig.3 we show depict false detection probability
PFD over missed detection probability PMD. We observe that although the algorithms do not yet capture the full potential
of this idea, reasonable performance can be achieved by varying α. In the 4G LTE-A standard a minimum PFD = 10−3

is required for any number of receive antennas, for all frame structures and for any channel bandwidth. For certain SNRs a
minimum PMD = 10−2 is required. It can be observed from the simulations that the requirements can be achieved. Actually,
compared to 4G LTE-A where the control signalling can be up to 2000% [1] of a single resource element the control overhead
is in the CS setting down to to 5% (let alone the huge increase in latency) [22]!

C. Incoherent multiantenna receiver concepts

The situation is even more intricate if both the sequence set and the channel are unknown during sampling. For the purpose
of exposition we consider the single user/single antenna case and use the short–hand notation ∗ for circular convolution. In such
a blind reference model the signals to be sampled are given, for example, as h ∗x of two unknown but sparse vectors x and h
with ‖h‖0 ≤ k1 and ‖x‖0 ≤ k2. The goals are (i) sample h∗x with minimal number of measurements and (ii) determine from
h∗x the pair (x, h) up to indissoluble ambiguities. Compressive sampling via Φ ∈ Cm×n of such type of bilinear combinations
in the strongly undersampled regime (the number of measurements m scales with k1 + k2 although ‖h ∗ x‖0 ≤ k1k2) can be
achieved under additional stability assumptions, see [23] and references therein. This bilinear recovery problem can be lifted



Fig. 3. PFD = 10−2 over PMD = 10−2 for the 5G ”one-shot” random access with same parameters

again to an LMR problem, since circular convolution h ∗ x = B
(
vec(hxT )

)
can be expressed as linear mapping B applied

on the (vectorized) rank–one matrix X = hxT . More precisely, B is a suitable matrix with elements (B)i,(jk) = δi,j⊕k.
A convex recovery algorithm not taking sparsity into account follows then from (3). Such a nuclear norm minimization has
been considered by some authors for linearly random encoded data x, see for example [24] and further reference therein (also
related independent component analysis). Indeed, there it has been shown that this approach is successful with overwhelming
probability when certain oversampling is used. It has to be expected that this situation improves if sparsity will be taken into
account and even undersampling can then be used. For example, nuclear norm minimization could be `1–penalized:

min ‖X‖∗ + λ ‖vec(X)‖1 s.t. ‖y − ΦB(X)‖2 ≤ ε (6)

for some regularization parameter λ > 0. Yet, such multi-objective convex methods will not scale better then the best separate
optimization [12]. Thus, it is of fundamental importance to find recovery algorithms which (i) can operate at the optimal,
additive (k1 + k2) scaling of measurements and (ii) can be easily extended to the case with multiple interferers.

D. Going massive

The system in eq. (5) in the non-coherent setting culminates in a many to massive antenna design when the number of
receive antennas is scaled up. The standard setting for the massive MIMO case is the flat fading case.

The standard setting for the massive MIMO case is the flat-fading case where all hpq contain a non-zero element at their



first position only so that we have Hp = (h1p, ..., h
q
p) = hTp . The model can be written as

Y =

Nt∑
p=1

sph
T
p + Z (7)

It can then be shown that an SNR optimal detector is given by a singular value decomposition of Y when sparsity is not
involved. Very recently, [25] has linked this to the so-called pilot contamination problem in a multi-cell scenario using random
matrix theory showing that eigenvalue sets related to pilot signals in different cells appear in fact in disjoint intervals so that
they can be separated. Hence, by this nonlinear detector the pilot contamination problem disappears, however, at the cost of
high receiver complexity involving ”big” matrix decomposition, of course. Notably, the general case involving sparsity and
multipath fading is an open problem and an important part of the future research agenda.

V. CLOUD RADIO ACCESS NETWORKS

In our target architecture, virtual base stations located in the data centers control a scalable number of nodes (and terminals)
for which transmission/reception is coordinated by sharing control information and/or even messages (so-called cooperative
designs or coordinated multipoint (CoMP)). While it is appealing to exploit existing designs we describe the short-comings of
such approach in this section, and how sparse signal processing concepts will enable such designs.

