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Abstract

We study the question of reconstructing two signals f and g from their convolution
y = f ∗ g. This problem, known as blind deconvolution, pervades many areas of
science and technology, including astronomy, medical imaging, optics, and wireless
communications. A key challenge of this intricate non-convex optimization problem is
that it might exhibit many local minima. We present an efficient numerical algorithm
that is guaranteed to recover the exact solution, when the number of measurements
is (up to log-factors) slightly larger than the information-theoretical minimum, and
under reasonable conditions on f and g. The proposed regularized gradient descent
algorithm converges at a geometric rate and is provably robust in the presence of noise.
To the best of our knowledge, our algorithm is the first blind deconvolution algorithm
that is numerically efficient, robust against noise, and comes with rigorous recovery
guarantees under certain subspace conditions. Moreover, numerical experiments do
not only provide empirical verification of our theory, but they also demonstrate that
our method yields excellent performance even in situations beyond our theoretical
framework.

1 Introduction

Suppose we are given the convolution of two signals, y = f ∗ g. When, under which
conditions, and how can we reconstruct f and g from the knowledge of y if both f and g are
unknown? This challenging problem, commonly referred to as blind deconvolution problem,
arises in many areas of science and technology, including astronomy, medical imaging, optics,
and communications engineering, see e.g. [14, 35, 9, 40, 5, 23, 10, 42]. Indeed, the quest for
finding a fast and reliable algorithm for blind deconvolution has confounded researchers for
many decades.
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It is clear that without any additional assumptions, the blind deconvolution problem is
ill-posed. One common and useful assumption is to stipulate that f and g belong to known
subspaces [1, 25, 22, 27]. This assumption is reasonable in various applications, provides
flexibility and at the same time lends itself to mathematical rigor. We also adopt this
subspace assumption in our algorithmic framework (see Section 2 for details). But even with
this assumption, blind deconvolution is a very difficult non-convex optimization problem
that suffers from an overabundance of local minima, making its numerical solution rather
challenging.

In this paper, we present a numerically efficient blind deconvolution algorithm that con-
verges geometrically to the optimal solution. Our regularized gradient descent algorithm
comes with rigorous mathematical convergence guarantees. The number of measurements
required for the algorithm to succeed is only slightly larger than the information theoretic
minimum. Moreover, our algorithm is also robust against noise. To the best of our knowl-
edge, the proposed algorithm is the first blind deconvolution algorithm that is numerically
efficient, robust against noise, and comes with rigorous recovery guarantees under certain
subspace conditions.

1.1 State of the art

Since blind deconvolution problems are ubiquitous in science and engineering, it is not sur-
prising that there is extensive literature on this topic. It is beyond the scope of this pa-
per to review the existing literature; instead we briefly discuss those results that are clos-
est to our approach. We gladly acknowledge that those papers that are closest to ours,
namely [1, 7, 17, 34], are also the ones that greatly influenced our research in this project.

In the inspiring article [1], Ahmed, Recht, and Romberg develop a convex optimization
framework for blind deconvolution. The formal setup of our blind deconvolution problem
follows essentially their setting. Using the meanwhile well-known lifting trick, [1] transforms
the blind deconvolution problem into the problem of recovering a rank-one matrix from an
underdetermined system of linear equations. By replacing the rank condition by a nuclear
norm condition, the computationally infeasible rank minimization problem turns into a con-
venient convex problem. The authors provide explicit conditions under which the resulting
semidefinite program is guaranteed to have the same solution as the original problem. In
fact, the number of required measurements is not too far from the theoretical minimum.
The only drawback of this otherwise very appealing convex optimization approach is that
the computational complexity of solving the semidefinite program is rather high for large-
scale data and/or for applications where computation time is of the essence. Overcoming
this drawback was one of the main motivations for our paper. While [1] does suggest a
fast matrix-factorization based algorithm to solve the semidefinite program, the convergence
of this algorithm to the optimal solution is not established in that paper. The theoretical
number of measurements required in [1] for the semidefinite program to succeed is essentially
comparable to that for our non-convex algorithm to succeed. The advantage of the proposed
non-convex algorithm is of course that it is dramatically faster. Furthermore, numerical sim-
ulations indicate that the empirically observed number of measurements for our non-convex
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approach is actually smaller than for the convex approach.
The philosophy underlying the method presented in our paper is strongly motivated by

the non-convex optimization algorithm for phase retrieval proposed in [7], see also [11, 3]. In
the pioneering paper [7] the authors use a two-step approach: (i) Construct in a numerically
efficient manner a good initial guess; (ii) Based on this initial guess, show that simple gradient
descent will converge to the true solution. Our paper follows a similar two-step scheme. At
first glance one would assume that many of the proof techniques from [7] should carry over
to the blind deconvolution problem. Alas, we quickly found out that despite some general
similarities between the two problems, phase retrieval and blind deconvolution are indeed
surprisingly different. At the end, we mainly adopted some of the general “proof principles”
from [7] (for instance we also have a notion of local regularity condition - although it deviates
significantly from the one in [7]), but the actual proofs are quite different. For instance, in [7]
and [11] convergence of the gradient descent algorithm is shown by directly proving that the
distance between the true solution and the iterates decreases. The key conditions (a local
regularity condition and a local smoothness condition) are tailored to this aim. For the blind
deconvolution problem we needed to go a different route. We first show that the objective
function decreases during the iterations and then use a certain local restricted isometry
property to transfer this decrease to the iterates to establish convergence to the solution.

We also gladly acknowledge being influenced by the papers [17, 16] by Montanari and
coauthors on matrix completion via non-convex methods. While the setup and analyzed
problems are quite different from ours, their approach informed our strategy in various
ways. In [17, 16], the authors propose an algorithm which comprises a two-step procedure.
First, an initial guess is computed via a spectral method, and then a nonconvex problem is
formulated and solved via an iterative method. The authors prove convergence to a low-rank
solution, but do not establish a rate of convergence. As mentioned before, we also employ
a two-step strategy. Moreover, our approach to prove stability of the proposed algorithm
draws from ideas in [16].

We also benefitted tremendously from [34]. In that paper, Sun and Luo devise a non-
convex algorithm for low-rank matrix completion and provide theoretical guarantees for
convergence to the correct solution. We got the idea of adding a penalty term to the objec-
tive function from [34] (as well as from [17]). Indeed, the particular structure of our penalty
term closely resembles that in [34]. In addition, the introduction of the various neighbor-
hood regions around the true solution, that are used to eventually characterize a “basin
of attraction”, stems from [34]. These correspondences may not be too surprising, given
the connections between low-rank matrix completion and blind deconvolution. Yet, like also
discussed in the previous paragraph, despite some obvious similarities between the two prob-
lems, it turned out that many steps and tools in our proofs differ significantly from those
in [34]. Also this should not come as a surprise, since the measurement matrices and setup
differ significantly1. Moreover, unlike [34], our paper also provides robustness guarantees for

1Anyone who has experience in the proofs behind compressive sensing and matrix completion is well
aware of the substantial challenges one can already face by “simply” changing the sensing matrix from, say,
a Gaussian random matrix to one with less randomness.
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the case of noisy data. Indeed, it seems plausible that some of our techniques to establish
robustness against noise are applicable to the analysis of various recent matrix completion
algorithms, such as e.g. [34].

We briefly discuss other interesting papers that are to some extent related to our work.
[22] proposes a projected gradient descent algorithm based on matrix factorizations and
provide a convergence analysis to recover sparse signals from subsampled convolution. How-
ever, this projection step can be hard to implement, which does impact the efficiency and
practical use of this method. As suggested in [22], one can avoid this expensive projection
step by resorting to a heuristic approximate projection, but then the global convergence is
not fully guaranteed. On the other hand, the papers [25, 24] consider identifiability issue
of blind deconvolution problem with both f and g in random linear subspaces and achieve
nearly optimal result of sampling complexity in terms of information theoretic limits. Very
recently, [15] improved the result from [25, 24] by using techniques from algebraic geometry.

The past few years have also witnessed an increasing number of excellent works other
than blind deconvolution but related to nonconvex optimization [32, 41, 31, 3, 21]. The
paper [37] analyzes the problem of recovering a low-rank positive semidefinite matrix from
linear measurements via a gradient descent algorithm. The authors assume that the measure-
ment matrix fulfills the standard and convenient restricted isometry property, a condition
that is not suitable for the blind deconvolution problem (besides the fact that the positive
semidefinite assumption is not satisfied in our setting). In [12], Chen and Wainwright study
various the solution of low-rank estimation problems by projected gradient descent. The
very recent paper [43] investigates matrix completion for rectangular matrices. By “lifting”,
they convert the unknown matrix into a positive semidefinite one and apply matrix factor-
ization combined with gradient descent to reconstruct the unknown entries of the matrix.
[4] considers an interesting blind calibration problem with a special type of measurement
matrix via nonconvex optimization. Besides some general similarities, there is little overlap
of the aforementioned papers with our framework. Finally, a convex optimization approach
to blind deconvolution and self-calibration that extends the work of [1] can be found in [27],
while [26] also covers the joint blind deconvolution-blind demixing problem.

1.2 Organization of our paper

This paper is organized as follows. We introduce some notation used throughout the paper
in the remainder of this section. The model setup and problem formulation are presented in
Section 2. Section 3 describes the proposed algorithm and our main theoretical result estab-
lishing the convergence of our algorithm. Numerical simulations can be found in Section 4.
Section 5 is devoted to the proof of the main theorem. Since the proof is quite involved, we
have split this section into several subsections. Some auxiliary results are collected in the
Appendix.
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1.3 Notation

We introduce notation which will be used throughout the paper. Matrices and vectors are
denoted in boldface such as Z and z. The individual entries of a matrix or a vector are
denoted in normal font such as Zij or zi. For any matrix Z, ‖Z‖∗ denotes its nuclear norm,
i.e., the sum of its singular values; ‖Z‖ denotes its operator norm, i.e., the largest singular

value, and ‖Z‖F denotes its the Frobenius norm, i.e., ‖Z‖F =
√∑

ij |Zij|2. For any vector

z, ‖z‖ denotes its Euclidean norm. For both matrices and vectors, Z> and z> stand for the
transpose of Z and z respectively while Z∗ and z∗ denote their complex conjugate transpose.
We equip the matrix space CK×N with the inner product defined as 〈U ,V 〉 := Tr(U ∗V ). A
special case is the inner product of two vectors, i.e., 〈u,v〉 = Tr(u∗v) = u∗v. For a given
vector v, diag(v) represents the diagonal matrix whose diagonal entries are given by the

vector v. For any z ∈ R, denote z+ as z+ = z+|z|
2
. C is an absolute constant and Cγ is a

constant which depends linearly on γ, but on no other parameters.

2 Problem setup

We consider the blind deconvolution model

y = f ∗ g + n, (2.1)

where y is given, but f and g are unknown. Here “∗” denotes circular convolution2. We
will usually consider f as the “blurring function” and g as the signal of interest. It is clear
that without any further assumption it is impossible to recover f and g from y. We want
to impose conditions on f and g that are realistic, flexible, and not tied to one particular
application (such as, say, image deblurring). At the same time, these conditions should be
concrete enough to lend themselves to meaningful mathematical analysis.

A natural setup that fits these demands is to assume that f and g belong to known
linear subspaces. Concerning the blurring function, it is reasonable in many applications
to assume that f is either compactly supported or that f decays sufficiently fast so that it
can be well approximated by a compactly supported function. Therefore, we assume that
f ∈ CL satisfies

f :=

[
h

0L−K

]
(2.2)

where h ∈ CK , i.e., only the first K entries of f are nonzero and fl = 0 for all l =
K + 1, K + 2, . . . , L. Concerning the signal of interest, we assume that g belongs to a linear
subspace spanned by the columns of a known matrix C, i.e., g = Cx̄ for some matrix C of
size L×N . Here we use x̄ instead of x for the simplicity of notation later. For theoretical
purposes we assume that C is a Gaussian random matrix. Numerical simulations suggest
that this assumption is clearly not necessary. For example, we observed excellent performance

2As usual, ordinary convolution can be well approximated by circulant convolution, as long as the function
f decays sufficiently fast [30].

5



of the proposed algorithm also in cases when C represents a wavelet subspace (appropriate
for images) or when C is a Hadamard-type matrix (appropriate for communications). We
hope to address these other, more realistic, choices for C in our future research. Finally, we

assume that n ∼ N (0,
σ2d20

2
IL)+ iN (0,

σ2d20
2

IL) as the additive white complex Gaussian noise
where d0 = ‖h0‖‖x0‖ and h0 and x0 are the true blurring function and the true signal of
interest, respectively. In that way σ−2 actually serves as a measure of SNR (signal to noise
ratio).

For our theoretical analysis as well as for numerical purposes, it is much more convenient
to express (2.1) in the Fourier domain, see also [1]. To that end, let F be the L×L unitary
Discrete Fourier Transform (DFT) matrix and let the L×K matrix B be given by the first
K columns of F (then B∗B = IK ). By applying the scaled DFT matrix

√
LF to both

sides of (2.1) we get
√
LFy = diag(

√
LFf)(

√
LFg) +

√
LFn, (2.3)

which follows from the property of circular convolution and Discrete Fourier Transform.
Here, diag(

√
LFf)(

√
LFg) = (

√
LFf)� (

√
LFg) where � denotes pointwise product. By

definition of f in (2.2), we have
Ff = Bh.

Therefore, (2.3) becomes,

1√
L
ŷ = diag(Bh)Ax +

1√
L
Fn (2.4)

where A = FC (we use A instead of A simply because it gives rise to a more convenient
notation later, see e.g. (2.8)).

Note that if C is a Gaussian matrix, then so is FC. Furthermore, e = 1√
L
Fn ∼

N (0,
σ2d20
2L

IL)+iN (0,
σ2d20
2L

IL) is again a complex Gaussian random vector. Hence by replacing
1√
L
ŷ in (2.4) by y, we arrive with a slight abuse of notation at

y = diag(Bh)Ax + e. (2.5)

For the remainder of the paper, instead of considering the original blind deconvolution
problem (2.1), we focus on its mathematically equivalent version (2.5), where h ∈ CK×1,
x ∈ CN×1, y ∈ CL×1, B ∈ CL×K and A ∈ CL×N . As mentioned before, h0 and x0 are the
ground truth. Our goal is to recover h0 and x0 when B, A and y are given. It is clear that
if (h0,x0) is a solution to the blind deconvolution problem. then so is (αh0, α

−1x0) for any
α 6= 0. Thus, all we can hope for in the absence of any further information, is to recover a
solution from the equivalence class (αh0, α

−1x0), α 6= 0. Hence, we can as well assume that
‖h0‖ = ‖x0‖ :=

√
d0.

As already mentioned, we choose B to be the “low-frequency” discrete Fourier matrix,
i.e., the first K columns of an L × L unitary DFT (Discrete Fourier Transform) matrix.
Moreover, we choose A to be an L×N complex Gaussian random matrix, i.e.,

Aij ∼ N
(

0,
1

2

)
+ iN

(
0,

1

2

)
,

6



where “i” is the imaginary unit.

