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Abstract

We study the question of extracting a sequence of functions {fi, gi}si=1 from observing
only the sum of their convolutions, i.e., from y =

∑s
i=1 fi ∗ gi. While convex optimization

techniques are able to solve this joint blind deconvolution-demixing problem provably and
robustly under certain conditions, for medium-size or large-size problems we need computa-
tionally faster methods without sacrificing the benefits of mathematical rigor that come with
convex methods. In this paper we present a non-convex algorithm which guarantees exact
recovery under conditions that are competitive with convex optimization methods, with the
additional advantage of being computationally much more efficient. Our two-step algorithm
converges to the global minimum linearly and is also robust in the presence of additive
noise. While the derived performance bounds are suboptimal in terms of the information-
theoretic limit, numerical simulations show remarkable performance even if the number of
measurements is close to the number of degrees of freedom. We discuss an application of the
proposed framework in wireless communications in connection with the Internet-of-Things.

1 Introduction

Blind deconvolution is the task of estimating two unknown functions from their convolution.
While it is a highly ill-posed bilinear inverse problem, blind deconvolution is also an extremely
important problem in signal processing [1], communications engineering [32], imaging process-
ing [5], audio processing [21], etc. In this paper, we deal with an even more difficult and more
general variation of the blind deconvolution problem, in which we have to extract multiple con-
volved signals mixed together in one observation signal. This joint blind deconvolution-demixing
problem arises in a range of applications such as acoustics [21], dictionary learning [2], and wire-
less communications [32].

We briefly discuss one such application in more detail. Blind deconvolution/demixing prob-
lems are expected to play a vital role in the future Internet-of-Things. The Internet-of-Things
will connect billions of wireless devices, which is far more than the current wireless systems can
technically and economically accommodate. One of the many challenges in the design of the
Internet-of-Things will be its ability to manage the massive number of sporadic traffic gener-
ating devices which are most of the time inactive, but regularly access the network for minor
updates with no human interaction [36]. This means among others that the overhead caused by
the exchange of certain types of information between transmitter and receiver, such as channel
estimation, assignment of data slots, etc, has to be avoided as much as possible.

Focusing on the underlying mathematical challenges, we consider a multi-user communica-
tion scenario where many different users/devices communicate with a common base station, as
illustrated in Figure 1. Suppose we have s users and each of them sends a signal gi through an
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unknown channel (which differs from user to user) to a common base station,. We assume that
the i-th channel, represented by its impulse response fi, does not change during the transmis-
sion of the signal gi. Therefore fi acts as convolution operator, i.e., the signal transmitted by
the i-th user arriving at the base station becomes fi ∗ gi, where “∗” denotes convolution. The
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Figure 1: Single-antenna multi-user communication scenario without explicit channel estima-
tion: Each of the s users sends a signal gi through an unknown channel fi to a common base sta-
tion. The base station measures the superposition of all those signals, namely, y =

∑s
i=1 fi ∗ gi

(plus noise). The goal is to extract all pairs of {(fi, gi)}si=1 simultaneously from y.

antenna at the base station, instead of receiving each individual component fi ∗ gi, is only able
to record the superposition of all those signals, namely,

y =

s∑
i=1

fi ∗ gi + n, (1.1)

where n represents noise. We aim to develop a fast algorithm to simultaneously extract all pairs
{(fi, gi)}si=1 from y (i.e., estimating the channel/impulse responses fi and the signals gi jointly)
in a numerically efficient and robust way, while keeping the number of required measurements
as small as possible.

1.1 State of the art and contributions of this paper

A thorough theoretical analysis concerning the solvability of demixing problems via convex
optimization can be found in [23]. There, the authors derive explicit sharp bounds and phase
transitions regarding the number of measurements required to successfully demix structured
signals (such as sparse signals or low-rank matrices) from a single measurement vector. In
principle we could recast the blind deconvolution/demixing problem as the demixing of a sum
of rank-one matrices, see (2.3). As such, it seems to fit into the framework analyzed by McCoy
and Tropp. However, the setup in [23] differs from ours in a crucial manner. McCoy and Tropp
consider as measurement matrices (see the matricesAi in (2.3)) full-rank random matrices, while
in our setting the measurement matrices are rank-one. This difference fundamentally changes
the theoretical analysis. The findings in [23] are therefore not applicable to the problem of
joint blind deconvolution/demixing. The compressive principal component analysis in [35] is
also a form of demixing problem, but its setting is only vaguely related to ours. There is a
large amount of literature on demixing problems, but the vast majority does not have a “blind
deconvolution component”, therefore this body of work is only marginally related to the topic
of our paper.
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Blind deconvolution/demixing problems also appear in convolutional dictionary learning,
see e.g. [2]. There, the aim is to factorize an ensemble of input vectors into a linear combination
of overcomplete basis elements which are modeled as shift-invariant—the latter property is why
the factorization turns into a convolution. The setup is similar to (1.1), but with an additional
penalty term to enforce sparsity of the convolving filters. The existing literature on convolutional
dictionary learning is mainly focused on empirical results, therefore there is little overlap with
our work. But it is an interesting challenge for future research to see whether the approach
in this paper can be modified to provide a fast and theoretically sound solver for the sparse
convolutional coding problem.

There are numerous papers concerned with blind deconvolution/demixing problems in the
area of wireless communications. But the majority of these papers assumes the availability of
multiple measurement vectors, which makes the problem significantly easier. Those methods
however cannot be applied to the case of a single measurement vector, which is the focus of this
paper. Thus there is essentially no overlap of those papers with our work.

Our previous paper [19] solves (1.1) under subspace conditions, i.e., assuming that both fi
and gi belong to known linear subspaces. This contributes to generalizing the pioneering work
by Ahmed, Recht, and Romberg [1] from the “single-user” scenario to the “multi-user” scenario.
Both [1] and [19] employ a two-step convex approach: first “lifting” [9] is used and then the
lifted version of the original bilinear inverse problems is relaxed into a semi-definite program.
An improvement of the theoretical bounds in [19] was announced in [25].

