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Abstract

The goal of this study is automated discrimination between early
stage Alzheimer’s disease (AD) magnetic resonance imaging (MRI)
data and healthy MRI data. Unsupervised Diffusion Component Anal-
ysis, a novel approach based on the diffusion mapping framework, re-
duces data dimensionality and provides pattern recognition that can
be used to distinguish AD brains from healthy brains. The new al-
gorithm constructs coordinates as an extension of diffusion maps and
generates efficient geometric representations of the complex structure
of the MRI data. The key difference between our method and oth-
ers used to classify and detect AD early in its course is our nonlinear
and local network approach, which overcomes calibration differences
among different scanners and centers collecting MRI data and solves
the problem of individual variation in brain size and shape. In addi-
tion, our algorithm is completely automatic and unsupervised, which
could potentially be a useful and practical tool for doctors to help
identify AD patients.
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1 Background

Alzheimer’s disease (AD), the most common type of dementia, currently
affects approximately 5.2 million people in the US, with a significant increase
predicted in the near future. Over 35 million people worldwide are living with
AD; this number is expected to double by 2030 and more than triple by 2050
to 115 million [1]. In AD patients, neurons along with their connections are
progressively destroyed, leading to loss of cognitive function and eventually
death [15]. Therapeutic intervention is generally considered more likely to be
beneficial in the early stages of the disease. Thus, it is extremely important
to identify the disease as early as possible in order to administer treatments
that will effectively stop the disease.

Mild Cognitive Impairment (MCI), a transitional stage between normal
aging and the development of dementia, has been defined to account for
the intermediate cognitive state where patients are impaired on one or more
standardized cognitive tests but do not meet the criteria for clinical diagnosis
of dementia [9]. MCI has attracted increasing attention lately since it offers
an opportunity to target the disease process early.

Neuroimaging has been shown to be a powerful tool for studying changes
in the progression of AD as well as therapeutic efficacy in AD patients. Mag-
netic resonance imaging (MRI) scans can reveal features that are predictive
of a patient developing AD. Our goal is to use these features to distinguish
brains of patients in early stages of AD from brains of healthy patients.

A novel approach based on the diffusion map framework is used [2]; diffu-
sion mapping provides dimensionality reduction of the data as well as pattern
recognition that can be used to distinguish AD brains from non-AD brains.
A new algorithm, Unsupervised Diffusion Component Analysis, which is an
extension of diffusion maps, constructs coordinates that generate efficient ge-
ometric representations of the complex structures in the MRI. The diffusion
map approach has been effective in other classifications using brain data,
in particular, preseizure states of patients with epilepsy [3]. Diffusion maps
have also been effective in classifications in various nonmedical areas, such
as finance and military applications.

There have been other studies on classifying AD and non-AD patients;
some of them use principal components analysis or independent component
analysis. Recently more work has been done using multivariate approaches
rather than the traditional voxel-by-voxel approach [4]. However, the key
difference between our method and other methods that have been used to



classify and detect onset of AD in early stages is the nonlinear and local
network approach, which is necessary for eliminating the calibration differ-
ences of MRI of patients with different shapes and sizes of brains as well as
different scanners and centers collecting data. Furthermore, another major
difference and improvement in our algorithm is that it is completely auto-
matic and unsupervised, which could potentially be an incredibly useful tool
for doctors to help identify AD patients.

2 Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 by the National Institute on Aging (NTA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies,
and non-profit organizations, as a 60 million, 5-year public-private partner-
ship. The Principle Investigator of this initiative is Michael W. Weiner, M.D.,
VA Medical Center and University of California-San Francisco. ADNI is the
result of efforts of many co-investigators from a broad range of academic in-
stitutions and private corporations. Presently, more than 800 participants,
aged 55 to 90 years, have been recruited from over 50 sites across the United
States and Canada, including approximately 200 cognitively normal older in-
dividuals (i.e., healthy controls or HCs) to be followed for 3 years, 400 people
with MCI to be followed for 3 years, and 200 people with early AD to be
followed for 2 years. Baseline and longitudinal imaging, including structural
MRI scans collected on the full sample and PIB and FDG PET imaging
on a subset are collected every 612 months. Additional baseline and lon-
gitudinal data including other biological measures (i.e. cerebrospinal fluid
(CSF) markers, APOE and full-genome genotyping via blood sample) and
clinical assessments including neuropsychological testing and clinical exam-
inations are also collected as part of this study. Written informed consent
was obtained from all participants and the study was conducted with prior
institutional review board’s approval. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early Alzheimer’s disease (AD). Determination



of sensitive and specific markers of very early AD progression is intended to
aid researchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. For further
and updated information, see www.adni-info.org.