We define the matrix-valued linear operator A(·) via

A : A(Z) = {b∗lZal}Ll=1, (2.6)

where bl denotes the l-th column of B∗ and al is the l-th column of A∗. Immediately, we
have

∑L
l=1 blb

∗
l = B∗B = IK , ‖bl‖ = K

L
and E(ala

∗
l ) = IN for all 1 ≤ l ≤ L. This is

essentially a smart and popular trick called “lifting” [8, 1, 27], which is able to convert a
class of nonlinear models into linear models at the costs of increasing the dimension of the
solution space.

It seems natural and tempting to recover (h0,x0) obeying (2.5) by solving the following
optimization problem

min
(h,x)

F (h,x), (2.7)

where
F (h,x) := ‖ diag(Bh)Ax− y‖2 = ‖A(hx∗ − h0x

∗
0)− e‖2. (2.8)

We also let
F0(h,x) := ‖A(hx∗ − h0x

∗
0)‖2

F (2.9)

which is a special case of F (h,x) when e = 0. Furthermore, we define δ(h,x), an important
quantity throughout our discussion, via

δ(h,x) :=
‖hx∗ − h0x

∗
0‖F

d0

. (2.10)

When there is no danger of ambiguity, we will often denote δ(h,x) simply by δ. But let us
remember that δ(h,x) is always a function of (h,x) and measures the relative approximation
error of (h,x).

Obviously, minimizing (2.8) becomes a nonlinear least square problem, i.e., one wants to
find a pair of vectors (h,x) or a rank-1 matrix hx∗ which fits the measurement equation
in (2.8) best. Solving (2.7) is a challenging optimization problem since it is highly nonconvex
and most of the available algorithms, such as alternating minimization and gradient descent,
may suffer from getting easily trapped in some local minima. Another possibility is to
consider a convex relaxation of (2.7) at the cost of having to solve an expensive semidefinite
program. In the next section we will describe how to avoid this dilemma and design an
efficient gradient descent algorithm that, under reasonable conditions, will always converge
to the true solution.

3 Algorithm and main result

In this section we introduce our algorithm as well as our main theorems which establish
convergence of the proposed algorithm to the true solution. As mentioned above, in a
nutshell our algorithm consists of two parts: First we use a carefully chosen initial guess,
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and second we use a variation of gradient descent, starting at the initial guess to converge
to the true solution. One of the most critical aspects is of course that we must avoid
getting stuck in local minimum or saddle point. Hence, we need to ensure that our iterates
are inside some properly chosen basin of attraction of the true solution. The appropriate
characterization of such a basin of attraction requires some diligence, a task that will occupy
us in the next subsection. We will then proceed to introducing our algorithm and analyzing
its convergence.

3.1 Building a basin of attraction

The road toward designing a proper basin of attraction is basically paved by three obser-
vations, described below. These observations prompt us to introduce three neighborhoods
(inspired by [17, 34]), whose intersection will form the desired basin of attraction of the
solution.

Observation 1 - Nonuniqueness of the solution: As pointed out earlier, if (h,x) is a
solution to (2.5), then so is (αh, α−1x) for any α 6= 0. Thus, without any prior information
about ‖h‖ and/or ‖x‖, it is clear that we can only recover the true solution up to such an
unknown constant α. Fortunately, this suffices for most applications. From the viewpoint
of numerical stability however, we do want to avoid, while ‖h‖‖x‖ remains bounded, that
‖h‖ → 0 and ‖x‖ → ∞ (or vice versa). To that end we introduce the following neighborhood:

Nd0 := {(h,x) : ‖h‖ ≤ 2
√
d0, ‖x‖ ≤ 2

√
d0}. (3.1)

(Recall that d0 = ‖h0‖‖x0‖.)
Observation 2 - Incoherence: Our numerical simulations indicate that the number of
measurements required for solving the blind deconvolution problem with the proposed al-
gorithm does depend (among others) on how much h0 is correlated with the rows of the
matrix B — the smaller the correlation the better. A similar effect has been observed in
blind deconvolution via convex programming [1, 26]. We quantify this property by defining
the incoherence between the rows of B and h0 via

µ2
h =

L‖Bh0‖2
∞

‖h0‖2
. (3.2)

It is easy to see that 1 ≤ µ2
h ≤ K and both lower and upper bounds are tight; i.e., µ2

h = K
if h0 is parallel to one of {bl}Ll=1 and µ2

h = 1 if h0 is a 1-sparse vector of length K. Note
that in our setup, we assume that A is a random matrix and x0 is fixed, thus with high
probability, x0 is already sufficiently incoherent with the rows of A and thus we only need
to worry about the incoherence between B and h0.

It should not come as a complete surprise that the incoherence between h0 and the rows
of B is important. The reader may recall that in matrix completion [6, 28] the left and
right singular vectors of the solution cannot be “too aligned” with those of the measurement
matrices. A similar philosophy seems to apply here. Being able to control the incoherence
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of the solution is instrumental in deriving rigorous convergence guarantees of our algorithm.
For that reason, we introduce the neighborhood

Nµ := {h :
√
L‖Bh‖∞ ≤ 4

√
d0µ}, (3.3)

where µh ≤ µ.

Observation 3 - Initial guess: It is clear that due to the non-convexity of the objective
function, we need a carefully chosen initial guess. We quantify the distance to the true
solution via the following neighborhood

Nε := {(h,x) : ‖hx∗ − h0x
∗
0‖F ≤ εd0}. (3.4)

where ε is a predetermined parameter in (0, 1
15

].

It is evident that the true solution (h0,x0) ∈ Nd0 ∩ Nµ. Note that (h,x) ∈ Nd0
⋂
Nε

implies ‖hx∗‖ ≥ (1− ε)d0 and 1
‖h‖ ≤

‖x‖
(1−ε)d0 ≤

2
(1−ε)

√
d0

. Therefore, for any element (h,x) ∈
Nd0 ∩Nµ ∩Nε, its incoherence can be well controlled by

√
L‖Bh‖∞
‖h‖

≤ 4
√
d0µ

‖h‖
≤ 8µ

1− ε
.

3.2 Objective function and key ideas of the algorithm

Our approach consists of two parts: We first construct an initial guess that is inside the
“basin of attraction” Nd0 ∩Nµ ∩Nε. We then apply a carefully regularized gradient descent
algorithm that will ensure that all the iterates remain inside Nd0 ∩Nµ ∩Nε.

Due to the difficulties of directly projecting onto Nd0∩Nµ (the neigbourhood Nε is easier
to manage) we add instead a regularizer G(h,x) to the objective function F (h,x) to enforce
that the iterates remain inside Nd0 ∩ Nµ. While the idea of adding a penalty function to
control incoherence is proposed in different forms to solve matrix completion problems, see
e.g., [33, 20], our version is mainly inspired by [34, 17].

Hence, we aim to minimize the following regularized objective function to solve the blind
deconvolution problem:

F̃ (h,x) = F (h,x) +G(h,x), (3.5)

where F (h,x) is defined in (2.8) and G(h,x), the penalty function, is of the form

G(h,x) = ρ

[
G0

(
‖h‖2

2d

)
+G0

(
‖x‖2

2d

)
+

L∑
l=1

G0

(
L|b∗lh|2

8dµ2

)]
, (3.6)

where G0(z) = max{z − 1, 0}2 and ρ ≥ d2 + 2‖e‖2. Here we assume 9
10
d0 ≤ d ≤ 11

10
d0 and

µ ≥ µh.
The idea behind this, at first glance complicated, penalty function is quite simple. The

first two terms in (3.6) enforce the projection of (h,x) onto Nd0 while the last term is
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related to Nµ; it will be shown later that any (h,x) ∈ 1√
3
Nd0

⋂
1√
3
Nµ gives G(h,x) = 0

if 9
10
d0 ≤ d ≤ 11

10
d0. Since G0(z) is a truncated quadratic function, it is obvious that

G′0(z) = 2
√
G0(z) andG(h,x) is a continuously differentiable function. Those two properties

play a crucial role in proving geometric convergence of our algorithm presented later.
Another important issue concerns the selection of parameters. We have three unknown

parameters in G(h,x), i.e., ρ, d, and µ. Here, d can be obtained via Algorithm 1 and
9
10
d0 ≤ d ≤ 11

10
d0 is guaranteed by Theorem 3.1; ρ ≥ d2 + 2‖e‖2 ≈ d2 + 2σ2d2

0 because

‖e‖2 ∼ σ2d20
2L
χ2

2L and ‖e‖2 concentrates around σ2d2
0. In practice, σ2 which is the inverse of

the SNR, can often be well estimated. Regarding µ, we require µh ≤ µ in order to make sure
that h0 ∈ Nµ. It will depend on the specific application how well one can estimate µ2

h. For
instance, in wireless communications, a very common channel model for h0 is to assume a

Rayleigh fading model [36], i.e., h0 ∼ N (0,
σ2
h

2
IK) + iN (0,

σ2
h

2
IK). In that case it is easy to

see that µ2
h = O(logL).

3.3 Wirtinger derivative of the objective function and algorithm

Since we are dealing with complex variables, instead of using regular derivatives it is more
convenient to utilize Wirtinger derivatives 3, which has become increasingly popular since [7,

3]. Note that F̃ is a real-valued function and hence we only need to consider the derivative

of F̃ with respect to h̄ and x̄ and the corresponding updates of h and x because a simple
relation holds, i.e.,

∂F̃

∂h̄
=
∂F̃

∂h
∈ CK×1,

∂F̃

∂x̄
=
∂F̃

∂x
∈ CN×1.

In particular, we denote ∇F̃h := ∂F̃
∂h̄

and ∇F̃x := ∂F̃
∂x̄

.
We also introduce the adjoint operator of A : CL → CK×N , given by

A∗(z) =
L∑
l=1

zlbla
∗
l . (3.7)

Both ∇F̃h and ∇F̃x can now be expressed as

∇F̃h = ∇Fh +∇Gh, ∇F̃x = ∇Fx +∇Gx,

3For any complex function f(z) where z = u + iv ∈ Cn and u,v ∈ Rn, the Wirtinger derivatives are

defined as ∂f
∂z = 1

2

(
∂f
∂u − i∂f∂v

)
and ∂f

∂z̄ = 1
2

(
∂f
∂u + i∂f∂v

)
. Two important examples used here are ∂‖z‖2

∂z̄ = z

and ∂(z∗w)
∂z̄ = w.
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where each component yields

∇Fh = A∗(A(hx∗)− y)x = A∗(A(hx∗ − h0x
∗
0)− e)x, (3.8)

∇Fx = [A∗(A(hx∗)− y)]∗h = [A∗(A(hx∗ − h0x
∗
0)− e)]∗h, (3.9)

∇Gh =
ρ

2d

[
G′0

(
‖h‖2

2d

)
h +

L

4µ2

L∑
l=1

G′0

(
L|b∗lh|2

8dµ2

)
blb
∗
lh

]
, (3.10)

∇Gx =
ρ

2d
G′0

(
‖x‖2

2d

)
x. (3.11)

Our algorithm consists of two steps: initialization and gradient descent with constant
stepsize. The initialization is achieved via a spectral method followed by projection. The
idea behind spectral method is that

EA∗(y) = EA∗A(h0x
∗
0) + EA∗(e) = h0x

∗
0

and hence one can hope that the leading singular value and vectors of A∗(y) can be a good
approximation of d0 and (h0,x0) respectively. The projection step ensures u0 ∈ Nµ, which
the spectral method alone might not guarantee. We will address the implementation and
computational complexity issue in Section 4.

Algorithm 1 Initialization via spectral method and projection

1: Compute A∗(y).
2: Find the leading singular value, left and right singular vectors of A∗(y), denoted by d,

ĥ0 and x̂0 respectively.
3: Solve the following optimization problem:

u0 := argminz‖z −
√
dĥ0‖2, subject to

√
L‖Bz‖∞ ≤ 2

√
dµ

and v0 =
√
dx̂0.

4: Output: (u0,v0).

Algorithm 2 Wirtinger gradient descent with constant stepsize η

1: Initialization: obtain (u0,v0) via Algorithm 1.
2: for t = 1, 2, . . . , do
3: ut = ut−1 − η∇F̃h(ut−1,vt−1)

4: vt = vt−1 − η∇F̃x(ut−1,vt−1)
5: end for

11



3.4 Main results

Our main finding is that with a diligently chosen initial guess (u0,v0), simply running

gradient descent to minimize the regularized non-convex objective function F̃ (h,x) will not
only guarantee linear convergence of the sequence (ut,vt) to the global minimum (h0,x0) in
the noiseless case, but also provide robust recovery in the presence of noise. The results are
summarized in the following two theorems.

Theorem 3.1. The initialization obtained via Algorithm 1 satisfies

(u0,v0) ∈ 1√
3
Nd0

⋂ 1√
3
Nµ
⋂
N 2

5
ε, (3.12)

and
9

10
d0 ≤ d ≤ 11

10
d0 (3.13)

holds with probability at least 1− L−γ if the number of measurements satisfies

L ≥ Cγ(µ
2
h + σ2) max{K,N} log2(L)/ε2. (3.14)

Here ε is any predetermined constant in (0, 1
15

], and Cγ is a constant only linearly depending
on γ with γ ≥ 1.

The proof of Theorem 3.1 is given in Section 5.5. While the initial guess is carefully
chosen, it is in general not of sufficient accuracy to already be used as good approximation
to the true solution. The following theorem establishes that as long as the initial guess lies
inside the basin of attraction of the true solution, regularized gradient descent will indeed
converge to this solution (or to a solution nearby in case of noisy data).

Theorem 3.2. Consider the model in (2.5) with the ground truth (h0,x0), µ2
h = L‖Bh0‖2∞

‖h0‖2 ≤
µ2 and the noise e ∼ N (0,

σ2d20
2L

IL) + iN (0,
σ2d20
2L

IL). Assume that the initialization (u0,v0)
belongs to 1√

3
Nd0

⋂
1√
3
Nµ
⋂
N 2

5
ε and that

L ≥ Cγ(µ
2 + σ2) max{K,N} log2(L)/ε2,

Algorithm 2 will create a sequence (ut,vt) ∈ Nd0 ∩Nµ∩Nε which converges geometrically to
(h0,x0) in the sense that with probability at least 1− 4L−γ − 1

γ
exp(−(K +N)), there holds

max{sin∠(ut,h0), sin∠(vt,x0)} ≤ 1

dt

(
2

3
(1− ηω)t/2εd0 + 50‖A∗(e)‖

)
(3.15)

and

|dt − d0| ≤
2

3
(1− ηω)t/2εd0 + 50‖A∗(e)‖, (3.16)

where dt := ‖ut‖‖vt‖, ω > 0, η is the fixed stepsize and ∠(ut,h0) is the angle between ut
and h0. Here

‖A∗(e)‖ ≤ C0σd0 max
{√(γ + 1) max{K,N} logL

L
,
(γ + 1)

√
KN log2 L

L

}
. (3.17)

holds with probability 1− L−γ.