While the convex approach is certainly effective and elegant, it can hardly handle large-scale
problems. This motivates us to apply a nonconvex optimization approach [8, 18] to this blind-
deconvolution-blind-demixing problem. The mathematical challenge, when using non-convex
methods, is to derive a rigorous convergence framework with conditions that are competitive
with those in a convex framework.

In the last few years several excellent articles have appeared on provably convergent noncon-
vex optimization applied to various problems in signal processing and machine learning, e.g.,
matrix completion [15, 14, 29], phase retrieval [8, 11, 28, 3], blind deconvolution [17, 4, 18],
dictionary learning [27] and low-rank matrix recovery [30, 34]. In this paper we derive the first
nonconvex optimization algorithm to solve (1.1) fast and with rigorous theoretical guarantees
concerning exact recovery, convergence rates, as well as robustness for noisy data. Our work
can be viewed as a generalization of blind deconvolution [18] (s = 1) to the multi-user scenario
(s > 1).

The idea behind our approach is strongly motivated by the nonconvex optimization algo-
rithm for phase retrieval proposed in [8]. In this foundational paper, the authors use a two-step
approach: (i) Construct a good initial guess with a numerically efficient algorithm; (ii) Starting
with this initial guess, prove that simple gradient descent will converge to the true solution. Our
paper follows a similar two-step scheme. However, the techniques used here are quite different
from [8]. Like the matrix completion problem [7], the performance of the algorithm relies heavily
and inherently on how much the ground truth signals are aligned with the design matrix. Due
to this so-called “incoherence” issue, we need to impose extra constraints, which results in a dif-
ferent construction of the so-called basin of attraction. Therefore, influenced by [15, 29, 18], we
add penalty terms to control the incoherence and this leads to the regularized gradient descent
method, which forms the core of our proposed algorithm.

To the best of our knowledge, our algorithm is the first algorithm for the blind deconvolu-
tion/blind demixing problem that is numerically efficient, robust against noise, and comes with
rigorous recovery guarantees.

1.2 Notation

For a matrix Z, ‖Z‖ denotes its operator norm and ‖Z‖F is its the Frobenius norm. For a
vector z, ‖z‖ is its Euclidean norm and ‖z‖∞ is the `∞-norm. For both matrices and vectors,
Z∗ and z∗ denote their complex conjugate transpose. z̄ is the complex conjugate of z. We
equip the matrix space CK×N with the inner product defined by 〈U ,V 〉 := Tr(U∗V ). For a
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given vector z, diag(z) represents the diagonal matrix whose diagonal entries are z. For any

z ∈ R, let z+ = z+|z|
2 .

2 Preliminaries

Obviously, without any further assumption, it is impossible to solve (1.1). Therefore, we impose
the following subspace assumptions throughout our discussion [1, 19].

• Channel subspace assumption: Each finite impulse response fi ∈ CL is assumed to
have maximum delay spread K, i.e.,

fi(n) = 0, for n > K.

• Signal subspace assumption: Let gi := Cix̄i be the outcome of the signal x̄i ∈ CN

encoded by a matrix Ci ∈ CL×N with L > N , where the encoding matrix Ci is known
and assumed to have full rank1.

Remark 2.1. Both subspace assumptions are common in various applications. For instance
in wireless communications, the channel impulse response can always be modeled to have finite
support (or maximum delay spread, as it is called in engineering jargon) due to the physical
properties of wave propagation [13]; and the signal subspace assumption is a standard feature
found in many current communication systems) [13], including CDMA (where Ci is known as
spreading matrix) and OFDM (where Ci is known as precoding matrix.

The specific choice of the encoding matrices Ci depends on a variety of conditions. In this
paper, we derive our theory by assuming that Ci is a complex Gaussian random matrix, i.e.,
each entry in Ci is i.i.d. CN (0, 1). This assumption, while sometimes imposed in the wireless
communications literature, is somewhat unrealistic in practice, due to the lack of a fast algorithm
to apply Ci and due to storage requirements. In practice one would rather choose Ci to be
something like the product of a Hadamard matrix and a diagonal matrix with random binary
entries. We hope to address such more structured encoding matrices in our future research. Our
numerical simulations (see Section 4) show no difference in the performance of our algorithm
for either choice.

Under the two assumptions above, the model actually has a simpler form in the frequency
domain. We assume throughout the paper that the convolution of finite sequences is circular
convolution2. By applying the Discrete Fourier Transform DFT) to (1.1) along with the two
assumptions, we have

1√
L
Fy =

s∑
i=1

diag(Fhi)(FCix̄i) +
1√
L
Fn

where F is the L × L normalized unitary DFT matrix with F ∗F = FF ∗ = IL. The noise
is assumed to be additive white complex Gaussian noise with n ∼ CN (0, σ2d2

0IL) where d0 =√∑s
i=1 ‖hi0‖2‖xi0‖2, and {(hi0,xi0)}si=1 is the ground truth. We define di0 = ‖hi0x∗i0‖F and

assume without loss of generality that ‖hi0‖ and ‖xi0‖ are of the same norm, i.e., ‖hi0‖ =
‖xi0‖ =

√
di0. In that way, 1

σ2 actually is a measure of SNR (signal to noise ratio).
Let hi ∈ CK be the first K nonzero entries of fi and B ∈ CL×K be a low-frequency DFT

matrix (the first K columns of an L× L unitary DFT matrix). Then a simple relation holds,

Ffi = Bhi, B∗B = IK .