A. State-of-the-art cooperative designs: A critical view

A summary of state-of-the-art cooperative designs in multi-cell networks can be found in [26]. However, existing cooperative
designs, as they are available at present, are not scalable, i.e., operational regions and switching points depending on the available
channel state information (CSI) as well as suitable transitions between different technologies are not clearly defined yet. A
prominent coordinated beamforming technique is e.g. interference alignment (IA) [27] which essentially aligns the signal space
so that multiple interferer appear in the same subspace. In some scenarios, closed-form solutions are available while in others
only iterative solutions exists; rigorous convergence analysis or relevant stopping criteria are still missing. In this context, a
scalable control signaling architecture in uplink (feedback) and downlink (feedforward) is a major requirement. In the existing
designs, each point-to-point link is treated separately using orthogonal resources. Consequently, with densification of cells or
new carrier types such as device-to-device communication it becomes virtually impossible to provide CSI to all coordinated
nodes (or antennas). On the other hand, since potential gains from some nodes is marginal, it is an intriguing idea to superpose
and compress the control signals suitably, and let the (virtual) base stations recover their own channels by exploiting sparsity
of channel profiles and effectively coordinated nodes.

There is another major point which, we think, basically stems from the lack of robustness in existing designs: Industrial
field trials show rather disappointing throughput gains of CoMP algorithms [28] far away from the beforehand highlighted
information-theoretic limits [26], whereby the major limiting factor is again properly sharing CSI and other overhead among
cells. This so-called limited feedback problem has been greatly analyzed in [29] (for multiuser MIMO) and recently in [30] (for
joint transmission) and [31] (for IA) in terms of the rate distance ∆ri of node i to capacity subject to some offset independent
of SNR. Hence, these results essentially provide a systems’ degrees-of-freedom analysis, i.e., assuming infinite SNR regime. To
be specific, let p and b = b(p) denote the SNR and feedback budget (in bits/channel use) as a function of SNR, respectively,
then the per-node capacity degradation for any scaling in p is (using order notation O(·)):

∆ri(p, b) = log(1 + p · 2−
b

nt−1 ) +O(1) (8)

Very recent studies [32] indicate that these results are fragile and that, in fact, the tradeoffs actually behave very different in
more practical regimes. It is shown that for any finite SNR point p and for any scaling in b the per-node capacity degradation
is:

∆ri(p, b) = O
(

log(1 + p · 2−
b

2(nt−1) )
)

(9)

which actually doubles the required number of bits compared to (8). Classical analysis falls short due to several reasons: i)
It assumes infinite SNR regime where achieving DoF is optimal. In this operational regime interference mitigation instead
of signal enhancement is the primary goal. ii) It asserts that the transmitter can optimally allocate rates while, in practice,



the transmitter allocates rates according to the available CSI and corresponding scheduler decisions (real versus ideal link
adaption). iii) The optimal scheduling decision is known a priori which is unrealistic since limited feedback not only affects
the choice of spatial precoding but also user selection and resource allocation.

Obviously, the problem even worsens if a frequency-selective channel is considered and also persists with alternative time
domain quantization. Altogether, the classical analysis renders the performance estimation overly optimistic and it is safe to
say that the relevant tradeoffs in a dense C-RAN architecture are not yet well understood. This calls again for a highly efficient
control signaling architecture which then considers robustness from scratch as outlined next.

B. Towards a sparse architecture: Analog relay and linearly compress

Let us introduce a control signaling architecture where the feedback generating terminals receive the pilot signals from
several nodes at different receive antennas at once and act as simple relay and linearly compress nodes. Linear compressing
means that instead of the complete set of pilot measurements across time and spatial domain only a linear combination of
them is (separately) fed back (possibly in analog form). All cooperating nodes collect these compressed control signals from
the terminals and makes suitable estimates of the channels.