3 Methods

We assume that the features differentiating patients with AD are represented
in the MRI data. We would like to detect these features and distinguish
brains of patients in the early stages of AD from brains of non-AD patients.

Figure 1 shows an example of a normal MRI and an AD MRI; sometimes
it is not straightforward to identify such small changes in the images, so
it would be useful to have an automatic way to identify AD patients using
only structural MRI. Figure 2 is another example that shows the MRI of 3
different 75 year old patients: normal, MCI, and AD.

Diffusion maps [2] have been a useful tool in reducing the dimensionality
of the data as well as providing a measure for pattern recognition and fea-
ture detection. Since diffusion mapping may detect special features in the
data, it can be used to determine differences in brains of patients with AD
compared to normal brains. However, diffusion maps assume access to the
process that they aim to classify. In MRI data, the relationship between the
pixels of the images and the underlying brain activity may be stochastic, and
the data are assumed to be noisy due to the calibration. Hence, diffusion
mapping is not the most effective direct approach to use with MRI data. A
recently developed algorithm, which is an extension of diffusion maps, may
be more applicable in the case of classifying AD [11, 12]. This new algo-
rithm assumes a stochastic mapping between the underlying processes and
the measurements, so the mapping is inverted, and a kernel is used to recover
the underlying activity [11]. Thus it seems that this proposed algorithm is
more appropriate than diffusion maps for our data.

We introduce an algorithm that relies on [11] to extract the underlying
brain structure from the MRI data. The algorithm is an extension of diffu-
sion maps and uses local principal components analysis (PCA)[8]. PCA is
another dimensionality reduction method. In PCA, the goal is to compute
the most meaningful basis to re-express a large and noisy dataset. This new
basis can reveal hidden patterns and structure in the data as well as remove
the noise. An orthogonal linear transformation converts the data to a new co-
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Figure 1: An example of a normal MRI and an AD MRI, showing differences
in the hippocampal region



ordinate system for more effective analysis. The largest variance in the data
is represented by the first coordinate or the first principal component. An
important difference between the proposed algorithm and PCA is the use of
nonlinear local analysis in the extension as opposed to PCA, which assumes
the linear global information of the data. For the MRI data, we perform PCA
on local regions of the images and then integrate the local information using
a kernel and obtain a single model for all of the data. We use a data-driven
adapted distance between blocks of MRI data to approximate the Euclidean
distance between the features from the MRI data that are considered noisy
due to calibration differences.

The MRI data form 3D matrices, because the scanner records 2D slices
of the brain. Slices cannot be considered in isolation because of variance in
their number and thickness across different scanners and scanning protocols.
The full brain 3D matrices are subdivided into vectors that are composed of
overlapping neighborhoods around pixels of size 8x8x8, and these submatri-
ces are overlapped by 50% for smoothing purposes and to account for the
fact that our submatrix size may split a particular brain structure that we
would prefer remain whole. This overlapping is natural from the nonlinear
assumptions in the approach. These submatrices are reshaped into vectors
of length 512 (8x8x8). Then the vectors from the MRI data of patients with
AD are compared to the vectors from the MRI data of healthy patients to
determine if certain features are different and can be used to identify AD.

For each set of feature vectors for the 4 MRI datasets that we consider,
we compute histograms using 20 bins to approximate the probability distri-
butions, because the MRI data are assumed to be stochastic from various
effects. After combining the results for the 4 MRI, we calculate the Earth
Mover’s Distance [10] rather than computing Euclidean distances between
pixels or between boxes. This is a method to evaluate dissimilarity between
multi-dimensional distributions in some feature space where a distance mea-
sure between single features is given. The Earth Mover’s Distance is called
the Wasserstein metric in optimal transport where the problem is to transport
a mass from one location to another. Using this method in our algorithm is
useful, because it naturally extends the notion of a distance between elements
to that of a distance between sets of elements. Furthermore, it is applicable
to MRI data, because it allows for partial matches in a natural way, which
helps to deal with occlusions and clutter in image retrieval applications.

To reduce the chance of bias in the construction, we introduce a random
shuffle in the columns of the matrix composed of feature vectors and apply
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a random projection as a method to reduce the large amount of data. Then
we apply the Discrete Cosine Transform [13]. If the data are uncorrelated,
we expect to obtain some approximation of a delta function with a spike at
the origin after applying the Discrete Cosine Transform.