1Here we use the conjugate x̄i instead of xi because it will simplify our notation in later derivations.
2This circular convolution assumption can often be reinforced directly (for example in wireless communications

the use of a cyclic prefix in OFDM renders the convolution circular) or indirectly (e.g. via zero-padding). In
the first case replacing regular convolution by circular convolution does not introduce any errors at all. In the
latter case one introduces an additional approximation error in the inversion which is negligible, since it decays
exponentially for impulse responses of finite length [26].
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We also denote Ai := FCi and e := 1√
L
Fn. Due to the Gaussianity, Ai also possesses complex

Gaussian distribution and so does e. From now on, instead of focusing on the original model,
we consider (with a slight abuse of notation) the following equivalent formulation throughout
our discussion:

y =

s∑
i=1

diag(Bhi)Aixi + e, (2.1)

where e ∼ CN (0,
σ2d20
L IL). Our goal here is to estimate all {hi,xi}si=1 from y,B and {Ai}si=1.

Obviously, this is a bilinear inverse problem, i.e., if all {hi}si=1 are given, it is a linear inverse
problem (the ordinary demixing problem) to recover all {xi}si=1, and vice versa. We note that
there is a scaling ambiguity in all blind deconvolution problems that cannot be resolved by any
reconstruction method without further information. Namely, if the pair (hi,xi) is a solution
then so is (αhi, α

−1xi) for any α 6= 0. Therefore, when we talk about exact recovery in the
following, then this is understood modulo such a trivial scaling ambiguity.

Before proceeding to our proposed algorithm we introduce some notation to facilitate a more
convenient presentation of our approach. Let bl be the l-th column of B∗ and ail be the l-th
column of A∗l . Based on our assumptions the following properties hold:

L∑
l=1

blb
∗
l = IK , ‖bl‖2 =

K

L
, ail ∼ CN (0, IN ).

Moreover, inspired by the well-known lifting idea [9, 1, 6, 20], we define the useful matrix-valued
linear operator Ai : CK×N → CL and its adjoint A∗i : CL → CK×N by

Ai(Z) := {b∗lZail}Ll=1, A∗i (z) :=
L∑
l=1

zlbla
∗
il = B∗ diag(z)Ai (2.2)

for each 1 ≤ i ≤ s under canonical inner product over CK×N . Therefore, (2.1) can be written
in the following equivalent form

y =
s∑
i=1

Ai(hix∗i ) + e. (2.3)

Hence, we can think of y as the observation vector obtained from taking linear measurements
with respect to a set of rank-1 matrices {hix∗i }si=1. In fact, with a bit of linear algebra (and
ignoring the noise term for the moment), the l-th entry of y in (2.3) equals the inner product
of two block-diagonal matrices:

yl =

〈
h1,0x

∗
1,0 0 · · · 0

0 h2,0x
∗
2,0 · · · 0

...
...

. . .
...

0 0 · · · hs0x
∗
s0

 ,

bla
∗
1l 0 · · · 0

0 bla
∗
2l · · · 0

...
...

. . .
...

0 0 · · · bla
∗
sl


〉

+ el (2.4)

where yl =
∑s

i=1 b
∗
l hi0x

∗
i0ail + el, 1 ≤ l ≤ L. In other words, we aim to recover such a block-

diagonal matrix (the left-hand side in the inner product (2.4)) from L linear measurements with
block structure if e = 0.

By stacking all {hi}si=1 (and {xi}si=1, {hi0}si=1, {xi0}si=1) into a long column, we let

h :=

h1
...
hs

 , h0 :=

h1,0
...

hs0

 ∈ CKs, x :=

x1
...
xs

 , x0 :=

x1,0
...

xs0

 ∈ CNs. (2.5)

We define H as a bilinear operator which maps a pair (h,x) ∈ CKs×CNs into a block diagonal
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matrix in CKs×Ns, i.e.,

H(h,x) :=


h1x

∗
1 0 · · · 0

0 h2x
∗
2 · · · 0

...
...

. . .
...

0 0 · · · hsx
∗
s

 ∈ CKs×Ns. (2.6)

Let X := H(h,x) and X0 := H(h0,x0) where X0 is the ground truth. DefineA(Z) : CKs×Ns →
CL as

A(Z) :=
s∑
i=1

Ai(Zi) (2.7)

where Z = blkdiag(Z1, · · · ,Zs). Therefore, A(H(h,x)) =
∑s

i=1Ai(hix∗i ) and y = A(H(h0,x0))+
e. The adjoint operator A∗ is defined naturally as

A∗(z) :=


A∗1(z) 0 · · · 0

0 A∗2(z) · · · 0
...

...
. . .

...
0 0 · · · A∗s(z)

 ∈ CKs×Ns, (2.8)

which is a linear map from CL to CKs×Ns. To measure the approximation error of X0 given by
X, we define δ(h,x) as the global relative error:

δ(h,x) :=
‖X −X0‖F
‖X0‖F

=

√∑s
i=1 ‖hix∗i − hi0x∗i0‖2F

d0
=

√∑s
i=1 δ

2
i d

2
i0∑s

i=1 d
2
i0

(2.9)

where δi := δi(hi,xi) is the relative error within each component:

δi(hi,xi) :=
‖hix∗i − hi0x

∗
i0‖F

di0
.

Note that δ and δi are functions of (h,x) and (hi,xi) respectively and in most cases, we just
simply use δ and δi if no possibility of confusion exists.

2.1 Convex versus nonconvex approaches

As indicated in (2.4), joint blind deconvolution-demixing can be recast as the task to recover
a rank-s block-diagonal matrix from linear measurements. In general, such a low-rank matrix
recovery problem is NP-hard. In order to take advantage of the low-rank property of the
ground truth, it is natural to adopt convex relaxation by solving a convenient nuclear norm
minimization program, i.e.,

min
s∑
i=1

‖Zi‖∗, s.t.
s∑
i=1

Ai(Zi) = y. (2.10)

The question of when the solution of (2.10) yields exact recovery is answered in our previous
work [19], whose main theoretical result is informally summarized in the following theorem.