12



Remarks:

1. While the setup in (2.5) assumes that B is a matrix consisting of the first K columns
of the DFT matrix, this is actually not necessary for Theorem 3.2. As the proof will
show, the only conditions on B are that B∗B = IK and that the norm of the l-th row
of B satisfies ‖bl‖2 ≤ CK

L
for some numerical constant C.

2. The minimum number of measurements required for our method to succeed is roughly
comparable to that of the convex approach proposed in [1] (up to log-factors). Thus
there is no price to be paid for trading a slow, convex-optimization based approach
with a fast non-convex based approach. Indeed, numerical experiments indicate that
the non-convex approach even requires a smaller number of measurements compared
to the convex approach, see Section 4.

3. The convergence rate of our algorithm is completely determined by ηω. Here, the regu-
larity constant ω = O(d0) is specified in (5.7) and η ≤ 1

CL
where CL = O(d0(N logL+

ρL
d20µ

2 )). The attentive reader may have noted that CL depends essentially linearly on
ρL
µ2

, which actually reflects a tradeoff between sampling complexity (or statistical es-

timation quality) and computation time. Note that if L gets larger, the number of
constraints is also increasing and hence leads to a larger CL. However, this issue can
be solved by choosing parameters smartly. Theorem 3.2 tells us that µ2 should be
roughly between µ2

h and L
(K+N) log2 L

. Therefore, by choosing µ2 = O( L
(K+N) log2 L

) and

ρ ≈ d2 + 2‖e‖2, CL is optimized and

ηω = O(((1 + σ2)(K +N) log2 L)−1),

which is shown in details in Section 5.4.

4. Relations (3.15) and (3.16) are basically equivalent to the following:

‖utv∗t − h0x
∗
0‖F ≤

2

3
(1− ηω)t/2εd0 + 50‖A∗(e)‖, (3.18)

which says that (ut,vt) converges to an element of the equivalence class associated
with the true solution (h0,x0) (up to a deviation governed by the amount of additive
noise).

5. The matrix A∗(e) =
∑L

l=1 elbla
∗
l , as a sum of L rank-1 random matrices, has nice

concentration of measure properties under the assumption of Theorem 3.2. Asymptot-
ically, ‖A∗(e)‖ converges to 0 with rate O(L−1/2), which will be justified in Lemma 5.20
of Section 5.5 (see also [3]). Note that

F (h,x) = ‖e‖2 + ‖A(hx∗ − h0x
∗
0)‖2

F − 2 Re(〈A∗(e),hx∗ − h0x
∗
0〉). (3.19)

13



If one lets L→∞, then ‖e‖2 ∼ σ2d20
2L
χ2

2L will converge almost surely to σ2d2
0 under the

Law of Large Numbers and the cross term Re(〈hx∗ − h0x
∗
0,A∗(e)〉) will converge to

0. In other words, asymptotically,

lim
L→∞

F (h,x) = F0(h,x) + σ2d2
0

for all fixed (h,x). This implies that if the number of measurements is large, then
F (h,x) behaves “almost like” F0(h,x) = ‖A(hx∗ − h0x

∗
0)‖2, the noiseless version of

F (h,x). This provides the key insight into analyzing the robustness of our algorithm,
which is reflected in the so-called “Robustness Condition” in (5.2). Moreover, the
asymptotic property of A∗(e) is also seen in our main result (3.18). Suppose L is
becoming larger and larger, the effect of noise diminishes and heuristically, we might
just rewrite our result as ‖utv∗t −h0x

∗
0‖F ≤ 2

3
(1−ηω)t/2εd0 +op(1), which is consistent

with the result without noise.

4 Numerical simulations

We present empirical evaluation of our proposed gradient descent algorithm (Algorithm 2)
using simulated data as well as examples from blind deconvolution problems appearing in
communications and in image processing.

4.1 Number of measurements vs size of signals

We first investigate how many measurements are necessary in order for an algorithm to
reliably recover two signals from their convolution. We compare Algorithm 2, a gradient
descent algorithm for the sum of the loss function F (h,x) and the regularization term
G(h,x), with the gradient descent algorithm only applied to F (h,x) and the nuclear norm
minimization proposed in [1]. These three tested algorithms are abbreviated as regGrad, Grad
and NNM respectively. To make fair comparisons, both regGrad and Grad are initialized
with the normalized leading singular vectors of A∗(y), which are computed by running the
power method for 50 iterations. Though we do not further compute the projection of ĥ0 for
regGrad as stated in the third step of Algorithm 1, we emphasize that the projection can
be computed efficiently as it is a linear programming on K-dimensional vectors. A careful
reader may notice that in addition to the computational cost for the loss function F (h,x),
regGrad also requires to evaluate G(h,x) and its gradient in each iteration. When B consists
of the first K columns of a unitary DFT matrix, we can evaluate {b∗lh}

L
l=1 and the gradient

of
∑L

l=1G0

(
L|b∗l h|

2

8dµ2

)
using FFT. Thus the additional per iteration computational cost for

the regularization term G(h,x) is only O(L logL) flops. The stepsizes in both regGrad and
Grad are selected adaptively in each iteration via backtracking. As suggested by the theory,
the choices for ρ and µ in regGrad are ρ = d2/100 and µ = 6

√
L/(K +N)/ logL.

We conduct tests on random Gaussian signals h ∈ CK×1 and x ∈ CN×1 with K = N = 50.
The matrix B ∈ CL×K is the first K columns of a unitary L×L DFT matrix, while A ∈ CL×N
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Figure 1: Empirical phase transition curves when (a) A is random Gaussian (b) A is partial
Hadamard. Horizontal axis L/(K + N) and vertical axis probability of successful recovery
out of 50 random tests.

is either a Gaussian random matrix or a partial Hadamard matrix with randomly selected N
columns and then multiplied by a random sign matrix from the left. When A is a Gaussian
random matrix, L takes 16 equal spaced values from K + N to 4(K + N). When A is a
partial Hadamard matrix, we only test L = 2s with 6 ≤ s ≤ 10 being integers. For each
given triple (K,N,L), fifty random tests are conducted. We consider an algorithm to have
successfully recovered (h0,x0) if it returns a matrix X̂ which satisfies

‖X̂ − h0x
∗
0‖F

‖h0x∗0‖F
< 10−2.

We present the probability of successful recovery plotted against the number of measurements
in Figure 1. It can be observed that regGrad and Grad have similar performance, and both of
them require a significantly smaller number of measurements than NNM to achieve successful
recovery of high probability.

4.2 Number of measurements vs incoherence

Theorem 3.2 indicates that the number of measurements L required for Algorithm 2 to
achieve successful recovery scales linearly with µ2

h. We conduct numerical experiments to
investigate the dependence of L on µ2

h empirically. The tests are conducted with µ2
h taking

on 10 values µ2
h ∈ {3, 6, · · · , 30}. For each fixed µ2

h, we choose h0 to be a vector whose first
µ2
h entries are 1 and the others are 0 so that its incoherence is equal to µ2

h when B is low
frequency Fourier matrix. Then the tests are repeated for random Gaussian matrices A and
random Gaussian vectors x0. The empirical probability of successful recovery on the (µ2

h, L)
plane is presented in Figure 2, which suggests that L does scale linearly with µ2

h.
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Figure 2: Empirical probability of successful recovery. Horizontal axis µ2
h and vertical axis

L. White: 100% success and black: 0% success.

4.3 A comparison when µ2
h is large

While regGrad and Grad have similar performances in the simulation when h0 is a random
Gaussian signal (see Figure 1), we investigate their performances on a fixed h0 with a large
incoherence. The tests are conducted for K = N = 200, x0 ∈ CN×1 being a random Gaussian
signal, A ∈ CL×N being a random Gaussian matrix, and B ∈ CL×K being a low frequency
Fourier matrix. The signal h0 with µ2

h = 100 is formed in the same way as in Section 4.2;
that is, the first 100 entries of h0 are one and the other entries are zero. The number of
measurements L varies from 3(K + N) to 8(K + N). For each L, 100 random tests are
conducted. Figure 3 shows the probability of successful recovery for regGrad and Grad. It
can be observed that the successful recovery probability of regGrad is at least 10% larger
than that of Grad when L ≥ 6(K +N).

4.4 Robustness to additive noise

We explore the robustness of Algorithm 2 when the measurements are contaminated by
additive noise. The tests are conducted with K = N = 100, L ∈ {500, 1000} when A is a
random Gaussian matrix, and L ∈ {512, 1024} when A is a partial Hadamard matrix. Tests
with additive noise have the measurement vector y corrupted by the vector

e = σ · ‖y‖ · w

‖w‖
,

where w ∈ CL×1 is standard Gaussian random vector, and σ takes nine different values from
10−4 to 1. For each σ, fifty random tests are conducted. The average reconstruction error in
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Figure 4: Performance of Algorithm 2 under different SNR when (a) A is random Gaussian
(b) A is partial Hadamard.

dB plotted against the signal to noise ratio (SNR) is presented in Fig. 4. First the plots clearly
show the desirable linear scaling between the noise levels and the relative reconstruction
errors. Moreover, as desired, the relative reconstruction error decreases linearly on a log-log
scale as the number of measurements L increases.

4.5 An example from communications

In order to demonstrate the effectiveness of Algorithm 2 for real world applications, we first
test the algorithm on a blind deconvolution problem arising in communications. Indeed,
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blind deconvolution problems and their efficient numerical solution are expected to play an
increasingly important role in connection with the emerging Internet-of-Things [42]. Assume
we want to transmit a signal from one place to another over a so-called time-invariant
multi-path communication channel, but the receiver has no information about the channel,
except its delay spread (i.e., the support of the impulse response). In many communication
settings it is reasonable to assume that the receiver has information about the signal encoding
matrix—in other words, we know the subspace A to which x0 belongs to. Translating this
communications jargon into mathematical terminology, this simply means that we are dealing
with a blind deconvolution problem of the form (2.5).

These encoding matrices (or so-called spreading matrices) are often chosen to have a con-
venient structure that lends itself to fast computations and minimal memory requirements.
One such choice is to let A := DH , where the L×K matrix H consists of K (randomly or
not randomly) chosen columns of an L× L Hadamard matrix, premultiplied with an L× L
diagonal random sign matrix D. Instead of a partial Hadamard matrix we could also use a
partial Fourier matrix; the resulting setup would then closely resemble an OFDM transmis-
sion format, which is part of every modern wireless communication scheme. For the signal
x0 we choose a so-called QPSK scheme, i.e., each entry of x0 ∈ C123×1 takes a value from
{1,−1, i,−i} with equal probability. The actual transmitted signal is then z = Ax0. For
the channel h0 (the blurring function) we choose a real-world channel, courtesy of Intel Cor-
poration. Here, h0 represents the impulse response of a multipath time-invariant channel, it
consists of 123 time samples, hence h0 ∈ C123×1. Otherwise, the setup follows closely that in
Sec. 4.1. For comparison we also include the case when A is a random Gaussian matrix.

The plots of successful recovery probability are presented in Figure 5, which shows that
Algorithm 2 can successfully recover the real channel h0 with high probability if L & 2.5(L+
N) when A is a random Gaussian matrix and if L & 4.5(L + N) when A is a partial
Hadamard matrix. Thus our theory seems a bit pessimistic. It is gratifying to see that very
little additional measurements are required compared to the number of unknowns in order
to recover the transmitted signal.

4.6 An example from image processing

Next, we test Algorithm 2 on an image deblurring problem, inspired by [1]. The observed
image (Figure 6c) is a convolution of a 512 × 512 MRI image (Figure 6a) with a motion
blurring kernel (Figure 6b). Since the MRI image is approximately sparse in the Haar
wavelet basis, we can assume it belongs to a low dimensional subspace; that is, g = Cx0,
where g ∈ CL with L = 262, 144 denotes the MRI image reshaped into a vector, C ∈ CL×N

represents the wavelet subspace and x0 ∈ CN is the vector of wavelet coefficients. The
blurring kernel f ∈ CL×1 is supported on a low frequency region. Therefore f̂ = Bh0, where
B ∈ CL×K is a reshaped 2D low frequency Fourier matrix and h0 ∈ CK is a short vector.

Figure 6d shows the initial guess for Algorithm 2 in the image domain, which is obtained
by running the power method for fifty iterations. While this initial guess is clearly not a
good approximation to the true solution, it suffices as a starting point for gradient descent.
In the first experiment, we take C to be the wavelet subspace corresponding to the N =
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Figure 5: Empirical phase transition curves when (a) A is random Gaussian (b) A is partial
Hadamard. Horizontal axis L/(K + N) and vertical axis probability of successful recovery
out of 50 random tests.

20000 largest Haar wavelet coefficients of the original MRI image, and we also assume the
locations of the K = 65 nonzero entries of the kernel are known. Figure 6e shows the
reconstructed image in this ideal setting. It can be observed that the recovered image is
visually indistinguishable from the ground truth MRI image. In the second experiment, we
test a more realistic setting, where both the support of the MRI image is the wavelet domain
and the support of the kernel are not known. We take the Haar wavelet transform of the
blurred image (Figure 6c) and select C to be the wavelet subspace corresponding to the
N = 35000 largest wavelet coefficients. We do not assume the exact support of the kernel is
known, but assume that its support is contained in a small box region. The reconstructed
image in this setting is shown in Figure 6f. Despite not knowing the subspaces exactly,
Algorithm 2 is still able to return a reasonable reconstruction.

Yet, this second experiment also demonstrates that there is clearly room for improvement
in the case when the subspaces are unknown. One natural idea to improve upon the result
depicted in Figure 6f is to include an additional total-variation penalty in the reconstruction
algorithm. We leave this line of work for future research.

5 Proof of the main theorem

This section is devoted to the proof of Theorems 3.1 and 3.2. Since proving Theorem 3.2
is a bit more involved, we briefly describe the architecture of its proof. In Subsection 5.1
we state four key conditions: The Local Regularity Condition will allow us to show that the
objective function decreases; the Local Restricted Isometry Property enables us to transfer
the decrease in the objective function to a decrease of the error between the iterates and
the true solution; the Local Smoothness Condition yields the actual rate of convergence, and
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Figure 6: MRI image deblurring: (a) Original 512× 512 MRI image; (b) Blurring kernel; (c)
Blurred image; (d) Initial guess; (e) Reconstructed image when the subspaces are known;
(f) Reconstructed image without knowing the subspaces exactly.

finally, the Robustness Condition establishes robustness of the proposed algorithm against
additive noise. Armed with these conditions, we will show how the three regions defined
in Section 3 characterize the convergence neighborhood of the solution, i.e., if the initial
guess is inside this neighborhood, the sequence generated via gradient descent will always
stay inside this neighborhood as well. In Subsections 5.2–5.5 we justify the aforementioned
four conditions, show that they are valid under the assumptions stated in Theorem 3.2, and
conclude with a proof of Theorem 3.1.