There are several key features of this scheme: The pilot patterns from the set of cooperating nodes are superposed and
can be separated by advanced processing exploiting CIR compressibility. The overhead does not scale with the number of
nodes joining, so that every node can join the cooperating set if it wishes. Each cooperating node receives the same signal
reflecting the C-RAN architecture where the baseband processing of different nodes is in the same place. Inherently by the
linear compressing, only the most relevant subset of nodes are effectively coordinated. Since this step is independent of the
used pilot pattern the base station can change it without informing the terminals (so that it can be even random). Altogether,
the base station takes over all the processing which is affordable in a centralized C-RAN architecture. From the terminals’
point of view, neither do they need to know which nodes are cooperating nor do they need to quantize any information of the
channels. By contrast, in simple time domain quantization, it is still assumed that the paths of each antenna of each node is
treated the same way which becomes quickly inefficient in a highly dense C-RAN architecture where only the most significant
paths across all base stations should be compressed. Moreover, the required communication resources should scale along this
number rather than all antennas and nodes. Finally, the terminals could even make use of the same processing principles (only
few might be active). Note that our design is efficient and scalable such that it meets the number of essentially unknown
parameters (but not the sampling theorem) which is typically much smaller.

Mathematically, the scheme is expressed similar to the multiple access scheme in eq. (5). Denoting the number of nodes
again by nt, the received signal at each of the cooperating nodes y is:

y = Φ

(
nt∑
p=1

SpHp + Z1

)
+ z2 (10)

Here, the inner bracket is what the terminal receives on multiple antennas similar to eq. (5). The main difference is the
additional relay component resulting in two different noise sources Z1, z2 which complicates the analysis and performance
limits are not known. Another significant challenge is to make such sparse designs robust within the C-RAN. In [33], [32] we
sketch a robust design at finite SNR guided by the intuition to improve the overall performance by suitable metrics (which
capture the effects of e.g. scheduling) and transmit/receive strategies (guaranteeing worst-case performance no matter what the
scheduling decision is) rather than simply approximating the channel. Combining such robust design with the sparse signal
processing paradigm essentially requires to fully understand the tradeoffs between number of measurements and the actual
regarded (new) performance metrics. This is actually far away from current achievements in the respective literature.

Let us mimic a 5G-like simulation scenario with LTE-A 4G parameters in Fig. 4. Here, we compare the analog relay
and linearly compress scheme with standard IQ quantization, a genie scheme and the robust schemes described in [33] in a
4G setting. We consider 3 base stations with nt = 4 transmit antennas located in 3 adjacent cells with 10 users (nr = 1)
uniformly distributed over the network area (radius of 250 meter around the center of the base stations). The physical layer is
configured according to 4G. The channels are modeled by the spatial channel model extended (SCME) [15] using the urban
macro scenario. It can be clearly observed that the CS provides a much better scaling compared to simple IQ quantization.
Note, that we have not incorporated any sparse topology yet.



Fig. 4. Mean spectral efficiency of CoMP schemes over feedback load using IQ quantization or CS based techniques: BD is block diagonalization, ZF is
zero forcing and Rate Approximation is the scheme from [33]

C. Sparse prediction: Unexplored ground

CSI aging and corresponding CSI mismatch due to asynchronous signaling is another serious problem in a CRAN. In [29]
it was shown that classical prediction is beneficial for zeroforcing beamforming (ZF) in cooperative designs such that the
systems are actually not fundamentally interference limited. In case of just stale CSI retrospective interference alignment [34]
is another technique to be explored within the developed sparse and robust context. Typically it is argued that retrospective
IAinterference alignment is actually outperformed by ZF over a wide range of velocities [35]. However, under the robustness
paradigm this might not be necessarily true as we proved that the performance estimation for ZF is overly optimistic!

So far, the inherent sparsity is not considered in the prediction literature. Clearly, sparsity provides additional structural
information which can be explored. The problems are intricate: the system (5) might evolve on a complicated manifold not in
a vector space. The simplest approach is then to assume for the time evolution the same support of the path coefficients for
all times, which is reminiscent of block- or structured CS, and to iteratively estimate the correct subspace and make a optimal
prediction on the estimated support next. Another approach is to let the process truly vary on a sparse manifold where the
simplest one is the union of all k-sparse canonical subspaces in Cn. However, so far, neither specific models to enable e.g.
advanced Kalman prediction nor any respective algorithms have been developed.