Theorem 2.2. Suppose that Ai are L×N i.i.d. complex Gaussian matrices and B is an L×K
partial DFT matrix with B∗B = IK . Then solving (2.10) gives exact recovery if the number of
measurements L yields

L ≥ Cγs2(K +N) log3 L

with probability at least 1− L−γ where Cγ is an absolute scalar only depending on γ linearly.
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Numerical simulations in [19] show that the semidefinite program (SDP) in (2.10) is able
to estimate all pairs of {hi,xi}si=1 even when L is very close to s(K + N), i.e., the degree of
freedom for the unknowns, although L depends on s quadratically in our theory. However, the
computational cost for solving an SDP already become challenging for moderate size problems
and too expensive for large scale problems.

Therefore, we try to look for a more efficient nonconvex approach, which hopefully is also
reinforced by theory. It seems quite natural to achieve the goal by minimizing the following non-
linear least squares objective function with respect to (h,x)

F (h,x) := ‖A(H(h,x)− y)‖2 =

∥∥∥∥∥
s∑
i=1

Ai(hix∗i )− y

∥∥∥∥∥
2

. (2.11)

In particular, if e = 0, we write

F0(h,x) :=

∥∥∥∥∥
s∑
i=1

Ai(hix∗i − hi0x
∗
i0)

∥∥∥∥∥
2

. (2.12)

As also pointed out in [18], this is a highly nonconvex optimization problem. Many of the
commonly used algorithms, such as gradient descent or alternating minimization, may not
necessarily yield convergence to the global minimum, so that we cannot always hope to obtain
the desired solution. Often, those simple algorithms might get stuck in local minima.

2.2 The basin of attraction

Motivated by several excellent recent papers of nonconvex optimization on various signal pro-
cessing and machine learning problem, we propose our two-step algorithm: (i) Compute an
initial guess carefully; (ii) Apply gradient descent to the objective function, starting with the
carefully chosen initial guess. One difficulty of understanding nonconvex optimization consists
in how to construct the so-called basin of attraction, i.e., if the starting point is inside this
basin of attraction, the iterates will always stay inside the region and converge to the global
minimum. The construction of the basin of attraction varies for different problems [8, 3, 29].
For this problem, similar to [18], the construction follows from the following three observations.
Each of these observations suggests the definition of a certain neighborhood and the basin of
attraction is then defined as the intersection of these three neighborhood sets Nd ∩Nµ ∩Nε.

1. Ambiguity of solution: in fact, we can only recover (hi,xi) up to a scalar since (αhi, α
−1xi)

and (hi,xi) are both solutions for α 6= 0. From a numerical perspective, we want to avoid
the scenario when ‖hi‖ → 0 and ‖xi‖ → ∞ while ‖hi‖‖xi‖ is fixed, which potentially leads
to numerical instability. To balance both the norm of ‖hi‖ and ‖xi‖ for all 1 ≤ i ≤ s, we
define

Nd := {{(hi,xi)}si=1 : ‖hi‖ ≤ 2
√
di0, ‖xi‖ ≤ 2

√
di0, 1 ≤ i ≤ s},

which is a convex set.

2. Incoherence: the performance depends on how large/small the incoherence µ2
h is, where µ2

h

is defined by

µ2
h := max

1≤i≤s

L‖Bhi0‖2∞
‖hi0‖2

.

The idea is that: the smaller the µ2
h is, the better the performance is. Let’s consider an extreme

case: if Bhi0 is highly sparse or spiky, we lose much information on those zero/small entries
and cannot hope to get satisfactory recovered signals.

A similar quantity is also introduced in the matrix completion problem [7, 29]. The larger µ2
h

is, the more hi0 is aligned with one particular row of B. To control the incoherence between
bl and hi, we define the second neighborhood,

Nµ := {{hi}si=1 :
√
L‖Bhi‖∞ ≤ 4

√
di0µ, 1 ≤ i ≤ s}, (2.13)

where µ is a parameter and µ ≥ µh. Note that Nµ is also a convex set.
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3. Close to the ground truth: we also want to construct an initial guess such that it is close
to the ground truth, i.e.,

Nε :=

{
{(hi,xi)}si=1 : δi =

‖hix∗i − hi0x
∗
i0‖F

di0
≤ ε, 1 ≤ i ≤ s

}
(2.14)

where ε is a predetermined parameter in (0, 1
15 ].

Remark 2.3. To ensure δi ≤ ε, it suffices to ensure δ ≤ ε√
sκ

where κ := max di0
min di0

≥ 1. This is

because
1

sκ2

s∑
i=1

δ2
i ≤ δ2 ≤ ε2

sκ2

which implies max1≤i≤s δi ≤ ε.

Remark 2.4. When we say (h,x) ∈ Nd,Nd or Nε, it means for all i = 1, . . . , s we have
(hi,xi) ∈ Nd, Nµ or Nε respectively. In particular, (h0,x0) ∈ Nd ∩Nµ ∩Nε.

2.3 Objective function and Wirtinger derivative

To implement the first two observations, we introduce the regularizer G(h,x), defined as the
sum of s components

G(h,x) :=
s∑
i=1

Gi(hi,xi). (2.15)

For each component Gi(hi,xi), we let ρ ≥ d2 + 2‖e‖2, 0.9d0 ≤ d ≤ 1.1d0, 0.9di0 ≤ di ≤ 1.1di0
for all 1 ≤ i ≤ s and

Gi := ρ
[
G0

(
‖hi‖2

2di

)
+G0

(
‖xi‖2

2di

)
︸ ︷︷ ︸

Nd

+

L∑
l=1

G0

(
L|b∗l hi|2

8diµ2

)
︸ ︷︷ ︸

Nµ

]
, (2.16)

where G0(z) = max{z−1, 0}2. Here both d and {di}si=1 are data-driven and well approximated
by our spectral initialization procedure; and µ2 is a tuning parameter which could be estimated
if we assume a specific statistical model for the channel (for example, in the widely used Rayleigh
fading model, the channel coefficients are assumed to be complex Gaussian). The idea behind
Gi is quite straightforward though the formulation is complicated. For each Gi in (2.16), the
first two terms try to force the iterates to lie in Nd and the third term tries to force the iterates
to lie in Nµ. What about the neighborhood Nε? A proper choice of the initialization along with
gradient descent (keeping the objective function decrease) will ensure that the iterates lie in Nε.