5.1 Four key conditions and the proof of Theorem 3.2

Condition 5.1 (Local RIP condition). The following local Restricted Isometry Property
(RIP) for A holds uniformly for all (h,x) ∈ Nd0 ∩Nµ ∩Nε :

3

4
‖hx∗ − h0x

∗
0‖2
F ≤ ‖A(hx∗ − h0x

∗
0)‖2 ≤ 5

4
‖hx∗ − h0x

∗
0‖2
F (5.1)

Condition 5.1 states that A almost preserves the `2-distance between hx∗ − h0x
∗
0 over

a “local” region around the ground truth h0x
∗
0. The proof of Condition 5.1 is given in
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Lemma 5.14.

Condition 5.2 (Robustness condition). For the noise e ∼ N (0,
σ2d20
2L

IL)+iN (0,
σ2d20
2L

IL),
with high probability there holds,

‖A∗(e)‖ ≤ εd0

10
√

2
(5.2)

if L ≥ Cγ(
σ2

ε2
+ σ

ε
) max{K,N} logL.

This condition follows directly from (3.17). It is quite essential when we analyze the
behavior of Algorithm 2 under Gaussian noise. With those two conditions above in hand,
the lower and upper bounds of F (h,x) are well approximated over Nd0 ∩ Nµ ∩ Nε by two
quadratic functions of δ, where δ is defined in (2.10). A similar approach towards noisy
matrix completion problem can be found in [16]. For any (h,x) ∈ Nd0 ∩Nµ ∩Nε, applying
Condition 5.1 to (3.19) leads to

F (h,x) ≤ ‖e‖2 + F0(h,x) + 2
√

2‖A∗(e)‖δd0 ≤ ‖e‖2 +
5

4
δ2d2

0 + 2
√

2‖A∗(e)‖δd0 (5.3)

and similarly

F (h,x) ≥ ‖e‖2 +
3

4
δ2d2

0 − 2
√

2‖A∗(e)‖δd0 (5.4)

where
| 〈A∗(e),hx∗ − h0x

∗
0〉 | ≤ ‖A∗(e)‖‖hx∗ − h0x

∗
0‖∗ ≤

√
2‖A∗(e)‖δd0,

because ‖ · ‖ and ‖ · ‖∗ is a pair of dual norm and rank(hx∗ − h0x
∗
0) ≤ 2. Moreover, with

the Condition 5.2, (5.3) and (5.4) yield the followings:

F (h,x) ≤ ‖e‖2 +
5

4
δ2d2

0 +
εδd2

0

5
(5.5)

and

F (h,x) ≥ ‖e‖2 +
3

4
δ2d2

0 −
εδd2

0

5
. (5.6)

The third condition is about the regularity condition of F̃ (h,x), which is the key to
establishing linear convergence later. The proof will be given in Lemma 5.18.

Condition 5.3 (Local regularity condition). Let F̃ (h,x) be as defined in (3.5) and

∇F̃ (h,x) := (∇F̃h,∇F̃x) ∈ CK+N . Then there exists a regularity constant ω = d0
5000

> 0
such that

‖∇F̃ (h,x)‖2 ≥ ω
[
F̃ (h,x)− c

]
+

(5.7)

for all (h,x) ∈ Nd0 ∩Nµ ∩Nε where c = ‖e‖2 + a‖A∗(e)‖2 with a = 1700. In particular, in
the noiseless case, i.e., e = 0, we have

‖∇F̃ (h,x)‖2 ≥ ωF̃ (h,x).
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Besides the three regions defined in (3.1) to (3.3), we define another region NF̃ via

NF̃ :=

{
(h,x) : F̃ (h,x) ≤ 1

3
ε2d2

0 + ‖e‖2

}
(5.8)

for proof technical purposes. NF̃ is actually the sublevel set of the nonconvex function F̃ .
Finally we introduce the last condition called Local smoothness condition and its cor-

responding quantity CL which characterizes the choice of stepsize η and the rate of linear
convergence.

Condition 5.4 (Local smoothness condition). Denote z := (h,x). There exists a
constant CL such that

‖∇f(z + t∆z)−∇f(z)‖ ≤ CLt‖∆z‖, ∀0 ≤ t ≤ 1, (5.9)

for all {(z,∆z)|z + t∆z ∈ Nε
⋂
NF̃ ,∀0 ≤ t ≤ 1}, i.e., the whole segment connecting z and

z + ∆z, which is parametrized by t, belongs to the nonconvex set Nε
⋂
NF̃ .

The upper bound of CL, which scales with O(d0(1 + σ2)(K + N) log2 L), will be given
in Section 5.4. We will show later in Lemma 5.8 that the stepsize η is chosen to be smaller
than 1

CL
. Hence η = O((d0(1 + σ2)(K +N) log2 L)−1).

Lemma 5.5. There holds NF̃ ⊂ Nd0∩Nµ; under Condition 5.1 and 5.2, we have NF̃ ∩Nε ⊂
N 9

10
ε.

Proof: If (h,x) /∈ Nd0 ∩ Nµ, by the definition of G in (3.6), at least one component in G
exceeds ρG0

(
2d0
d

)
. We have

F̃ (h,x) ≥ ρG0

(
2d0

d

)
≥ (d2 + 2‖e‖2)

(
2d0

d
− 1

)2

≥ (2d0 − d)2 + 2‖e‖2

(
2d0

d
− 1

)2

≥ 0.81d2
0 + ‖e‖2 >

1

3
ε2d2

0 + ‖e‖2,

where ρ ≥ d2 + 2‖e‖2 and 0.9d0 ≤ d ≤ 1.1d0. This implies (h,x) /∈ NF̃ and hence
NF̃ ⊂ Nd0 ∩Nµ.

For any (h,x) ∈ NF̃ ∩Nε, we have (h,x) ∈ Nd0 ∩Nµ ∩Nε now. By (5.6),

‖e‖2 +
3

4
δ2d2

0 −
εδd2

0

5
≤ F (h,x) ≤ F̃ (h,x) ≤ ‖e‖2 +

1

3
ε2d2

0.

Therefore, (h,x) ∈ N 9
10
ε and NF̃ ∩Nε ⊂ N 9

10
ε.

22



This lemma implies that the intersection of NF̃ and the boundary of Nε is empty. One
might believe this suggests that NF̃ ⊂ Nε. This may not be true. A more reasonable
interpretation is that NF̃ consists of several disconnected regions due to the non-convexity

of F̃ (h,x), and one or several of them are contained in Nε.

Lemma 5.6. Denote z1 = (h1,x1) and z2 = (h2,x2). Let z(λ) := (1 − λ)z1 + λz2. If
z1 ∈ Nε and z(λ) ∈ NF̃ for all λ ∈ [0, 1], we have z2 ∈ Nε.

Proof: Let us prove the claim by contradiction. If z2 /∈ Nε, since z1 ∈ Nε, there exists
z(λ0) := (h(λ0),x(λ0)) ∈ Nε for some λ0 ∈ [0, 1], such that ‖h(λ0)x(λ0)∗ − h0x

∗
0‖F = εd0.

However, since z(λ0) ∈ NF̃ , by Lemma 5.5, we have ‖h(λ0)x(λ0)∗ − h0x
∗
0‖F ≤ 9

10
εd0. This

leads to a contradiction.

Remark 5.7. Lemma 5.6 tells us that if one line segment is completely inside NF̃ with one
end point in Nε, then this whole line segment lies in Nd0 ∩Nµ ∩Nε.

Lemma 5.8. Let the stepsize η ≤ 1
CL

, zt := (ut,vt) ∈ CK+N and CL be the constant defined
in (5.9). Then, as long as zt ∈ Nε ∩NF̃ , we have zt+1 ∈ Nε ∩NF̃ and

F̃ (zt+1) ≤ F̃ (zt)− η‖∇F̃ (zt)‖2. (5.10)

Proof: It suffices to prove (5.10). If ∇F̃ (zt) = 0, then zt+1 = zt, which implies (5.10)

directly. So we only consider the case when ∇F̃ (zt) 6= 0. Define the function

ϕ(λ) := F̃ (zt − λ∇F̃ (zt)).

Then
ϕ′(λ)|λ=0 = −2‖∇F̃ (zt)‖2 < 0.

since ϕ(λ) is a real-valued function with complex variables (See (6.1) for details). By the
definition of derivatives, we know there exists η0 > 0, such that ϕ(λ) < ϕ(0) for all 0 < λ ≤
η0. Now we will first prove that ϕ(λ) ≤ ϕ(0) for all 0 ≤ λ ≤ η by contradiction. Assume
there exists some η1 ∈ (η0, η] such that ϕ(η1) > ϕ(0). Then there exists η2 ∈ (η0, η1), such
that ϕ(η2) = ϕ(0) and ϕ(λ) < ϕ(0) for all 0 < λ < η2, since ϕ(λ) is a continuous function.
This implies

zt − λ∇F̃ (zt) ∈ NF̃ , ∀0 ≤ λ ≤ η2

since F̃ (zt− λ∇F̃ (zt)) ≤ F̃ (zt) for 0 ≤ λ ≤ η2. By Lemma 5.6 and the assumption zt ∈ Nε,
we have

zt − λ∇F̃ (zt) ∈ Nε ∩NF̃ , ∀0 ≤ λ ≤ η2.

Then, by using the modified descent lemma (Lemma 6.1),

F̃ (zt − η2∇F̃ (zt)) ≤ F̃ (zt)− 2η2‖∇F̃ (zt)‖2 + CLη
2
2‖∇F̃ (zt)‖2

= F̃ (zt) + (CLη
2
2 − 2η2)‖∇F̃ (zt)‖2 < F̃ (zt),
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where the final inequality is due to η2/η < 1, η2 > η0 ≥ 0 and ∇F̃ (zt) 6= 0. This contradicts

F̃ (zt − η2∇F̃ (zt)) = ϕ(η2) = ϕ(0) = F̃ (zt).
Therefore, there holds ϕ(λ) ≤ ϕ(0) for all 0 ≤ λ ≤ η. Similarly, we can prove

zt − λ∇F̃ (zt) ∈ Nε ∩NF̃ , ∀0 ≤ λ ≤ η,

which implies zt+1 = zt − η∇F̃ (zt) ∈ Nε ∩NF̃ . Again, by using Lemma 6.1 we can prove

F̃ (zt+1) = F̃ (zt−η∇F̃ (zt)) ≤ F̃ (zt)−2η‖∇F̃ (zt)‖2+CLη
2‖∇F̃ (zt)‖2 ≤ F̃ (zt)−η‖∇F̃ (zt)‖2,

where the final inequality is due to η ≤ 1
CL

.

We conclude this subsection by proving Theorem 3.2 under the Local regularity condition,
the Local RIP condition, the Robustness condition, and the Local smoothness condition. The
next subsections are devoted to justifying these conditions and showing that they hold under
the assumptions of Theorem 3.2.

Proof: [of Theorem 3.2] Suppose that the initial guess z0 := (u0,v0) ∈ 1√
3
Nd0

⋂
1√
3
Nµ
⋂
N 2

5
ε,

we have G(u0,v0) = 0. This holds, because

‖u0‖2

2d
≤ 2d0

3d
< 1,

L|b∗lu0|2

8dµ2
≤ L

8dµ2
· 16d0µ

2

3L
≤ 2d0

3d
< 1,

where ‖u0‖ ≤ 2
√
d0√
3

,
√
L‖Bu0‖∞ ≤ 4

√
d0µ√
3

and 9
10
d0 ≤ d ≤ 11

10
d0. Therefore G0

(
‖u0‖2

2d

)
=

G0

(
‖v0‖2

2d

)
= G0

(
L|b∗l u0|2

8dµ2

)
= 0 for all 1 ≤ l ≤ L and G(u0,v0) = 0. Since (u0,v0) ∈

Nd0 ∩Nµ ∩Nε, (5.5) combined with δ(z0) :=
‖u0v∗0−h0x∗0‖F

d0
≤ 2ε

5
imply that

F̃ (u0,v0) = F (u0,v0) ≤ ‖e‖2 +
5

4
δ2(z0)d2

0 +
1

5
εδ(z0)d2

0 <
1

3
ε2d2

0 + ‖e‖2

and hence z0 = (u0,v0) ∈ Nε
⋂
NF̃ . Denote zt := (ut,vt). Combining Lemma 5.8 by

choosing η ≤ 1
CL

with Condition 5.3, we have

F̃ (zt+1) ≤ F̃ (zt)− ηω
[
F̃ (zt)− c

]
+

with c = ‖e‖2 + a‖A∗(e)‖2, a = 1700 and zt ∈ Nd0 ∩ Nµ ∩ Nε for all t ≥ 0. Obviously, the
inequality above implies

F̃ (zt+1)− c ≤ (1− ηω)
[
F̃ (zt)− c

]
+
,

and by monotonicity of z+ = z+|z|
2

, there holds[
F̃ (zt+1)− c

]
+
≤ (1− ηω)

[
F̃ (zt)− c

]
+
.
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Therefore, by induction, we have[
F̃ (zt)− c

]
+
≤ (1− ηω)t

[
F̃ (z0)− c

]
+
≤ 1

3
(1− ηω)tε2d2

0

where F̃ (z0) ≤ 1
3
ε2d2

0 +‖e‖2 and hence
[
F̃ (z0)− c

]
+
≤
[

1
3
ε2d2

0 − a‖A∗(e)‖2
]

+
≤ 1

3
ε2d2

0. Now

we can conclude that
[
F̃ (zt)− c

]
+

converges to 0 geometrically. Note that overNd0∩Nµ∩Nε,

F̃ (zt)− ‖e‖2 ≥ F0(zt)− 2 Re(〈A∗(e),utv
∗
t − h0x

∗
0〉) ≥

3

4
δ2(zt)d

2
0 − 2

√
2‖A∗(e)‖δ(zt)d0

where δ(zt) :=
‖utv∗t−h0x∗0‖F

d0
, F0 is defined in (2.9) and G(zt) ≥ 0. There holds

3

4
δ2(zt)d

2
0 − 2

√
2‖A∗(e)‖δ(zt)d0 − a‖A∗(e)‖2 ≤

[
F̃ (zt)− c

]
+
≤ 1

3
(1− ηω)tε2d2

0

and equivalently,∣∣∣∣∣δ(zt)d0 −
4
√

2

3
‖A∗(e)‖

∣∣∣∣∣
2

≤ 4

9
(1− ηω)tε2d2

0 +

(
4

3
a+

32

9

)
‖A∗(e)‖2.