The performance of classical short-time prediction algorithms suffer from the poor granularity in the frequency domain
and coarsely quantized complex CSI due to limited feedback problem as well. Another key idea is, hence, to develop a new
framework based on sparsity where the sparse CIR is calculated from simple real-valued measurements, cf. Sec.VI for a strong
motivation of this assumption. Even though such an approach may not be supported by a physical meaning in all cases,
the new process is in any case ”slower” and therefore intuitively better predictable. Phase retrieval algorithms can be used



for such problems which we outlined in Sec. III. A special case are the Fourier measurements where the problem is related
to factorization theory. Alternative methods using so-called symmetrized Fourier measurements have been recently proposed
in [23] which, subject to the sign, theoretically allow stable reconstruction of the complex-valued CIR. Yet again, suitable
algorithms incorporating multiple antennas and nodes exploring the sparsity of the CIRs are not known.

VI. COMPRESSIVE CHANNEL-SOURCE-NETWORK CODING

In this section we carry over the concepts to the terminal side following the idea that sparsity may be already beneficial in
the terminals’ encoding process.

A. Beyond the separation theorem

5G networks, in particular the IoT component, will contain a large number of relatively simple devices that need to operate
at a very energy-efficient level and with fairly limited memory. Hence these device can neither afford to employ energy-hungry
encoding or compression algorithms, nor can they support high data rates. Thus power budget and communication rates become
two main design constraints for 5G networks. These constraints naturally suggest the use of sensors that are built based on
the compressive sensing paradigm. Using compressive sensing devices (CSDs), one can avoid the need for power-consuming
compression algorithms, while still being able to transmit images of sufficient quality without having to resort to transmitting
images pixel by pixel. Instead of recording data at a high resolution (which requires memory and energy) and then throwing
away most of the data during the compression step (compression again requires energy), such CSDs collect data directly in
the “compressive domain”. The computational burden is shifted from the transmitter to the receiver. Yet, deploying CSDs in
a wireless network will impact the entire communication system design. Understanding this impact and taking full advantage
of it will be an important aspect for efficient 5G network modeling.

A variety of interesting challenges arise in such “compressive sensor” situations. Unlike in the “classical” communication
scenario, where Shannon’s separation theorem is one of the guiding principles for designing communication systems (even
though the idealized conditions on which the separation theorem is based are hardly met in practice), we are now faced with
a different setup. The situation depends strongly on which constraints we put on the complexity of the encoding step. For
example, if we equip our simple CSD with a fairly complex encoder, then we find ourselves back in a classical communication
scenario. This is due to the fact that in this case we could incorporate both the reconstruction of the original signal from its
compressive samples and a standard source coding step into the encoding procedure. But it is clear that such a complicated
encoder would be detrimental to our goal of having simple, power-efficient sensing devices. Instead let us look at the other
extreme, where we deal with a sensor that does not permit any encoding at all. The only way to add redundancy (and thus to
add error protection) in that case is to increase the number of compressive measurements.

Following the CS paradigm such compressive measurements have to be slightly redundant to allow for numerically efficient
signal recovery (compared to the number of measurements for an NP-hard reconstruction algorithm). For ideal CS matrices
the number of measurements m for a k-sparse signal x ∈ Cn has to be at least O(k log(n/k)). Hence, to increase robustness,
we may take m > O(k log(n/k)). Clearly, m should depend on the SNR. A simple CS-based source coding scheme might
look as follows: An instructive numerical simulation illustrates the efficacy of this simple scheme. Similar to [36] we consider
the following setup:

(i) Encoding: The encoding step consists of taking m ≤ n measurements of a signal x ∈ Cn via w = Φx, where we assume
that x is k-sparse in a known basis Ψ.

(ii) Transmission: The measured signal w is transmitted through a noisy channel. The received signal is y = w+ z = Φx+ z,
where z is AWGN.

(iii) Decoding: At the receiver we attempt to recover x via the LASSO, i.e., by solving min 1
2‖Ψx‖1 + λ‖Φx− y‖2.