Finally, we consider the objective function as the sum of nonlinear least squares objective
function F (h,x) in (2.11) and the regularizer G(h,x),

F̃ (h,x) := F (h,x) +G(h,x). (2.17)

Note that the input of the function F̃ (h,x) consists of complex variables, but the output is
real-valued (so do F (h,x) and G(h,x)) and thus simple relations hold

∂F̃

∂h̄i
=
∂F̃

∂hi
,

∂F̃

∂x̄i
=
∂F̃

∂xi
.

Therefore, to minimize this function, it suffices to consider only the gradient of F̃ with
respect to h̄i and x̄i, which is also called Wirtinger derivative [8]. The Wirtinger derivatives of
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F (h,x) and G(h,x) w.r.t. h̄i and x̄i can be easily computed as follows

∇Fhi = A∗i (A(X)− y)xi = A∗i (A(X −X0)− e)xi, (2.18)

∇Fxi = (A∗i (A(X)− y))∗ hi = (A∗i (A(X −X0)− e))∗ hi, (2.19)

∇Ghi =
ρ

2di

[
G′0

(
‖hi‖2

2di

)
hi +

L

4µ2

L∑
l=1

G′0

(
L|b∗l hi|2

8diµ2

)
blb
∗
l hi

]
, (2.20)

∇Gxi =
ρ

2di
G′0

(
‖xi‖2

2di

)
xi, (2.21)

where A(X) =
∑s

i=1Ai(hix∗i ) and A∗ is defined in (2.8). In short, we denote

∇F̃h := ∇Fh +∇Gh, ∇Fh :=

∇Fh1

...
∇Fhs

 , ∇Gh :=

∇Gh1

...
∇Ghs

 , (2.22)

similar definitions hold for ∇F̃x,∇Fx and Gx. It is easy to see that ∇Fh = A∗(A(X) − y)x
and ∇Fx = (A∗(A(X)− y))∗h.

3 Algorithm and Main Theory

3.1 Two-step algorithm

As mentioned before, the first step is to find a good initial guess (u(0),v(0)) ∈ CKs ⊕ CNs such
that it is inside the basin of attraction. The initialization follows from this key fact:

E(A∗i (y)) = E

A∗i
 s∑
j=1

Aj(hj0x∗j0) + e

 = hi0x
∗
i0

where we use B∗B =
∑L

l=1 blb
∗
l = IK , E(aila

∗
il) = IN and

E(A∗iAi(hi0x∗i0)) =
L∑
l=1

blb
∗
l hi0x

∗
i0 E(aila

∗
il) = hi0x

∗
i0,

E(A∗jAi(hi0x∗i0)) =

L∑
l=1

blb
∗
l hi0x

∗
i0 E(aila

∗
jl) = 0, ∀j 6= i.

Therefore, it is natural to extract the leading singular value and associated left and right singular
vectors from each A∗i (y) and use them as (a hopefully good) approximation to (di0,hi0,xi0).
This idea leads to Algorithm 1, the proof of which is given in Section 6.5. The second step of

the algorithm is just to apply gradient descent to F̃ with the initial guess {(u(0)
i ,v

(0)
i , di)}si=1

or (u(0),v(0), {di}si=1), where u(0) stems from stacking all u
(0)
i into one long vector.

Remark 3.1. For Algorithm 2, we can rewrite each iteration into

u(t) = u(t−1) − η∇F̃h(u(t−1),v(t−1)), v(t) = v(t−1) − η∇F̃x(u(t−1),v(t−1)),

where ∇F̃h and ∇F̃x are in (2.22), and

u(t) :=

u
(t)
1
...

u
(t)
s

 , v(t) :=

v
(t)
1
...

v
(t)
s

 .
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Algorithm 1 Initialization via spectral method and projection

1: for i = 1, 2, . . . , s do
2: Compute A∗i (y).
3: Find the leading singular value, left and right singular vectors of A∗i (y), denoted by

(di, ĥi0, x̂i0).
4: Solve the following optimization problem for 1 ≤ i ≤ s:

u
(0)
i := argmin

z∈CK‖z −
√
diĥi0‖2 s.t.

√
L‖Bz‖∞ ≤ 2

√
diµ.

5: Set v
(0)
i =

√
dix̂i0.

6: end for
7: Output: {(u(0)

i ,v
(0)
i , di)}si=1 or (u(0),v(0), {di}si=1).

Algorithm 2 Wirtinger gradient descent with constant stepsize η

1: Initialization: obtain (u(0),v(0), {di}si=1) via Algorithm 1.
2: for t = 1, 2, . . . , do
3: for i = 1, 2, . . . , s do

4: u
(t)
i = u

(t−1)
i − η∇F̃hi(u

(t−1)
i ,v

(t−1)
i ),

5: v
(t)
i = v

(t−1)
i − η∇F̃xi(u

(t−1)
i ,v

(t−1)
i ),

6: end for
7: end for

3.2 Main theorem

Our main findings are summarized as follows: Theorem 3.2 shows that the initial guess given
by Algorithm 1 indeed belongs to the basin of attraction. Moreover, di also serves as a good
approximation of di0 for each i. Theorem 3.3 demonstrates that the regularized Wirtinger
gradient descent will guarantee the linear convergence of the iterates and the recovery is exact
in the noisefree case and stable in the presence of noise.

Theorem 3.2. The initialization obtained via Algorithm 1 satisfies

(u(0),v(0)) ∈ 1√
3
Nd
⋂ 1√

3
Nµ
⋂
N 2ε

5
√
sκ

(3.1)

and
0.9di0 ≤ di ≤ 1.1di0, 0.9d0 ≤ d ≤ 1.1d0, (3.2)

holds with probability at least 1− L−γ+1 if the number of measurements satisfies

L ≥ Cγ+log(s)(µ
2
h + σ2)s2κ4 max{K,N} log2 L/ε2. (3.3)

Here ε is any predetermined constant in (0, 1
15 ], and Cγ is a constant only linearly depending

on γ with γ ≥ 1.