Solving the inequality above for δ(zt), we have

δ(zt)d0 ≤
2

3
(1− ηω)t/2εd0 +

(
4
√

2

3
+

√
4

3
a+

32

9

)
‖A∗(e)‖

≤ 2

3
(1− ηω)t/2εd0 + 50‖A∗(e)‖. (5.11)

Let dt := ‖ut‖‖vt‖, t ≥ 1. By (5.11) and triangle inequality, we immediately conclude that

|dt − d0| ≤
2

3
(1− ηω)t/2εd0 + 50‖A∗(e)‖.

Now we derive the upper bound for sin∠(ut,h0) and sin∠(vt,x0). Due to symmetry, it
suffices to consider sin∠(ut,h0). The bound follows from standard linear algebra arguments:

sin∠(ut,h0) =
1

‖ut‖

∥∥∥∥(I − h0h
∗
0

d0

)
ut

∥∥∥∥
=

1

‖ut‖‖vt‖

∥∥∥∥(I − h0h
∗
0

d0

)
(utv

∗
t − h0x

∗
0)

∥∥∥∥
≤ 1

dt
‖utv∗t − h0x

∗
0‖F

≤ 1

dt

(
2

3
(1− ηω)t/2εd0 + 50‖A∗(e)‖

)
,

where the second equality uses
(
I − h0h∗0

d0

)
h0 = 0.
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5.2 Supporting lemmata

This subsection introduces several lemmata, especially Lemma 5.9, 5.12 and 5.13, which
are central for justifying Conditions 5.1 and 5.3. After that, we will prove the Local RIP
Condition in Lemma 5.14 based on those three lemmata. We start with defining a linear
space T , which contains h0x

∗
0, via

T :=

{
1√
d0

h0v
∗ +

1√
d0

ux∗0, u ∈ CK ,v ∈ CN
}
⊂ CK×N . (5.12)

Its orthogonal complement is given by

T⊥ :=

{(
I − 1

d0

h0h
∗
0

)
Z

(
I − 1

d0

x0x
∗
0

)
, Z ∈ CK×N

}
.

Denote PT to be the projection operator from CK×N onto T .
For any h and x, there are unique orthogonal decompositions

h = α1h0 + h̃, x = α2x0 + x̃, (5.13)

where h0 ⊥ h̃ and x0 ⊥ x̃. More precisely, α1 =
h∗0h

d0
= 〈h0,h〉

d0
and α2 = 〈x0,x〉

d0
. We thereby

have the following matrix orthogonal decomposition

hx∗ − h0x
∗
0 = (α1α2 − 1)h0x

∗
0 + α2h̃x

∗
0 + α1h0x̃

∗ + h̃x̃∗ (5.14)

where the first three components are in T while h̃x̃∗ ∈ T⊥.

Lemma 5.9. Recall that ‖h0‖ = ‖x0‖ =
√
d0. If δ :=

‖hx∗−h0x∗0‖F
d0

< 1, we have the following
useful bounds

|α1| ≤
‖h‖
‖h0‖

, |α1α2 − 1| ≤ δ,

and

‖h̃‖ ≤ δ

1− δ
‖h‖, ‖x̃‖ ≤ δ

1− δ
‖x‖, ‖h̃‖‖x̃‖ ≤ δ2

2(1− δ)
d0.

Moreover, if ‖h‖ ≤ 2
√
d0 and

√
L‖Bh‖∞ ≤ 4µ

√
d0, we have

√
L‖Bh̃‖∞ ≤ 6µ

√
d0.

Remark 5.10. This lemma is actually a simple version of singular value/vector perturbation.

It says that if
‖hx∗−h0x∗0‖F

d0
is of O(δ), then the individual vectors (h,x) are also close to

(h0,x0), with the error of order O(δ).

Proof: The equality (5.13) implies that ‖α1h0‖ ≤ ‖h‖, so there holds |α1| ≤ ‖h‖
‖h0‖ . Since

‖hx∗ − h0x
∗
0‖F = δd0, by (5.14), we have

δ2d2
0 = (α1α2 − 1)2d2

0 + |α2|2‖h̃‖2d0 + |α1|2‖x̃‖2d0 + ‖h̃‖2‖x̃‖2. (5.15)
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This implies that
‖h‖2‖x̃‖2 = (α2

1d0 + ‖h̃‖2)‖x̃‖2 ≤ δ2d2
0.

On the other hand,

‖h‖‖x‖ ≥ ‖h0‖‖x0‖ − ‖hx∗ − h0x
∗
0‖F = (1− δ)d0.

The above two inequalities imply that ‖x̃‖ ≤ δ
1−δ‖x‖, and similarly we have ‖h̃‖ ≤ δ

1−δ‖h‖.
The equality (5.15) implies that |α1α2 − 1| ≤ δ and hence |α1α2| ≥ 1− δ. Moreover, (5.15)
also implies

‖h̃‖‖x̃‖|α1||α2| ≤
1

2
(|α2|2‖h̃‖2 + |α1|2‖x̃‖2) ≤ δ2d0

2
,

which yields ‖h̃‖2‖x̃‖2 ≤ δ2

2(1−δ)d0.

If ‖h‖ ≤ 2
√
d0 and

√
L‖Bh‖∞ ≤ 4µ

√
d0, there holds |α1| ≤ ‖h‖

‖h0‖ ≤ 2. Then

√
L‖Bh̃‖∞ ≤

√
L‖Bh‖∞ +

√
L‖B(α1h0)‖∞ ≤

√
L‖Bh‖∞ + 2

√
L‖Bh0‖∞

≤ 4µ
√
d0 + 2µh

√
d0 ≤ 6µ

√
d0

where µh ≤ µ.

In the following, we introduce and prove a series of local and global properties of A:

Lemma 5.11 (Lemma 1 in [1]). For A defined in (2.6),

‖A‖ ≤
√
N log(NL/2) + γ logL (5.16)

with probability at least 1− L−γ.

Lemma 5.12 (Corollary 2 in [1]). Let A be the operator defined in (2.6), then on an event
E1 with probability at least 1− L−γ, A restricted on T is well-conditioned, i.e.,

‖PTA∗APT − PT‖ ≤
1

10

where PT is the projection operator from CK×N onto T , provided L ≥ Cγ max{K,µ2
hN} log2(L).

Now we introduce a property of A when restricted on rank-one matrices.

Lemma 5.13. On an event E2 with probability at least 1−L−γ− 1
γ

exp(−(K+N)), we have

‖A(uv∗)‖2 ≤
(

4

3
‖u‖2 + 2‖u‖‖Bu‖∞

√
2(K +N) logL+ 8‖Bu‖2

∞(K +N) logL

)
‖v‖2,

uniformly for any u and v, provided L ≥ Cγ(K +N) logL.
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Proof: Due to the homogeneity, without loss of generality we can assume ‖u‖ = ‖v‖ = 1.
Define

f(u,v) := ‖A(uv∗)‖2 − 2‖Bu‖∞
√

2(K +N) logL− 8‖Bu‖2
∞(K +N) logL.

It suffices to prove that f(u,v) ≤ 4
3

uniformly for all (u,v) ∈ SK−1 × SN−1 with high
probability, where SK−1 is the unit sphere in CK . For fixed (u,v) ∈ SK−1 × SN−1, notice
that

‖A(uv∗)‖2 =
L∑
l=1

|b∗lu|2|a∗l v|2

is the sum of subexponential variables with expectation E‖A(uv∗)‖2 =
L∑
l=1

|b∗lu|2 = 1. For

any generalized χ2
n variable Y ∼

∑n
i=1 ciξ

2
i satisfies

P(Y − E(Y ) ≥ t) ≤ exp

(
− t2

8‖c‖2
2

)
∨ exp

(
− t

8‖c‖∞

)
, (5.17)

where {ξi} are i.i.d. χ2
1 random variables and c = (c1, · · · , cn)T ∈ Rn. Here we set |a∗l v|2 =

1
2
ξ2

2l−1 + 1
2
ξ2

2l, c2l−1 = c2l =
|b∗l u|

2

2
and n = 2L. Therefore,

‖c‖∞ =
‖Bu‖2

∞
2

, ‖c‖2
2 =

1

2

L∑
l=1

|b∗lu|4 ≤
‖Bu‖2

∞
2

and we have

P(‖A(uv∗)‖2 ≥ 1 + t) ≤ exp

(
− t2

4‖Bu‖2
∞

)
∨ exp

(
− t

4‖Bu‖2
∞

)
.

Applying (5.17) and setting

t = g(u) := 2‖Bu‖∞
√

2(K +N) logL+ 8‖Bu‖2
∞(K +N) logL,

there holds
P
(
‖A(uv∗)‖2 ≥ 1 + g(u)

)
≤ exp (−2(K +N)(logL)) .

That is, f(u,v) ≤ 1 with probability at least 1− exp (−2(K +N)(logL)). We define K and
N as ε0-nets of SK−1 and SN−1, respectively. Then, |K| ≤ (1 + 2

ε0
)2K and |N | ≤ (1 + 2

ε0
)2N

follow from the covering numbers of the sphere (Lemma 5.2 in [39]).
By taking the union bounds over K × N , we have f(u,v) ≤ 1 holds uniformly for all

(u,v) ∈ K ×N with probability at least

1−
(

1 +
2

ε0

)2(K+N)

e−2(K+N) logL = 1− exp

(
−2(K +N)

(
logL− log

(
1 +

2

ε0

)))
.
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Our goal is to show that f(u,v) ≤ 4
3

uniformly for all (u,v) ∈ SK−1 × SN−1 with the same
probability. For any (u,v) ∈ SK−1×SN−1, we can find its closest (u0,v0) ∈ K×N satisfying
‖u − u0‖ ≤ ε0 and ‖v − v0‖ ≤ ε0. By Lemma 5.11, with probability at least 1 − L−γ, we
have ‖A‖ ≤

√
(N + γ) logL. Then straightforward calculation gives

|f(u,v)− f(u0,v)| ≤ ‖A((u− u0)v∗)‖‖A((u + u0)v∗)‖
+2‖B(u− u0)‖∞

√
2(K +N) logL

+8(K +N)(logL)‖B(u− u0)‖∞(‖Bu‖∞ + ‖Bu0‖∞)

≤ 2‖A‖2ε0 + 2
√

2(K +N) logLε0 + 16(K +N)(logL)ε0

≤ (21N + 19K + 2γ)(logL)ε0

where the first inequality is due to ||z1|2 − |z2|2| ≤ |z1 − z2||z1 + z2| for any z1, z2 ∈ C, and
the second inequality is due to ‖Bz‖∞ ≤ ‖Bz‖ = ‖z‖ for any z ∈ CK . Similarly,

|f(u0,v)− f(u0,v0)| = ‖A(u0(v + v0)∗)‖‖A(u0(v − v0)∗)‖
≤ 2‖A‖2ε0 ≤ 2(N + γ)(logL)ε0.

Therefore, if ε0 = 1
70(N+K+γ) logL

, there holds

|f(u0,v)− f(u0,v0)| ≤ 1

3
.

Therefore, if L ≥ Cγ(K + N) logL with Cγ reasonably large and γ ≥ 1, we have logL −
log
(

1 + 2
ε0

)
≥ 1

2
(1 + log(γ)) and f(u,v) ≤ 4

3
uniformly for all (u,v) ∈ SK−1 × SN−1 with

probability at least 1− L−γ − 1
γ

exp(−(K +N)).

Finally, we introduce a local RIP property of A conditioned on the event E1 ∩E2, where
E1 and E2 are defined in Lemma 5.12 and Lemma 5.13

Lemma 5.14. Over Nd0 ∩ Nµ ∩ Nε with µ ≥ µh and ε ≤ 1
15

, the following RIP type of
property holds for A:

3

4
‖hx∗ − h0x

∗
0‖2
F ≤ ‖A(hx∗ − h0x

∗
0)‖2 ≤ 5

4
‖hx∗ − h0x

∗
0‖2
F

provided L ≥ Cµ2(K+N) log2 L for some numerical constant C and conditioned on E1

⋂
E2.

Proof: Let δ :=
‖hx∗−h0x∗0‖F

d0
≤ ε ≤ 1

15
, and

hx∗ − h0x
∗
0 := U + V .

where
U = (α1α2 − 1)h0x

∗
0 + α2h̃x

∗
0 + α1h0x̃

∗ ∈ T, V = h̃x̃∗ ∈ T⊥. (5.18)
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By Lemma 5.9, we have ‖V ‖F ≤ δ2

2(1−δ)d0 and hence(
δ − δ2

2(1− δ)

)
d0 ≤ ‖U‖F ≤

(
δ +

δ2

2(1− δ)

)
d0.

Since U ∈ T , by Lemma 5.12, we have√
9

10

(
δ − δ2

2(1− δ)

)
d0 ≤ ‖A(U )‖ ≤

√
11

10

(
δ +

δ2

2(1− δ)

)
d0. (5.19)

By Lemma 5.13, we have

‖A(V )‖2 ≤
(

4

3
‖h̃‖2

2 + 2‖h̃‖‖Bh̃‖∞
√

2(K +N) logL+ 8‖Bh̃‖2
∞(K +N)(logL)

)
‖x̃‖2.

(5.20)
By Lemma 5.9, we have ‖h̃‖‖x̃‖ ≤ δ2

2(1−δ)d0, ‖x̃‖ ≤ δ
1−δ‖x‖ ≤

2δ
1−δ
√
d0, ‖h̃‖ ≤ δ

1−δ‖h‖ ≤
2δ

1−δ
√
d0, and

√
L‖Bh̃‖∞ ≤ 6µ

√
d0. By substituting all those estimations into (5.20), it ends

up with

‖A(V )‖2 ≤ δ4

3(1− δ)2
d2

0 + C ′
(

δ3

√
C logL

+
δ2

C logL

)
d2

0, (5.21)

where C ′ is a numerical constant and L ≥ Cµ2(K +N) log2 L. Combining (5.21) and (5.19)
together with C sufficiently large, numerical computation gives

3

4
δd0 ≤ ‖A(U)‖ − ‖A(V )‖ ≤ ‖A(U + V )‖ ≤ ‖A(U )‖+ ‖A(V )‖ ≤ 5

4
δd0.

for all (h,x) ∈ Nd0 ∩Nµ ∩Nε given ε ≤ 1
15

.

5.3 Local regularity

In this subsection, we will prove Condition 5.3. Throughout this section, we assume E1

and E2 holds where E1 and E2 are mentioned in Lemma 5.12 and Lemma 5.13. For all
(h,x) ∈ Nd0 ∩Nε, consider α1, α2, h̃ and x̃ defined in (5.13) and let

∆h = h− αh0, ∆x = x− α−1x0.

where

α(h,x) =

{
(1− δ0)α1, if ‖h‖2 ≥ ‖x‖2

1
(1−δ0)α2

, if ‖h‖2 < ‖x‖2

with δ0 := δ
10

. The particular form of α(h,x) serves primarily for proving the local regular-
ity condition of G(h,x), which will be evident in Lemma 5.17. The following lemma gives
bounds of ∆x and ∆h.
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Lemma 5.15. For all (h,x) ∈ Nd0∩Nε with ε ≤ 1
15

, there holds ‖∆h‖2
2 ≤ 6.1δ2d0, ‖∆x‖2

2 ≤
6.1δ2d0, and ‖∆h‖2

2‖∆x‖2
2 ≤ 8.4δ4d2

0. Moreover, if we assume (h,x) ∈ Nµ additionally, we
have

√
L‖B(∆h)‖∞ ≤ 6µ

√
d0.