Simulation examples can be found in [36].

B. Spatially correlated networks

Let us now consider a sensor network where the source signals are sparse with respect to some known basis and in addition
are spatially correlated. Instead of decoding each signal individually, it is natural to try to exploit the spatial correlation between



the sensors. There are various ways to accomplish this. In [36] an elementary sequential reconstruction algorithm is proposed
to exploit the spatial correlation between signals, based on the fact that the difference between two sparse signals is again
sparse. A different, more flexible and robust approach consists of setting up a low-rank optimization problem. By interpreting
the signals as columns of a data matrix X , the spatial correlation suggests that one may attempt to find, among all the matrices
consistent with the observed data, that with minimal rank. We can try to improve upon this decoding procedure even further
by attempting to combine the powers of compressive sensing with those of matrix completion. Hence we may consider an
optimization problem that combines the sparsity and the low-rank structures, as e.g. in (6). While [12] shows (in the noiseless
case) that such mixed-convex optimization approaches cannot lead to significant improvements over an approach that optimally
exploits one of the individual sparse properties, numerical simulations nevertheless indicate that the improvements can still
be worthwhile from a practical viewpoint - in particular in the noisy case. Recovery problems that combine sparsity and
low rank as penalty function have been proposed recently in the literature, but their careful use and investigation in wireless
communications is unchartered territory.

So far we have not made use of the fact that, unlike in the usual compressive sensing scenarios, the coefficients of the
signals we try to reconstruct belong to some finite alphabet, such as e.g. QPSK. Hence, an important open problem is to extend
standard decision feedback equalization schemes to the situations described in this section. How can we optimally exploit the
sparsity of the signals and the spatial correlation across sensors in a decision feedback scheme? A possible approach might be
to try to combine recent advances in mixed integer optimization [37] with sparse recovery methods.

Many variations of the theme are possible. We have ignored the role and effect of quantization so far. Moreover, the sensors
may allow for very simple encoding in addition to, or instead of, increasing the number of compressive measurements. How
does an analog of Shannon’s separation theorem look like for such a scenario?

VII. EMBEDDED SECURITY

Embedded security together with sparse signal processing promoting simultaneously secrecy and reliability can fundamentally
change the way we approach the design of security, authentication and integrity mechanisms, specifically in the IoT and the
TI. In this section, we show that sparse signal processing can be naturally incorporated within the concept of embedded
security and exhibits indeed a new degree of freedom in the design of algorithms, naturally entailing new interesting tradeoffs
considering compressibility and secrecy.

A. 5G security challenges

One example where current security solutions fall far short is the IoT due to the scalability problem: Nodes must be flexibly
managed and distributed in the network and asymmetric schemes used at the application layer are too complex as well as too
computational- and energy intensive for the typical battery driven low-complex wireless transceivers of IoT devices. Symmetric
key schemes are 100..1000 times less complex (”lightweight security”) but assume a common secret key for the nodes so that
that there is a key distribution problem instead. A clever detour of this problem is to distribute unique keys already in the chip
sets’ manufacturing process (see www.weightless.org). However, the overall security architecture still requires Internet server
access and lacks some flexibility.

An alternative concept is embedded security aiming at physical layer integration of confidential services in wireless networks
[5]. Here, classical wiretap coding can achieve provably non-zero secrecy rates within the imposed (often idealistic) channel
model, where it is then impossible for an eavesdropper to extract any information about the sent message from the overheard
signal. The concept of wiretap coding is somewhat detrimental to the scalability and low complexity requirements in the IoT
similar to the argument in Sec. VI. A much simpler method is to exploit the reciprocity and fading nature of CSI and to
establish a common secret between sender and transmitter from the CSI measurements [38]. Since keys are then automatically
installed, key distribution in these systems is easy to manage and requires no user interaction; moreover beyond the spatial
decorrelation length of antenna elements such keys are virtually impossible to recover. Two major practical problems occur
though: i) imperfect reciprocity of CSI ii) insufficient entropy of the generated keys due to static channels. In order to handle
the imperfect reciprocity, typically a so-called information reconciliation procedure over a public channel is run, careful not to
unveil any information about the secret key bits. Imperfect reciprocity and insufficient entropy depend on each other because



”coarse” quantization and stronger codes improve on key agreement rate but reduce the keys’ entropy. Both aspect affords
additional control signaling, yet again bringing up the issue of reliability, complexity, nodes’ lifetime, and new security threats
in the IoT.