Theorem 3.3. Starting with the initial value z(0) := (u(0),v(0)) satisfying (3.1),the Algorithm 2
creates a sequence of iterates (u(t),v(t)) which converges to the global minimum linearly,

‖H(u(t),v(t))−H(h0,x0)‖F ≤
εd0√
2sκ2

(1− ηω)t/2 + 60
√
s‖A∗(e)‖ (3.4)

with probability at least 1 − L−γ+1 and ηω = O((sκd0(K + N) log2 L)−1) if the number of
measurements L satisfies

L ≥ Cγ+log(s)(µ
2 + σ2)s2κ4 max{K,N} log2 L/ε2. (3.5)

In particular, with probability at least 1− L−γ+1, there holds

‖A∗(e)‖ ≤ C0σd0

√
γs(K +N)(log2 L)

L
.

10



Remark 3.4. Our previous work [19] shows that the convex approach via semidefinite program-
ming (see (2.10)) requires L ≥ C0s

2(K + µ2
hN) log3(L) to ensure exact recovery. Later, [25]

claimed to improve this result to the near-optimal bound L ≥ C0s(K + µ2
hN) up to some log-

factors. The difference between nonconvex and convex methods lies in the appearance of the
condition number κ in (3.5). This is not just an artifact of the proof—empirically we also ob-
serve that the value of κ affects the convergence rate of our nonconvex algorithm, see Figure 5.

Remark 3.5. Our theory suggests s2-dependence for the number of measurements L, although
numerically L in fact depends on s linearly, as shown in Section 4. The reason for s2-dependence
will be addressed in details in Section 5.2.

Remark 3.6. In the theoretical analysis, we assume that Ci/Ai is a Gaussian random matrix.
Numerical simulations suggest that this assumption is clearly not necessary. For example, Ci

may be chosen to be a Hadamard-type matrix which is more appropriate and favorable for
communications.

Remark 3.7. If e = 0, (3.4) shows that (u(t),v(t)) converges to the ground truth at a linear
rate. On the other hand, if noise exists, (u(t),v(t)) is guaranteed to converge to a point within a
small neighborhood of (h0,x0). More importantly, if the number of measurements L gets larger,
‖A∗(e)‖ decays at the rate of O(L−1/2).

4 Numerics

In this section we present a range of numerical simulations to illustrate and complement different
aspects of our theoretical framework. We will empirically analyze the number of measurements
needed for perfect joint deconvolution/demixing to see how this compares to our theoretical
bounds. We will also study the robustness for noisy data. In our simulations we use Gaussian
encoding matrices, as in our theorems. But we also more more realistic structured encoding
matrices, that are more reminiscent of what one might come across in wireless communications.

While Theorem 3.3 says that the number of measurements L depends quadratically on the
number of sources s, numerical simulations suggest near-optimal performance. Figure 2 demon-
strates that L actually depends linearly on s, i.e., the boundary between success (white) and
failure (black) is approximately a linear function of s. In the experiment, K = N = 50 are
fixed, all Ai are complex Gaussians and all (hi,xi) are standard complex Gaussian vectors.
For each pair of (L, s), 25 experiments are performed and we treat the recovery as a success

if ‖X̂−X0‖F
‖X0‖F ≤ 10−3. For our algorithm, we use backtracking to determine the stepsize and the

iteration stops either if ‖A(H(h(t+1),x(t+1)) − H(h(t),x(t)))‖ < 10−6‖y‖ or if the number of
iterations reaches 500. The backtracking is based on the Armijo-Goldstein condition [22]. The
initial stepsize is chosen to be η = 1

K+N . If F̃ (z(t) − η∇F̃ (z(t))) > F̃ (z(t)), we just divide η by
two and use a smaller stepsize.

We see from Figure 2 that the number of measurements for the proposed algorithm to
succeed not only seems to depend linearly on the number of sensors, but it is actually rather
close to the information-theoretic limit s(K + N). Indeed, the green dashed line in Figure 2,
which represents the empirical boundary for the phase transition between success and failure
corresponds to a line with slope about 3

2s(K + N). It is interesting to compare this empirical
performance to the sharp theoretical phase transition bounds one would obtain via convex
optimization [10, 23]. Considering the convex approach based on lifting in [19], we can adapt
the theoretical framework in [10] to the blind deconvolution/demixing setting, but with one
modification. The bounds in [10] rely on Gaussian widths of tangent cones related to the
measurement matrices Ai. Since simply analytic formulas for these expressions seem to be
out of reach for the structured rank-one measurement matrices used in our paper, we instead
compute the bounds for full-rank Gaussian random matrices, which yields a sharp bound of
about 3s(K + N) (the corresponding bounds for rank-one sensing matrices will likely have a
constant larger than 3). Note that these sharp theoretical bounds predict quite accurately
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the empirical behavior of convex methods. Thus our empirical bound for using a non-convex
methods compares rather favorably with that of the convex approach.
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Figure 2: Phase transition plot for empirical recovery performance under different choices of
(L, s) where K = N = 50 are fixed. Black region: failure; white region: success. The red solid
line depicts the number of degrees of freedom and the green dashed line shows the empirical
phase transition bound for Algorithm 2.

Similar conclusions can be drawn from Figure 3; there all Ai are in the form of Ai = FDiH
where F is the unitary L×L DFT matrix, all Di are independent diagonal binary ±1 matrices
and H is an L×N fixed partial deterministic Hadamard matrix. The purpose of using Di is to
enhance the incoherence between each channel so that our algorithm is able to tell apart each
individual signal and channel. As before we assume Gaussian channels, i.e., hi ∼ CN (0, IK)
Therefore, our approach does not only work for Gaussian encoding matrices Ai but also for
the matrices that are interesting to real-world applications, although no satisfactory theory has
been derived yet for that case. Moreover, due to the structure of Ai and B, fast transform
algorithms are available, potentially allowing for real-time deployment.
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Figure 3: Empirical probability of successful recovery for different pairs of (L, s) when K =
N = 50 are fixed.