Given one of these feature vectors, S, (m), we compute the empirical local
covariance matrix ¥, within a fixed interval, J,

Y = = Z (Sy(m,) - Mm)(sy(m/) - Nm)T7 (1)
m/=m—J+1
where p,,, is the empirical local mean of the feature vectors in the interval,
and m describes the data that have been classified in cells by a histogram.
The dynamics of the controlling factors from the data are described by
normalized independent Ito processes described in the stochastic differential
equation below:

dB;(t) = a;(6;(t))dt + dw;(t), (2)

wherei =1,2,....d. (ay,...,aq) in the above equation are (possibly nonlinear)
unknown drift coefficients and w = (wy, ..., wy) is a d—dimensional indepen-
dent white noise. An n-dimensional process (Y (¢),t > 0) is the observation
and a noisy measurement process Z arises as Z(t) = g(Y'(t), V(t)), where V'
is a stationary noise process with unknown distribution.

We define a nonsymmetric distance known as the Mahalanobis distance
using the covariance matrices, a%, and a symmetric distance d%. Mahalanobis
distances between empirical distribution estimators (e.g., histogram vectors)
are used to construct the affinity measure between segments in the series.
Then anisotropic kernels are constructed and diffusion maps are applied to
obtain a low-dimensional embedding, which uncovers the intrinsic representa-
tion. It has been shown in [2] that this distance approximates the Euclidean
distance between the underlying factors in the data by local linearization of
the nonlinear transformation. These distances, between points m and m' in
the dataset M, are defined as follows:

az,(m,m') = (S,(m) — 8, (m))" £,/ (S,(m) — S, (m)), (3)

dg,(m,m') = %(aé(sy(m), S,(m')) + a5 (8y(m’), 8, (m))). (4)



We are able to recover these underlying factors using an eigendecomposi-
tion of an appropriate Laplace operator (kernel). A kernel is used to compare
the underlying factors, and e is the kernel scale set according to the Maha-
lanobis distance. This kernel is used to define the local geometries of the
graph between m and m’ from the dataset M.

We construct an NoN nonsymmetric affinity matrix A, whose (m,m’)
element is given by

, a®-(S,(m), S, (m’'
ot — gy e (Sulm). )

(5)

where € > 0 is the kernel scale that is calculated by taking the median of all
pairwise distances of the original data matrix.

The matrix formed from the elements with the above exponential con-
verges to a low dimensional manifold and the eigenvectors parametrize the
underlying structures in the data.

The kernel is normalized by a diagonal density matrix, which enables us
to consider the sampling as uniform. The normalized matrix can be viewed
as a Markov transition probability matrix for a jump process over the mea-
surements. We then define an NxN symmetric matrix W as

Wm,m’ _ ZAm’TAm/’T. (6)

reR

Then an eigendecomposition is performed to address the nonuniform sam-
pling of the data. The /¢ eigenvectors found from the eigendecomposition cor-
responding to the few largest eigenvalues provide a parametrization of the
features, allowing for significant data dimensionality reduction and capturing
the features that may identify patients with AD.

Sy(m) = [Y1(m), a(m), ..., Ye(m)]", (7)

where 1;(m) is the ith eigenvector. To determine which eigenvectors to use
for this classification problem, we pick the optimal eigenvector embedding
with a computable, reproducible criterion instead of visual inspection. All
possible combinations of 3 or 4 eigenvectors are considered. We compute the
center of mass of the new embedded points. Then to choose which embedding
provides the best separation with AD points separated from the rest of the
embedded points, we calculate the variance of all points in the embedding
that correspond to the normal MRI data to that center of mass. The variance
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of the normal points is divided by the variance of all points in the embedding
that correspond to the AD MRI data to the center of mass for each case. We
choose the maximum variance ratio and consider the top 3 cases and choose
those sets of eigenvectors.

The details are summarized in the following table with algorithmic listing.

Algorithm

1: Obtain MRI data of n brains,

2: Partition each 3-dimensional matrix of data into overlapping submatrices,

3: Reshape each small submatrix into a vector; place each vector side by
side to form a matrix,

4: Compute histograms (along matrix columns) using 20 bins,

5: Calculate the Earth Mover’s Distance between consecutive feature vec-
tors,

6: To reduce the chance of bias, introduce a random shuffle in the columns
of the matrix and apply a random projection,

7: Apply the Discrete Cosine Transform,

8: Calculate local covariance matrices for overlapping windows,

9: Compute the eigenvalue decomposition to obtain eigenvalues and corre-
sponding eigenvectors,

10: Calculate inverse covariance matrices to calculate the Mahalanobis Dis-
tance,

11: Use the median of all pairwise distances of the data matrix to choose
epsilon, the Gaussian kernel scale,

12: Compute the affinity matrix and build a Gaussian kernel according to
(5),

13: Normalize the kernel by a diagonal density matrix and employ eigenvalue
decomposition to obtain the eigenvalues and eigenvectors,

14: Consider all possible combinations of 3 or 4 eigenvectors for the embed-
dings; compute the center of mass for each embedding as well as the
variance of the embedded points (specifically, the ratio of the variance of
the normal points divided by the variance of the AD points) to determine
the optimal embedding.