Proof: We first prove that ‖∆h‖2
2 ≤ 6.1δ2d0, ‖∆x‖2

2 ≤ 6.1δ2d0, and ‖∆h‖2
2‖∆x‖2

2 ≤
8.4δ4d2

0:
Case 1: ‖h‖2 ≥ ‖x‖2 and α = (1− δ0)α1. In this case, we have

∆h = h̃ + δ0α1h0, ∆x = x− 1

(1− δ0)α1

x0 =

(
α2 −

1

(1− δ0)α1

)
x0 + x̃.

First, notice that ‖h‖2
2 ≤ 4d0 and ‖α1h0‖2

2 ≤ ‖h‖2
2. By Lemma 5.9, we have

‖∆h‖2
2 = ‖h̃‖2

2 + δ2
0‖α1h0‖2

2 ≤

((
δ

1− δ

)2

+ δ2
0

)
‖h‖2

2 ≤ 4.7δ2d0. (5.22)

Secondly, we estimate ‖∆x‖. Note that ‖h‖2‖x‖2 ≤ (1 + δ)d0. By ‖h‖2 ≥ ‖x‖2, we have
‖x‖2 ≤

√
(1 + δ)d0. By |α2|‖x0‖2 ≤ ‖x‖2, we get |α2| ≤

√
1 + δ. By Lemma 5.9, we have

|α1α2 − 1| = |α1α2 − 1| ≤ δ, so∣∣∣∣α2 −
1

(1− δ0)α1

∣∣∣∣ = |α2|
∣∣∣∣(1− δ0)(α1α2 − 1)− δ0

(1− δ0)α1α2

∣∣∣∣ ≤ δ
√

1 + δ

1− δ
+

√
1 + δδ0

(1− δ0)(1− δ)
≤ 1.22δ

where |α1α2| ≤ 1
1−δ . Moreover, by Lemma 5.9, we have ‖x̃‖2 ≤ δ

1−δ‖x‖2 ≤ 2δ
1−δ
√
d0. Then

we have

‖∆x‖2
2 =

∣∣∣∣α2 −
1

(1− δ0)α1

∣∣∣∣2 d0 + ‖x̃‖2
2 ≤

(
1.222 +

4

(1− δ)2

)
δ2d0 ≤ 6.1δ2d0. (5.23)

Finally, Lemma 5.9 gives ‖h̃‖2‖x̃‖2 ≤ δ2

2(1−δ)d0 and |α1| ≤ 2. Combining (5.22) and (5.23),
we have

‖∆h‖2
2‖∆x‖2

2 ≤ ‖h̃‖2
2‖x̃‖2

2 + δ2
0|α1|2‖h0‖2

2‖∆x‖2
2 +

∣∣∣∣α2 −
1

(1− δ0)α1

∣∣∣∣2 ‖x0‖2
2‖∆h‖2

2

≤
(

δ4

4(1− δ)2
d2

0 + δ2
0(4d0)(6.1δ2d0) + (1.22δ)2d0(4.7δ2d0)

)
≤ 8.4δ4d2

0.

where ‖x̃‖ ≤ ‖∆x‖.
Case 2: ‖h‖2 < ‖x‖2 and α = 1

(1−δ0)α2
. In this case, we have

∆h =

(
α1 −

1

(1− δ0)α2

)
h0 + h̃, ∆x = x̃ + δ0α2x0.

By the symmetry of Nd0 ∩Nε, we can prove |α1| ≤
√

1 + δ,∣∣∣∣α1 −
1

(1− δ0)α2

∣∣∣∣ ≤ δ
√

1 + δ

1− δ
+

√
1 + δδ0

(1− δ0)(1− δ)
≤ 1.22δ.
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Moreover, we can prove ‖∆h‖2
2 ≤ 6.1δ2d0, ‖∆x‖2

2 ≤ 4.7δ2d0 and ‖∆h‖2
2‖∆x‖2

2 ≤ 8.4δ4d2.

Next, under the additional assumption (h,x) ∈ Nµ, we now prove
√
L‖B(∆h)‖∞ ≤ 6µ

√
d0:

Case 1: ‖h‖2 ≥ ‖x‖2 and α = (1− δ0)α1. By Lemma 5.9 gives |α1| ≤ 2, which implies
√
L‖B(∆h)‖∞ ≤

√
L‖Bh‖∞ + (1− δ0)|α1|

√
L‖Bh0‖∞

≤ 4µ
√
d0 + 2(1− δ0)µh

√
d0 ≤ 6µ

√
d0.

Case 2: ‖h‖2 < ‖x‖2 and α = 1
(1−δ0)α2

. Notice that in this case we have |α1| ≤
√

1 + δ, so
1

|(1−δ0)α2| = |α1|
|(1−δ0)α2α1| ≤

√
1+δ

|1−δ0||1−δ| . Therefore

√
L‖B(∆h)‖∞ ≤

√
L‖B(h)‖∞ +

1

(1− δ0)|α2|
√
L‖B(h0)‖∞

≤ 4µ
√
d0 +

√
1 + δ

|1− δ0||1− δ|
µh
√
d0 ≤ 5.2µ

√
d0.

Lemma 5.16. For any (h,x) ∈ Nd0 ∩ Nµ ∩ Nε with ε ≤ 1
15

, the following inequality holds
uniformly:

Re (〈∇Fh,∆h〉+ 〈∇Fx,∆x〉) ≥ δ2d2
0

8
− 2δd0‖A∗(e)‖,

provided L ≥ Cµ2(K +N) log2 L for some numerical constant C.

Proof: In this section, define U and V as

U = αh0∆x∗ + α−1∆hx∗0 ∈ T, V = ∆h∆x∗, (5.24)

which gives
hx∗ − h0x

∗
0 = U + V .

Notice that generally V ∈ T⊥ does not hold. Recall that

∇Fh = A∗(A(hx∗ − h0x
∗
0)− e)x, ∇Fx = [A∗(A(hx∗ − h0x

∗
0)− e)]∗h.

Define I0 := 〈∇hF,∆h〉 + 〈∇xF,∆x〉 and we have Re(I0) = Re (〈∇hF,∆h〉+ 〈∇xF,∆x〉).
Since

I0 = 〈A∗(A(hx∗ − h0x
∗
0)− e),∆hx∗ + h∆x∗〉

= 〈A(hx∗ − h0x
∗
0)− e,A(hx∗ − h0x

∗
0 + ∆h∆x∗)〉

= 〈A(U + V ),A(U + 2V )〉 − 〈A∗(e),U + 2V 〉 := I01 + I02

where ∆hx∗ + h∆x∗ = hx∗ − h0x
∗
0 + ∆h∆x∗. By the Cauchy-Schwarz inequality, Re(I01)

has the lower bound

Re(I01) ≥ ‖A(U)‖2 − 3‖A(U)‖‖A(V )‖+ 2‖A(V )‖2

≥ (‖A(U)‖ − ‖A(V )‖)(‖A(U )‖ − 2‖A(V )‖). (5.25)
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In the following, we will give an upper bound for ‖A(V )‖ and a lower bound for ‖A(U)‖.
Upper bound for ‖A(V )‖: By Lemma 5.15 and Lemma 5.13, we have

‖A(V )‖2 ≤
(

4

3
‖∆h‖2 + 2‖∆h‖‖B∆h‖∞

√
2(K +N) logL+ 8‖B∆h‖2

∞(K +N)(logL)

)
‖∆x‖2

≤

(
11.2δ2 + C0

(
δµ

√
1

L
(K +N)(logL) +

1

L
µ2(K +N)(logL)

))
δ2d2

0

≤
(

11.2δ2 + C0

(
δ√

C logL
+

1

C logL

))
δ2d2

0

for some numerical constant C0. Then by δ ≤ ε ≤ 1
15

and letting L ≥ Cµ2(K + N) log2 L
for a sufficiently large numerical constant C, there holds

‖A(V )‖2 <
δ2d2

0

16
=⇒ ‖A(V )‖ ≤ δd0

4
. (5.26)

Lower bound for ‖A(U )‖: By Lemma 5.15, we have

‖V ‖F = ‖∆h‖2‖∆x‖2 ≤ 2.9δ2d0,

and therefore

‖U‖F ≥ d0δ − 2.9δ2d0 ≥
4

5
d0δ.

if ε ≤ 1
15

. Since U ∈ T , by Lemma 5.12, there holds

‖A(U)‖ ≥
√

9

10
‖U‖F ≥

3

4
d0δ. (5.27)

With the upper bound of A(V ) in (5.26), the lower bound of A(U) in (5.27), and (5.25),
we finally arrive at

Re(I01) ≥ δ2d2
0

8
.

Now let us give a lower bound for Re(I02),

Re(I02) ≥ −‖A∗(e)‖‖U + 2V ‖∗ ≥ −
√

2‖A∗(e)‖‖U + 2V ‖F ≥ −2δd0‖A∗(e)‖

where ‖ · ‖ and ‖ · ‖∗ are a pair of dual norms and

‖U + 2V ‖F ≤ ‖U + V ‖F + ‖V ‖F ≤ δd0 + 2.9δ2d0 ≤ 1.2δd0

if δ ≤ ε ≤ 1
15
. Combining the estimation of Re(I01) and Re(I02) above leads to

Re(〈∇Fh,∆h〉+ 〈∇Fx,∆x〉 ≥ δ2d2
0

8
− 2δd0‖A∗(e)‖

as we desired.
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Lemma 5.17. For any (h,x) ∈ Nd0
⋂
Nε with ε ≤ 1

15
and 9

10
d0 ≤ d ≤ 11

10
d0, the following

inequality holds uniformly

Re (〈∇Gh,∆h〉+ 〈∇Gx,∆x〉) ≥ δ

5

√
ρG(h,x), (5.28)

where ρ ≥ d2 + 2‖e‖2.

Proof: Recall that G′0(z) = 2 max{z − 1, 0} = 2
√
G0(z). Using the Wirtinger derivative

of G in (3.10) and (3.11), we have

〈∇Gh,∆h〉+ 〈∇Gx,∆x〉 :=
ρ

2d
(H1 +H2 +H3) ,

where

H1 = G′0

(
‖h‖2

2d

)
〈h,∆h〉 , H2 = G′0

(
‖x‖2

2d

)
〈x,∆x〉 , (5.29)

and

H3 =
L

4µ2

L∑
l=1

G′0

(
L|b∗lh|2

8dµ2

)
〈blb∗lh,∆h〉 .

We will give lower bounds for H1, H2 and H3 for two cases.

Case 1 ‖h‖2 ≥ ‖x‖2 and α = (1− δ0)α1.

Lower bound of H1: Notice that

∆h = h− αh0 = h− (1− δ0)α1h0 = h− (1− δ0)(h− h̃) = δ0h + (1− δ0)h̃.

We have 〈h,∆h〉 = δ0‖h‖2
2 + (1 − δ0)

〈
h, h̃

〉
= δ0‖h‖2

2 + (1 − δ0)‖h̃‖2
2 ≥ δ0‖h‖2

2, which

implies that H1 ≥ G′0

(
‖h‖2

2d

)
δ
10
‖h‖2

2. We claim that

H1 ≥
δd

5
G′0

(
‖h‖2

2d

)
. (5.30)

In fact, if ‖h‖2
2 ≤ 2d, we get H1 = 0 = δd

5
G′0

(
‖h‖2

2d

)
; If ‖h‖2

2 > 2d, we get (5.30) straightfor-

wardly.

Lower bound of H2: The assumption ‖h‖2 ≥ ‖x‖2 gives

‖x‖2
2 ≤ ‖x‖2‖h‖2 ≤ (1 + δ)d0 ≤ 1.1(1 + δ)d0 < 2d,

which implies that

H2 = G′0

(
‖x‖2

2d

)
〈x,∆x〉 = 0 =

δd

5
G′0

(
‖x‖2

2d

)
.
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Lower bound of H3: When L|b∗lh|2 ≤ 8dµ2,

L

4µ2
G′0

(
L|b∗lh|2

8dµ2

)
〈blb∗lh,∆h〉 = 0 =

d

2
G′0

(
L|b∗lh|2

8dµ2

)
.

When L|b∗lh|2 > 8dµ2, by Lemma 5.9, there holds |α1| ≤ 2. Then by µh ≤ µ, we have

Re(〈blb∗lh,∆h〉) = Re(|b∗lh|2 − α 〈b∗lh, b∗lh0〉)
≥ |b∗lh|(|b∗lh| − (1− δ0)|α1||b∗lh0|)
≥ |b∗lh|(|b∗lh| − 2µ

√
d0/L)

≥
√

8dµ2

L

(√
8dµ2

L
− 2µ

√
10d

9L

)
≥ 2dµ2

L
,

where (1− δ0)|α1||b∗lh0| ≤ 2µh
√
d0√

L
≤ 2µ

√
10d√

9L
. This implies that

L

4µ2
G′0

(
L|b∗lh|2

8dµ2

)
Re(〈blb∗lh,∆h〉) ≥ d

2
G′0

(
L|b∗lh|2

8dµ2

)
.

So we always have

Re(H3) ≥
L∑
l=1

d

2
G′0

(
L|b∗lh|2

8dµ2

)
.

Case 2: ‖h‖2 < ‖x‖2 and α = 1
(1−δ0)α2

.

Lower bound of H1: The assumption ‖h‖2 < ‖x‖2 gives

‖h‖2
2 ≤ ‖x‖2‖h‖2 ≤ (1 + δ)d0 < 2d,

which implies that

H1 = G′0

(
‖h‖2

2d

)
〈h,∆h〉 = 0 =

δd

5
G′0

(
‖h‖2

2d

)
.

Lower bound of H2: Notice that

∆x = x− α−1x0 = x− (1− δ0)α2x0 = x− (1− δ0)(x− x̃) = δ0x + (1− δ0)x̃.

We have 〈x,∆x〉 = δ0‖x‖2
2 +(1−δ0) 〈x, x̃〉 = δ0‖x‖2

2 +(1−δ0)‖x̃‖2
2 ≥ δ0‖x‖2

2, which implies

that H2 ≥ G′0

(
‖x‖2

2d

)
δ
10
‖x‖2

2. We claim that

H2 ≥
δd

5
G′0

(
‖x‖2

2d

)
. (5.31)

In fact, if ‖x‖2
2 ≤ 2d, we get H2 = 0 = δd

5
G′0

(
‖x‖2

2d

)
; If ‖x‖2

2 > 2d, we get (5.31) straightfor-

wardly.
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Lower bound of H3: When L|b∗lh|2 ≤ 8dµ2,

L

4µ2
G′0

(
L|b∗lh|2

8dµ2

)
〈blb∗lh,∆h〉 = 0 =

d

4
G′0

(
L|b∗lh|2

8dµ2

)
.