Figure 4 shows the robustness of our algorithm under different levels of noise. We also run
25 samples for each level of SNR and different L and then compute the average relative error.
It is easily seen that the relative error scales linearly with the SNR and one unit of increase in
SNR (in dB) results in one unit of decrease in the relative error.

Theorem 3.3 suggests that the performance and convergence rate actually depend on the
condition number of X0 = H(h0,x0), i.e., on κ = max di0

min di0
where di0 = ‖hi0‖‖xi0‖. Next we
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Figure 4: Relative error vs. SNR (dB): SNR = 20 log10

(
‖y‖
‖e‖

)
.

demonstrate that this dependence on the condition number is not an artifact of the proof, but is
indeed also observed empirically. In this experiment, we let s = 2 and set for the first component
d1,0 = 1 and for the second one d2,0 = κ for κ ∈ {1, 2, 5}. Here, κ = 1 means that the received
signals of both sensors have equal power, whereas κ = 5 means that the signal received from the
second sensor is considerably stronger. The initial stepsize is chosen as η = 1, followed by the
backtracking scheme. Figure 5 shows how the relative error decays with respect to the number
of iterations t under different condition number κ and L.

The larger κ is, the slower the convergence rate is, as we see from Figure 5. This may result
from two reasons: our spectral initialization may not be able to give a good initial guess for those
weak components; moreover, during the gradient descent procedure, the gradient directions for
the weak components could be totally dominated/polluted by the strong components. Currently,
we still have no effective way of how to deal with this issue of slow convergence when κ is not
small. We have to leave this topic for future investigations.
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Figure 5: Relative error vs. number of iterations t.

5 Convergence analysis

Our convergence analysis relies on the following four conditions where the first three of them
are local properties. We will also briefly discuss how they contribute to the proof of our main
theorem. Note that our previous work [18] on blind deconvolution is actually a special case
(s = 1) of (2.1). Therefore, the proof of Theorem 3.3 follows in part the main ideas in [18].
However, there are still many key differences since we are now dealing with a more complicated
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scenario and thus many technical details are much more involved. During the presentation, we
will clearly point out both the similarities to and differences from [18].

5.1 Four key conditions

Condition 5.1. Local regularity condition: Let z := (h,x) ∈ Cs(K+N) and ∇F̃ (z) :=[
∇F̃h(z)

∇F̃x(z)

]
∈ Cs(K+N), then

‖∇F̃ (z)‖2 ≥ ω[F̃ (z)− c]+ (5.1)

for z ∈ Nd ∩Nµ ∩Nε where ω = d0
7000 and c = ‖e‖2 + 2000s‖A∗(e)‖2.

We will prove Condition 5.1 in Section 6.3. Condition 5.1 tells that F̃ (z) = 0 if ‖∇F̃ (z)‖ = 0
and e = 0, i.e., all the stationary points inside the basin of attraction are global minima.

Condition 5.2. Local smoothness condition: Let z = (h,x) and w = (u,v) and there
holds

‖F̃ (z + w)− F̃ (z)‖ ≤ CL‖w‖ (5.2)

for z+w and z inside Nd∩Nµ∩Nε where CL ≈ O(d0sκ(1+σ2)(K+N) log2 L). The convergence
rate is governed by CL.

The proof of Condition 5.2 can be found in Section 6.4.

Condition 5.3. Local restricted isometry property: Denote X = H(h,x) and X0 =
H(h0,x0). There holds

2

3
‖X −X0‖2F ≤ ‖A(X −X0)‖2 ≤ 3

2
‖X −X0‖2F (5.3)

uniformly all for (h,x) ∈ Nd ∩Nµ ∩Nε.
Condition 5.3 will be proven in Section 6.2. This condition says that the convergence of the

objective function implies the convergence of the iterates.

Condition 5.4. Robustness condition: Let ε ≤ 1
15 be a predetermined constant. We have

‖A∗(e)‖ = max
1≤i≤s

‖A∗i (e)‖ ≤ εd0

10
√

2sκ
, (5.4)

where e ∼ CN (0,
σ2d20
L ) if L ≥ Cγκ2s2(K +N)/ε2.

We will prove Condition 5.4 in Section 6.5. We now extract one useful result based on
Conditions 5.3 and 5.4. From these two conditions, we are able to produce a good approximation
of F (h,x) for all (h,x) ∈ Nd ∩ Nµ ∩ Nε in terms of δ in (2.9). For (h,x) ∈ Nd ∩ Nµ ∩ Nε, the
following inequality holds

2

3
δ2d2

0 −
εδd2

0

5
√
sκ

+ ‖e‖2 ≤ F (h,x) ≤ 3

2
δ2d2

0 +
εδd2

0

5
√
sκ

+ ‖e‖2. (5.5)

Note that (5.5) simply follows from

F (h,x) = ‖A(X −X0)‖2F − 2 Re(〈X −X0,A∗(e)〉) + ‖e‖2.

Note that (5.3) implies 2
3δ

2d2
0 ≤ ‖A(X − X0)‖2F ≤

3
2δ

2d2
0. Thus it suffices to estimate the

cross-term,

|Re(〈X −X0,A∗(e)〉)| ≤ ‖A∗(e)‖‖X −X0‖∗ = ‖A∗(e)‖
s∑
i=1

‖hix∗i − hi0x
∗
i0‖∗

≤
√

2‖A∗(e)‖
s∑
i=1

‖hix∗i − hi0x
∗
i0‖F

≤
√

2s‖A∗(e)‖‖X −X0‖F ≤
εδd2

0

10
√
sκ

(5.6)

where ‖ · ‖∗ and ‖ · ‖ are a pair of dual norms and ‖A∗(e)‖ comes from (5.4).
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5.2 Outline of the convergence analysis

For the ease of proof, we introduce another neighborhood:

N
F̃

=

{
(h,x) : F̃ (h,x) ≤ ε2d2

0

3sκ2
+ ‖e‖2

}
.