4 Results

Initially, using the algorithm to compare 2 AD and 2 normal brains, we
found a distinct separation, as shown in Figure 3. We decided to analyze 10
examples, in which there is one different AD MRI in each example and the
same three normal MRI. This discrimination would be beneficial for doctors
to identify AD patients, because they could use a reference dataset of normal
MRI data and compare individual patient MRI data against this dataset. For
each of these 10 cases, we produced the embeddings of all combinations of 3
eigenvectors, for example, Figure 5. One example of this is Figure 4. In that
figure, the large green dot represents the center of mass of all of the points in
the embedding, and this is used to calculate the variance of the other points
in the embedding.

From all iterations of possible combinations of 3 eigenvectors, we select
the top 5 embeddings that produce the best separation for the AD points
and show that each time, our automatic and unsupervised algorithm is able
to select as the best embedding one of these top 5 options by checking the
variance ratio (variance of normal points divided by variance of AD points
from the center of mass in the embedding), displayed in Figure 6. We also
checked all combinations of 4 eigenvectors and plotted the variance ratio, as
in Figure 7 with similar results. Furthermore, we were able to trace back the
embeddings to the original data to determine which areas seem to be most
differentiating between healthy and AD data, and we found these areas to
be located in the temporal lobe.
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5 Discussion

A method similar to the one proposed in this paper has already proved to be
effective in identifying preseizure states in intracranial EEG data by provid-
ing a distinction between interictal (period between seizures) and preseizure
states of a patient with epilepsy [3].

Other studies that have focused on identifying and classifying AD patients
have used multivariate techniques, because they have attractive features that
cannot be discovered by the more commonly used univariate, voxel-wise,
techniques [4].

Independent component analysis (ICA) based methods have been used for
analyzing neuroimaging data, such as MRI data. Yang et al. [14] used ICA
and a support vector machine (SVM) to classify AD MRI data. They first
aligned and normalized all MRI scans studied using statistical parametric
mapping. Next, ICA was applied to the images to extract features used for
classification. The SVM was then used to classify the images based on the
independent component coefficients.

6 Conclusions

Unsupervised Diffusion Component Analysis, a novel algorithm which com-
bines diffusion maps and PCA with other techniques, is used to study the
differences between normal subjects and AD patients. The extensions lead to
efficiency in use, in terms of reduced computational complexity, which have
the potential to become useful techniques for practitioners in the field.

The key difference between our method and others used to classify and
detect AD early in its course is our nonlinear and local network approach,
which overcomes calibration differences among different scanners and cen-
ters collecting MRI data and solves the problem of individual variation in
brain size and shape. Additionally, our algorithm is completely automatic
and unsupervised, which could potentially be a very useful tool for doctors
to help identify AD patients. Furthermore, we have tried to address some
disadvantages with multivariate approaches, such as the higher demands of
computational and mathematical literacy on the data analyst. After the ini-
tial work of developing this algorithm and determining a reference bank of
normal brains, the remaining analysis is kept straightforward, so that Un-
supervised Diffusion Component Analysis could present a simple tool for
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doctors to use in diagnosing Alzheimer’s Disease.

Future work will include testing on a larger sample size as well as testing
on data from patients with mild cognitive impairment to see if the algorithm
is able to separate that data from the data of healthy patients, which would
allow doctors to diagnose patients prior to AD onset.
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Figure 2: An example of 3 different MRI: 75 year old control, 75 year old
MCI, and 75 year old AD
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Figure 3: An example using 4 different MRI (2 normal and 2 AD) of one
embedding using 3 eigenvectors, and each color represents a different MRI:
blue are normal; yellow and red are AD.
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Figure 4: An example using 4 different MRI (3 normal and 1 AD) of one
embedding using 3 eigenvectors, and each color represents a different MRI:
light blue is AD.
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Figure 5: An example using 4 different MRI (3 normal and 1 AD) of all em-
beddings with various combinations of 3 eigenvectors representing the axes,
and each color represents a different MRI: light blue is AD.
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Figure 6: An example using 4 different MRI (3 normal and 1 AD) of the
Variance Ratio for all embeddings with various combinations of 3 eigenvectors
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Figure 7: An example using 4 different MRI (3 normal and 1 AD) of the
Variance Ratio for all embeddings with various combinations of 4 eigenvectors
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