Another example is the ultra-low latency requirement in the TI. Each and every element of the communication and control
chain must be optimized and, obviously, fast authentication and secure communication is a ”must” for the TI then. We also
emphasize the role of data integrity due to the high reliability constraints, e.g. in the context of Industrial Wireless. Applying
standard security mechanisms on the application layer is not feasible. Moreover, wireless channel secret key generation is
highly limited in the rate of the generated key bits, which is at most 44bit/s by today so that at least roughly 3s are required
to generate e.g. a secure 128bit key [38]. Too slow for the TI!

To overcome such limitations, security shall be built in the compressive CSI control signaling architectures developed in
Sec. IV and Sec. V from scratch. Here, in contrast to the robust design by taking sufficently many compressive measurements,
the opposed direction is taken to disguise the CSI, which shall be discussed next.

B. Making security fast and scalable

In our concept, a secret key is periodically generated from CSI and acknowledged between transmitter and legitimate receiver.
Let us assume that information reconciliation is part of the ”relay and compress” control signaling architecture in Sec. V. Then,
since the legitimate receiver can reliably recover the channel, reciprocity and key entropy is preserved which advantageous in
case of static channels. In addition, similar to the discussion in Sec. V the transmitter can change the control pattern without
informing the receiver. Furthermore, since this is a full duplex scheme the scheme is faster making it a candidate for the TI
(standard wireless channel secret key generation schemes typically run in half duplex time division scheme). The catch is
though that potentially the eavesdropper can recover the key itself when it is able to collect all the control information.

In order to make such schemes workable in practice, additional measures should be taken to ensure that an eavesdropper
cannot reveal the message. Actually, this sets a limit to the number of measurements publicly discussed such that slightly
erroneous or incomplete information about the control signaling patterns as well as about the compressive measurements make
it impossible to extract the original messages. Clearly, one can think of an ocean of possible communication protocols to
improve on this line of thinking. Interestingly, by using the wireless channel as the secret key source we have a new interesting
trade off between compressibility and secrecy: good compressibility means small entropy in the key, hence longer observation
times and vice versa.

To illustrate an example of such ”in-built” security we make the following ”experiment”. Let us assume that the relay and
compress scheme from Sec. V is used in a point-to-point link to inform the transmitter (Alice) about the channel of its legitimate
receiver (Bob). The purpose is to extract a common key from it in order to conceal the information from an eavesdropper
(Eve). Clearly, if Eve knows all the control signalling it can recover the information from the measurements. In practice, by
the physical nature of wireless transmission, these measurements are only available subject to some unknown phase shift for
each measurement. The simulation in Fig. V then clearly indicates that Eve is not able to recover the information while Bob
can still get some reasonable performance.

Allowing fast, efficient, and flexible key distribution are desirable principles in the TI as well. However, to achieve fast
authentication even more advanced methods must be used ranging from wireless fingerprinting [39] which can include e.g. the
individual sparsity patterns as well as cooperative jamming approaches [38].

VIII. CONCLUSION

We have shown that sparse signal processing is indeed a viable source for an innovative 5G system. To exploit the benefits
fundamental research is required addressing the many open questions regarding tradeoffs, performance limits, algorithmic
framework etc. We have only touched the surface of this research agenda, where one of the many further fields of exploration
is to include new waveforms at the physical layer. We also emphasize that sparsity appears not only as a physical reality, e.g.
in the wireless channels, but also by design of the network topology, traffic conditions etc. It is therefore an important future
task to measure the degree of sparsity in a system and adapt the signaling architecture acccordingly.



Fig. 5. MSE performance of the relay and compress scheme under ”perturbations” for 1) Bob having ideal measurements and 2) Eve having perturbed
measurements with a) phase errors and, worse, b) rank-one distortion
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