When L|b∗lh|2 > 8dµ2, by Lemma 5.9, there hold |α1α2− 1| ≤ δ and |α1| ≤ 2, which implies
that

1

(1− δ0)|α2|
=

|α1|
(1− δ0)|α1α2|

≤ 2

(1− δ0)(1− δ)
.

By µh ≤ µ and δ ≤ ε ≤ 1
15

, similarly we have

Re(〈blb∗lh,∆h〉) ≥ |b∗lh|
(
|b∗lh| −

2

(1− δ0)(1− δ)
|b∗lh0|

)
≥

(
8− 4

√
20

9

1

(1− δ0)(1− δ)

)
dµ2

L
>
dµ2

L
.

This implies that for 1 ≤ l ≤ L,

L

4µ2
G′0

(
L|b∗lh|2

8dµ2

)
Re 〈blb∗lh,∆h〉 ≥ d

4
G′0

(
L|b∗lh|2

8dµ2

)
.

So we always have

Re(H3) ≥
L∑
l=1

d

4
G′0

(
L|b∗lh|2

8dµ2

)
.

To sum up the two cases, we have

Re(H1 +H2 +H3) ≥ δd

5
G′0

(
‖h‖2

2d

)
+
δd

5
G′0

(
‖x‖2

2d

)
+

L∑
l=1

d

4
G′0

(
L|b∗lh|2

8dµ2

)

≥ 2δd

5

(√
G0

(
‖h‖2

2d

)
+

√
G0

(
‖x‖2

2d

)
+

L∑
l=1

√
G0

(
L|b∗lh|2

8dµ2

))

≥ 2δd

5


√√√√G0

(
‖h‖2

2d

)
+G0

(
‖x‖2

2d

)
+

L∑
l=1

G0

(
L|b∗lh|2

8dµ2

)
where G′0(z) = 2

√
G0(z) and it implies (5.28).

Lemma 5.18. Let F̃ be as defined in (3.5), then there exists a positive constant ω such that

‖∇F̃ (h,x)‖2 ≥ ω
[
F̃ (h,x)− c

]
+

with c = ‖e‖2 + 1700‖A∗(e)‖2 and ω = d0
5000

for all (h,x) ∈ Nd0 ∩ Nµ ∩ Nε. Here we set
ρ ≥ d2 + 2‖e‖2.
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Proof: Following from Lemma 5.16 and Lemma 5.17, we have

Re(〈∇Fh,∆h〉+ 〈∇Fx,∆x〉) ≥ δ2d2
0

8
− 2δd0‖A∗(e)‖

Re(〈∇Gh,∆h〉+ 〈∇Gx,∆x〉) ≥ δd

5

√
G(h,x) ≥ 9δd0

50

√
G(h,x)

for α = (1 − δ0)α1 or 1
(1−δ)α2

and ∀(h,x) ∈ Nd0 ∩ Nµ ∩ Nε where ρ ≥ d2 + 2‖e‖2 ≥ d2 and
9
10
d0 ≤ d ≤ 11

10
d0. Adding them together gives

δ2d2
0

8
+

9δd0

50

√
G(h,x)− 2δd0‖A∗(e)‖ ≤ Re (〈∇Fh +∇Gh,∆h〉+ 〈∇Fx +∇Gx〉)

≤ ‖∇F̃h‖‖∆h‖+ ‖∇F̃x‖‖∆x‖
≤
√

2‖∇F̃ (h,x)‖max{‖∆h‖, ‖∆x‖}
≤ 3.6δ

√
d0‖∇F̃ (h,x)‖ (5.32)

where both ‖∆h‖ and ‖∆x‖ are bounded by 2.5δ
√
d0 in Lemma 5.15. Note that√

2 [Re(〈A∗(e),hx∗ − h0x∗0〉)]+ ≤
√

2
√

2‖A∗(e)‖δd0 ≤
√

5δd0

4
+

4√
5
‖A∗(e)‖. (5.33)

Dividing both sides of (5.32) by δd0, we obtain

3.6√
d0

‖∇F̃ (h,x)‖ ≥ δd0

12
+

9

50

√
G(h,x) +

δd0

24
− 2‖A∗(e)‖.

The Local RIP condition implies F0(h,x) ≤ 5
4
δ2d2

0 and hence δd0
12
≥ 1

6
√

5

√
F0(h,x), where

F0 is defined in (2.9). Combining the equation above and (5.33),

3.6√
d0

‖∇F̃ (h,x)‖ ≥ 1

6
√

5

[ (√
F0(h,x) +

√
2 [Re(〈A∗(e),hx∗ − h0x∗0〉)]+ +

√
G(h,x)

)
+

√
5δd0

4
−

(√
5δd0

4
+

4√
5
‖A∗(e)‖

)]
− 2‖A∗(e)‖

≥ 1

6
√

5

[√[
F̃ (h,x)− ‖e‖2

]
+
− 29‖A∗(e)‖

]
where F̃ (h,x) − ‖e‖2 ≤ F0(h,x) + 2[Re(〈A∗(e),hx∗ − h0x

∗
0〉)]+ + G(h,x) follows from

definition and (3.19). Finally, we have

‖∇F̃ (h,x)‖2 ≥ d0

2500

[√[
F̃ (h,x)− ‖e‖2

]
+
− 29‖A∗(e)‖

]2

+

for all (h,x) ∈ Nd0 ∩Nµ ∩Nε. For any nonnegative fixed real numbers a and b, we have

[
√

(x− a)+ − b]+ + b ≥
√

(x− a)+
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and it implies

(x− a)+ ≤ 2([
√

(x− a)+ − b]2+ + b2) =⇒ [
√

(x− a)+ − b]2+ ≥
(x− a)+

2
− b2.

Therefore, by setting a = ‖e‖ and b = 30‖A∗(e)‖, there holds

‖∇F̃ (h,x)‖2 ≥ d0

2500

[
F̃ (h,x)− ‖e‖2

2
− 850‖A∗(e)‖2

]
+

≥ d0

5000

[
F̃ (h,x)− (‖e‖2 + 1700‖A∗(e)‖2)

]
+
.

5.4 Local smoothness

Lemma 5.19. For any z := (h,x) and w := (u,v) such that z, z + w ∈ Nε ∩ NF̃ , there
holds

‖∇F̃ (z + w)−∇F̃ (z)‖ ≤ CL‖w‖,

with

CL ≤
√

2d0

[
10‖A‖2 +

ρ

d2

(
5 +

3L

2µ2

)]
where ρ ≥ d2 + 2‖e‖2 and ‖A‖2 ≤

√
N log(NL/2) + γ logL holds with probability at least

1−L−γ from Lemma 5.11. In particular, L = O((µ2+σ2)(K+N) log2 L) and ‖e‖2 = O(σ2d2
0)

follows from ‖e‖2 ∼ σ2d20
2L
χ2

2L and (5.17). Therefore, CL can be simplified into

CL = O(d0(1 + σ2)(K +N) log2 L)

by choosing ρ ≈ d2 + 2‖e‖2.

Proof: By Lemma 5.5, we have z = (h,x), z +w = (h+u,x+v) ∈ Nd0 ∩Nµ. Note that

∇F̃ = (∇F̃h,∇F̃x) = (∇Fh +∇Gh,∇Fx +∇Gx),

where

∇Fh = A∗(A(hx∗ − h0x
∗
0)− e)x, ∇Fx = (A∗(A(hx∗ − h0x

∗
0)− e))∗h, (5.34)

and

∇Gh =
ρ

2d

[
G′0

(
‖h‖2

2d

)
h +

L

4µ2

L∑
l=1

G′0

(
L|b∗lh|2

8dµ2

)
blb
∗
lh

]
, ∇Gx =

ρ

2d
G′0

(
‖x‖2

2d

)
x.
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Step 1: we estimate the upper bound of ‖∇Fh(z + w) − ∇Fh(z)‖. A straightforward
calculation gives

∇Fh(z+w)−∇Fh(z) = A∗A(ux∗+hv∗+uv∗)x+A∗A((h+u)(x+v)∗−h0x
∗
0)v−A∗(e)v.

Note that z, z + w ∈ Nd0 directly implies

‖ux∗ + hv∗ + uv∗‖F ≤ ‖u‖‖x‖+ ‖h + u‖‖v‖ ≤ 2
√
d0(‖u‖+ ‖v‖)

where ‖h + u‖ ≤ 2
√
d0. Moreover, z + w ∈ Nε implies

‖(h + u)(x + v)∗ − h0x
∗
0‖F ≤ εd0.

Combined with ‖A∗(e)‖ ≤ εd0 and ‖x‖ ≤ 2
√
d0, we have

‖∇Fh(z + w)−∇Fh(z)‖ ≤ 4d0‖A‖2(‖u‖+ ‖v‖) + εd0‖A‖2‖v‖+ εd0‖v‖
≤ 5d0‖A‖2(‖u‖+ ‖v‖). (5.35)

Step 2: we estimate the upper bound of ‖∇Fx(z + w)−∇Fx(z)‖. Due to the symmetry
between ∇Fh and ∇Fx, we have,

‖∇Fx(z + w)−∇Fx(z)‖ ≤ 5d0‖A‖2(‖u‖+ ‖v‖). (5.36)

Step 3: we estimate the upper bound of ‖∇Gx(z + w)−∇Gx(z)‖. Notice that G′0(z) =
2 max{z − 1, 0}, which implies that for any z1, z2, z ∈ R, there holds

|G′0(z1)−G′0(z2)| ≤ 2|z1 − z2|, G′(z) ≤ 2|z|, (5.37)

although G′(z) is not differentiable at z = 1. Therefore, by (5.37), it is easy to show that∣∣∣∣G′0(‖x + v‖2

2d

)
−G′0

(
‖x‖2

2d

)∣∣∣∣ ≤ ‖x + v‖+ ‖x‖
d

‖v‖ ≤ 4
√
d0

d
‖v‖

where ‖x + v‖ ≤ 2
√
d0. Therefore, by z, z + w ∈ Nd0 , we have

‖∇Gx(z + w)−∇Gx(z)‖ ≤ ρ

2d

∣∣∣∣G′0(‖x + v‖2

2d

)
−G′0

(
‖x‖2

2d

)∣∣∣∣ ‖x + v‖+
ρ

2d
G′0

(
‖x‖2

2d

)
‖v‖

≤ ρ

2d

(
8d0‖v‖
d

+
2d0‖v‖
d

)
≤ 5d0ρ

d2
‖v‖. (5.38)

Step 4: we estimate the upper bound of ‖∇Gh(z + w)−∇Gh(z)‖. Denote

∇Gh(z + w)−∇Gh(z) =
ρ

2d

[
G′0

(
‖h + u‖2

2d

)
(h + u)−G′0

(
‖h‖2

2d

)
h

]
+

ρL

8dµ2

L∑
l=1

[
G′0

(
L|b∗l (h + u)|2

8dµ2

)
b∗l (h + u)−G′0

(
L|b∗lh|2

8dµ2

)
b∗lh

]
bl

:= j1 + j2.
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Similar to (5.38), we have

‖j1‖ ≤
5d0ρ

d2
‖u‖. (5.39)

Now we control ‖j2‖. Since z, z + w ∈ Nµ, we have∣∣∣∣G′0(L|b∗l (h + u)|2

8dµ2

)
−G′0

(
L|b∗lh|2

8dµ2

)∣∣∣∣ ≤ L

4dµ2
(|b∗l (h + u)|+ |b∗lh|) |b∗lu|

≤ 2
√
d0L

dµ
|b∗lu|. (5.40)

and ∣∣∣∣G′0(L|b∗l (h + u)|2

8dµ2

)∣∣∣∣ ≤ 2
L|b∗l (h + u)|2

8dµ2
≤ 4d0

d
(5.41)

where both maxl |b∗l (h + u)| and maxl |b∗lh| are bounded by 4
√
d0µ√
L

. Let αl be

αl := G′0

(
L|b∗l (h + u)|2

8dµ2

)
b∗l (h + u)−G′0

(
L|b∗lh|2

8dµ2

)
b∗lh

=

(
G′0

(
L|b∗l (h + u)|2

8dµ2

)
−G′0

(
L|b∗lh|2

8dµ2

))
b∗lh +G′0

(
L|b∗l (h + u)|2

8dµ2

)
b∗lu.

Applying (5.40) and (5.41) leads to

|αl| ≤
2
√
d0L

dµ
|b∗lu|

(
4µ

√
d0

L

)
+

4d0

d
|b∗lu| =

12d0

d
|b∗lu|.

Since
∑L

l=1 αlbl = B∗

α1
...
αL

 and ‖B‖ = 1, there holds

∥∥∥∥∥
L∑
l=1

αlbl

∥∥∥∥∥
2

≤
L∑
l=1

|αl|2 ≤
(

12d0

d

)2 L∑
l=1

|b∗lu|2 =

(
12d0

d

)2

‖Bu‖2 ≤
(

12d0

d

)2

‖u‖2.

This implies that

‖j2‖ =
ρL

8dµ2

∥∥∥∥∥
L∑
l=1

αlbl

∥∥∥∥∥ ≤ ρL

8dµ2

12d0

d
‖u‖ =

3ρLd0

2d2µ2
‖u‖. (5.42)

In summary, by combining (5.35), (5.36), (5.38), (5.39), and (5.42), we conclude that

‖∇F̃ (z + w)−∇F̃ (z)‖ ≤ 10d0‖A‖2(‖u‖+ ‖v‖) +
5d0ρ

d2
(‖u‖+ ‖v‖) +

3ρLd0

2µ2d2
‖u‖.

With ‖u‖+ ‖v‖ ≤
√

2‖w‖, there holds

‖∇F̃ (z + w)−∇F̃ (z)‖ ≤
√

2d0

[
10‖A‖2 +

ρ

d2

(
5 +

3L

2µ2

)]
‖w‖.
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5.5 Initialization

This section is devoted to justifying the validity of the Robustness condition and to proving
Theorem 3.1, i.e., establishing the fact that Algorithm 1 constructs an initial guess (u0,v0) ∈

1√
3
Nd0

⋂
1√
3
Nµ
⋂
N 2

5
ε.

Lemma 5.20. For e ∼ N (0,
σ2d20
2L

IL) + iN (0,
σ2d20
2L

IL), there holds

‖A∗(y)− h0x
∗
0‖ ≤ ξd0, (5.43)

with probability at least 1− L−γ if L ≥ Cγ(µ
2
h + σ2) max{K,N} logL/ξ2. Moreover,

‖A∗(e)‖ ≤ ξd0

with probability at least 1 − L−γ if L ≥ Cγ(
σ2

ξ2
+ σ

ξ
) max{K,N} logL. In particular, we fix

ξ = ε
10
√

2
and then Robustness condition 5.2 holds, i.e., ‖A∗(e)‖ ≤ εd0

10
√

2
.

Proof: In this proof, we can assume d0 = 1 and ‖h0‖ = ‖x0‖ = 1, without loss of generality.
First note that E(A∗y) = E(A∗A(h0x

∗
0) +A∗(e)) = h0x

∗
0. We will use the matrix Bernstein

inequality to show that
‖A∗(y)− h0x

∗
0‖ ≤ ξ.

By definition of A and A∗ in (2.6) and (3.7),

A∗(y)− h0x
∗
0 =

L∑
l=1

[blb
∗
lh0x

∗
0(ala

∗
l − IN) + elbla

∗
l ] =

L∑
l=1

Zl,

where Zl := blb
∗
lh0x

∗
0(ala

∗
l − IN) + elbla

∗
l and

∑L
l=1 blb

∗
l = IK . In order to apply Bernstein

inequality (6.5), we need to estimate both the exponential norm ‖Zl‖ψ1 and the variance.

‖Zl‖ψ1 ≤ C‖bl‖|b∗lh0|‖x∗0(ala
∗
l − IN)‖ψ1 + C‖elbla∗l ‖ψ1

≤ C
µh
√
KN

L
+ C

σ
√
KN

L
≤ C

(µh + σ)
√
KN

L
,

for some constant C. Here, (6.8) of Lemma 6.4 gives

‖x∗0(ala
∗
l − IN)‖ψ1 ≤ C

√
N

and

‖elbla∗l ‖ψ1 ≤ C

√
K

L
(|el|‖al‖)ψ1 ≤ C

√
K

L

σ√
L

√
N ≤ Cσ

√
KN

L

follows from (6.10) where both |el| and ‖al‖ are sub-gaussian random variables.
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Now we give an upper bound of σ2
0 := max{‖E

∑L
l=1Z∗l Zl‖, ‖E

∑L
l=1ZlZ∗l ‖}.∥∥∥∥∥E

l∑
l=1

ZlZ∗l

∥∥∥∥∥ =

∥∥∥∥∥
L∑
l=1

|b∗lh0|2blb∗l E ‖(ala∗l − IN)x0‖2 +
L∑
l=1

E(|el|2‖al‖2)blb
∗
l

∥∥∥∥∥
≤ CN

∥∥∥∥∥
L∑
l=1

|b∗lh0|2blb∗l

∥∥∥∥∥
2

+ C
σ2N

L

≤ C
µ2
hN

L
+ C

σ2N

L
≤ C

(µ2
h + σ2)N

L
.

where E ‖(ala∗l − IN)x0‖2 = x∗0 E(ala
∗
l − IN)2x0 = N follows from (6.7) and E(|el|2) = σ2

L
.∥∥∥∥∥E

l∑
l=1

Z∗l Zl

∥∥∥∥∥ ≤
∥∥∥∥∥

L∑
l=1

|b∗lh0|2‖bl‖2 E [(aa∗l − IN)x0x
∗
0(ala

∗
l − IN)]

∥∥∥∥∥
+

∥∥∥∥∥E
L∑
l=1

e2
l ‖bl‖2ala

∗
l

∥∥∥∥∥
≤ C

K

L

∥∥∥∥∥
L∑
l=1

|b∗lh0|2IN

∥∥∥∥∥+ C
σ2K

L2

∥∥∥∥∥
L∑
l=1

E(ala
∗
l )

∥∥∥∥∥ = C
(σ2 + 1)K

L

where we have used the fact that
∑L

l=1 |b∗lh0|2 = ‖h0‖2 = 1. Therefore, we now have the

variance σ2
0 bounded by

(µ2h+σ2) max{K,N}
L

. We apply Bernstein inequality (6.5), and obtain∥∥∥∥∥
L∑
l=1

Zl

∥∥∥∥∥ ≤ C0 max
{√(µ2

h + σ2) max{K,N}(γ + 1) logL

L
,

√
KN(µh + σ)(γ + 1) log2 L

L

}
≤ ξ

with probability at least 1− L−γ if L ≥ Cγ(µ
2
h + σ2) max{K,N} log2 L/ξ2.

Regarding the estimation of ‖A∗(e)‖, the same calculations immediately give

R := max
1≤l≤L

‖elbla∗l ‖ψ1 ≤
√
K

L
max
1≤l≤L

(|el|‖al‖)ψ1 ≤
Cσ
√
KN

L

and

max {‖E [A∗(e)(A∗(e))∗]‖ , ‖E [(A∗(e))∗A∗(e)]‖} ≤ σ2 max{K,N}
L

.

Applying Bernstein inequality (6.5) again, we get

‖A∗(e)‖ ≤ C0σmax
{√(γ + 1) max{K,N} logL

L
,
(γ + 1)

√
KN log2 L

L

}
≤ ξ

with probability at least 1− L−γ if L ≥ Cγ(
σ2

ξ2
+ σ

ξ
) max{K,N} log2 L.
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Lemma 5.20 lays the foundation for the initialization procedure, which says that with
enough measurements, the initialization guess via spectral method can be quite close to the
ground truth. Before moving to the proof of Theorem 3.1, we introduce a property about
the projection onto a closed convex set.

Lemma 5.21 (Theorem 2.8 in [13]). Let Q := {w ∈ CK |
√
L‖Bw‖∞ ≤ 2

√
dµ} be a closed

nonempty convex set. There holds

Re(〈z − PQ(z),w − PQ(z)〉) ≤ 0, ∀w ∈ Q, z ∈ CK

where PQ(z) is the projection of z onto Q.

This is a direct result from Theorem 2.8 in [13], which is also called Kolmogorov criterion.
Now we present the proof of Theorem 3.1.

Proof: [of Theorem 3.1] Without loss of generality, we again set d0 = 1 and by definition,
all h0, x0, ĥ0 and x̂0 are of unit norm. Also we set ξ = ε

10
√

2
. By applying the triangle

inequality to (5.43), it is easy to see that

1− ξ ≤ d ≤ 1 + ξ, |d− 1| ≤ ξ ≤ ε

10
√

2
<

1

10
, (5.44)

which gives 9
10
d0 ≤ d ≤ 11

10
d0. It is easier to get an upper bound for ‖v0‖ here, i.e.,

‖v0‖ =
√
d‖x̂0‖ =

√
d ≤

√
1 + ξ ≤ 2√

3
,

which implies v0 ∈ 1√
3
Nd0 . The estimation of u0 involves Lemma 5.21. In our case, u0 is

the minimizer to the function f(z) = 1
2
‖z −

√
dĥ0‖2 over Q = {z|

√
L‖Bz‖∞ ≤ 2

√
dµ}.

Therefore, u0 is actually the projection of
√
dĥ0 onto Q. Note that u0 ∈ Q implies√

L‖Bu0‖∞ ≤ 2
√
dµ ≤ 4µ√

3
and hence u0 ∈ 1√

3
Nµ. Moreover, u0 yields

‖
√
dĥ0 −w‖2 = ‖

√
dĥ0 − u0‖2 + 2 Re(

〈√
dĥ− u0,u0 −w

〉
) + ‖u0 −w‖2

≥ ‖
√
dĥ0 − u0‖2 + ‖u0 −w‖2 (5.45)

for all w ∈ Q because the cross term is nonnegative due to Lemma 5.21. Let w = 0 ∈ Q
and we get

‖u0‖2 ≤ d ≤ 4

3
.

So far, we have already shown that (u0,v0) ∈ 1√
3
Nd0 and u0 ∈ 1√

3
Nµ. Now we will show

that ‖u0v
∗
0 − h0x

∗
0‖F ≤ 4ξ.

First note that σi(A∗(y)) ≤ ξ for all i ≥ 2, which follows from Weyl’s inequality [29]
for singular values where σi(A∗(y)) denotes the i-th largest singular value of A∗(y). Hence
there holds

‖dĥ0x̂
∗
0 − h0x

∗
0‖ ≤ ‖A∗(y)− dĥ0x̂

∗
0‖+ ‖A∗(y)− h0x

∗
0‖ ≤ 2ξ. (5.46)
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On the other hand,

‖(I − h0h
∗
0)ĥ0‖ = ‖(I − h0h

∗
0)ĥ0x̂

∗
0x̂0ĥ

∗
0‖

= ‖(I − h0h
∗
0)(A∗(y)− dĥ0x̂

∗
0 + ĥ0x̂

∗
0 − h0x

∗
0)x̂0ĥ

∗
0‖

= ‖(I − h0h
∗
0)(A∗(y)− h0x

∗
0)x̂0ĥ

∗
0‖ ≤ ξ

where the second equation follows from (I −h0h
∗
0)h0x

∗
0 = 0 and (A∗(y)− dĥ0x̂

∗
0)x̂0ĥ

∗
0 = 0.

Therefore, we have

‖ĥ0 − h∗0ĥ0h0‖ ≤ ξ, ‖
√
dĥ0 − α0h0‖ ≤

√
dξ, (5.47)

where α0 =
√
dh∗0ĥ0. If we substitute w by α0h0 ∈ Q into (5.45),

‖
√
dĥ0 − α0h0‖ ≥ ‖u0 − α0h0‖. (5.48)

where α0h0 ∈ Q follows from
√
L|α0|‖Bh0‖∞ ≤ |α0|µh ≤

√
dµh ≤

√
dµ <

√
2dµ. Com-

bining (5.47) and (5.48) leads to ‖u0 − α0h0‖ ≤
√
dξ. Now we are ready to estimate

‖u0v
∗
0 − h0x

∗
0‖F as follows,

‖u0v
∗
0 − h0x

∗
0‖F ≤ ‖u0v

∗
0 − α0h0v

∗
0‖F + ‖α0h0v

∗
0 − h0x

∗
0‖F

≤ ‖u0 − α0h0‖‖v0‖+ ‖dh0h
∗
0ĥ0x̂

∗
0 − h0x

∗
0‖F

≤ ξ
√
d‖v0‖+ ‖dĥ0x̂

∗
0 − h0x

∗
0‖F

≤ ξd+ 2
√

2ξ ≤ ξ(1 + ξ) + 2
√

2ξ

≤ 4ξ ≤ 2

5
ε,

where ‖v0‖ =
√
d, v0 =

√
dx̂0 and ‖dĥ0x̂

∗
0 − h0x

∗
0‖F ≤

√
2‖dĥ0x̂

∗
0 − h0x

∗
0‖ ≤ 2

√
2ξ follows

from (5.46).

6 Appendix

6.1 Descent Lemma

Lemma 6.1. If f(z, z̄) is a continuously differentiable real-valued function with two complex
variables z and z̄, (for simplicity, we just denote f(z, z̄) by f(z) and keep in the mind that
f(z) only assumes real values) for z := (h,x) ∈ Nε ∩ NF̃ . Suppose that there exists a
constant CL such that

‖∇f(z + t∆z)−∇f(z)‖ ≤ CLt‖∆z‖, ∀0 ≤ t ≤ 1,

for all z ∈ Nε ∩NF̃ and ∆z such that z + t∆z ∈ Nε ∩NF̃ and 0 ≤ t ≤ 1. Then

f(z + ∆z) ≤ f(z) + 2 Re((∆z)T∇f(z)) + CL‖∆z‖2

where ∇f(z) := ∂f(z,z̄)
∂z

is the complex conjugate of ∇f(z) = ∂f(z,z̄)
∂z̄

.
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Proof: The proof simply follows from proof of descent lemma (Proposition A.24 in [2]).
However it is slightly different since we are dealing with complex variables. Denote g(t) :=
f(z + t∆z). Since f(z, z̄) is a continuously differentiable function, we apply the chain rule

dg(t)

dt
= (∆z)T

∂f

∂z
(z + t∆z) + (∆z̄)T

∂f

∂z̄
(z + t∆z) = 2 Re((∆z)T∇f(z + t∆z)). (6.1)

Then by the Fundamental Theorem of Calculus,

f(z + t∆z)− f(z) =

ˆ 1

0

dg(t)

dt
dt = 2

ˆ 1

0

Re((∆z)T∇f(z + t∆z))dt

≤ 2 Re((∆z)T∇f(z0)) + 2

ˆ 1

0

Re((∆z)T (∇f(z + t∆z)−∇f(z)))dt

≤ 2 Re((∆z)T∇f(z)) + 2‖∆z‖
ˆ 1

0

‖∇f(z + t∆z)−∇f(z))‖dt

≤ 2 Re((∆z)T∇f(z)) + CL‖∆z‖2.

6.2 Some useful facts

The key concentration inequality we use throughout our paper comes from Proposition 2
in [18, 19].

Theorem 6.2. Consider a finite sequence of Zl of independent centered random matrices
with dimension M1 ×M2. Assume that ‖Zl‖ψ1 ≤ R where the norm ‖ · ‖ψ1 of a matrix is
defined as

‖Z‖ψ1 := inf
u≥0
{E[exp(‖Z‖/u)] ≤ 2}. (6.2)

and introduce the random matrix

S =
L∑
l=1

Zl. (6.3)

Compute the variance parameter

σ2
0 := max{‖E(SS∗)‖, ‖E(S∗S)‖} = max

{
‖

L∑
l=1

E(ZlZ∗l )‖, ‖
L∑
l=1

E(Z∗l Zl)‖
}
, (6.4)

then for all t ≥ 0, we have the tail bound on the operator norm of S,

‖S‖ ≤ C0 max{σ0

√
t+ log(M1 +M2), R log

(√
LR

σ0

)
(t+ log(M1 +M2))} (6.5)

with probability at least 1− e−t where C0 is an absolute constant.
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For convenience we also collect some results used throughout the proofs.

Lemma 6.3. Let z be a random variable which obeys Pr{|z| > u} ≤ ae−bu, then

‖z‖ψ1 ≤ (1 + a)/b.

which is proven in Lemma 2.2.1 in [38]. Moreover, it is easy to verify that for a scalar λ ∈ C

‖λz‖ψ1 = |λ|‖z‖ψ1 .

Lemma 6.4 ( Lemma 10-13 in [1], Lemma 12.4 in [26]). Let u ∈ Cn ∼ N (0, 1
2
In) +

iN (0, 1
2
In), then ‖u‖2 ∼ 1

2
χ2

2n and

‖‖u‖2‖ψ1 = ‖ 〈u,u〉 ‖ψ1 ≤ Cn (6.6)

and
E
[
(uu∗ − In)2

]
= nIn. (6.7)

Let q ∈ Cn be any deterministic vector, then the following properties hold

‖(uu∗ − I)q‖ψ1 ≤ C
√
n‖q‖, (6.8)

E [(uu∗ − I)qq∗(uu∗ − I)] = ‖q‖2In. (6.9)

Let v ∼ N (0, 1
2
Im) + iN (0, 1

2
Im) be a complex Gaussian random vector in Cm, independent

of u, then
‖‖u‖ · ‖v‖‖ψ1

≤ C
√
mn. (6.10)
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