Moreover, another reason to consider N
F̃

is based on the fact that gradient descent only allows

one to make the objective function decrease. In other words, all the iterates z(t) generated by
gradient descent are inside N

F̃
as long as z(0) ∈ N

F̃
.

On the other hand, it is crucial to note that the decrease of the objective function does
not necessarily imply the decrease of the relative error of the iterates. Therefore, we want to
construct an initial guess in Nε ∩ NF̃ so that z(0) is sufficiently close to the ground truth and

then analyze the behavior of z(t).

In the rest of this section, we basically try to prove the following relation:

1√
3
Nd ∩

1√
3
Nµ ∩N 2ε

5
√
sκ︸ ︷︷ ︸

Initial guess

⊂ Nε ∩NF̃︸ ︷︷ ︸
{z(t)}t≥0 in Nε∩NF̃

⊂ Nd ∩Nµ ∩Nε︸ ︷︷ ︸
Key conditions hold over Nd∩Nµ∩Nε

.

Now we give a more detailed explanation of the relation above, which constitutes the main
structure of the proof:

1. We will show 1√
3
Nd∩ 1√

3
Nµ∩N 2ε

5
√
sκ
⊂ Nε∩NF̃ in the proof of Theorem 3.3 in Section 5.3,

which is quite straightforward.

2. Lemma 5.5 explains why it holds that Nε∩NF̃ ⊂ Nd∩Nµ∩Nε and where the s2-bottleneck
comes from.

3. Lemma 5.7 implicitly tells us that the iterates z(t) will remain inNε∩NF̃ if the initial guess

z(0) is inside Nε ∩ NF̃ and F̃ (z(t)) is monotonically decreasing. Lemma 5.8 makes this

observation explicit by showing that z(t) ∈ Nε ∩ NF̃ implies z(t+1) := z(t) − η∇F̃ (z(t)) ∈
Nε ∩ NF̃ if the stepsize η obeys η ≤ 1

CL
. Moreover, Lemma 5.8 guarantees sufficient

decrease of F̃ (z(t)) in each iteration, which paves the road towards the proof of linear
convergence of F̃ (z(t)) and thus z(t).

Remember that Nd and Nµ are both convex sets, and the purpose of introducing regularizers
Gi(hi,xi) is to approximately project the iterates onto Nd ∩Nµ. Moreover, we hope that once
the iterates are inside Nε and inside a sublevel subset N

F̃
, they will never escape from N

F̃
∩Nε.

Those ideas are fully reflected in the following lemma.

Lemma 5.5. Assume 0.9di0 ≤ di ≤ 1.1di0 and 0.9d0 ≤ d ≤ 1.1d0, there holds N
F̃
⊂ Nd ∩ Nµ;

moreover, under Conditions 5.3 and 5.4, we have N
F̃
∩Nε ⊂ Nd ∩Nµ ∩N 9

10
ε.

Proof: If (h,x) /∈ Nd ∩ Nµ, by the definition of G in (2.15), at least one component in G

exceeds ρG0

(
2di0
di

)
. We have

F̃ (h,x) ≥ ρG0

(
2di0
di

)
≥ (d2 + 2‖e‖2)

(
2di0
di
− 1

)2

≥ (2/1.1− 1)2(d2 + 2‖e‖2)

≥ 1

2
d2

0 + ‖e‖2 > ε2d2
0

3sκ2
+ ‖e‖2,

where ρ ≥ d2 + 2‖e‖2, 0.9d0 ≤ d ≤ 1.1d0 and 0.9di0 ≤ di ≤ 1.1di0. This implies (h,x) /∈ N
F̃

and hence N
F̃
⊂ Nd ∩Nµ.

15



Now we have (h,x) ∈ Nd ∩Nµ ∩Nε if (h,x) ∈ N
F̃
∩Nε. Applying (5.5) gives

2

3
δ2d2

0 −
εδd2

0

5
√
sκ

+ ‖e‖2 ≤ F (h,x) ≤ F̃ (h,x) ≤ ε2d2
0

3sκ2
+ ‖e‖2

which implies that δ ≤ 9
10

ε√
sκ
. By definition of δ in (2.9), there holds

81ε2

100sκ2
≥ δ2 =

∑s
i=1 δ

2
i d

2
i0∑s

i=1 d
2
i0

≥
∑s

i=1 δ
2
i

sκ2
≥ 1

sκ2
max
1≤i≤s

δ2
i , (5.7)

which gives δi ≤ 9
10ε and (h,x) ∈ N 9

10
ε.

Remark 5.6. The s2-bottleneck comes from (5.7). If δ ≤ ε is small, we cannot guarantee that
each δi is also smaller than ε. Just consider the simplest case when all di0 are the same: then
d2

0 =
∑s

i=1 d
2
i0 = sd2

i0 and there holds

ε2 ≥ δ2 =
1

s

s∑
i=1

δ2
i .

Obviously, we cannot conclude that max δi ≤ ε but only say that δi ≤
√
sε. This is why we

require δ = O( ε√
s
) to ensure δi ≤ ε, which gives s2-dependence in L.

Lemma 5.7. Denote z1 = (h1,x1) and z2 = (h2,x2). Let z(λ) := (1− λ)z1 + λz2. If z1 ∈ Nε
and z(λ) ∈ N

F̃
for all λ ∈ [0, 1], we have z2 ∈ Nε.

Proof: We prove it by contradiction based on N
F̃
∩ Nε ⊂ N 9

10
ε in Lemma 5.5. Suppose that

z2 /∈ Nε and z1 ∈ Nε, and there exists z(λ0) := (h(λ0),x(λ0)) ∈ Nε for some λ0 ∈ [0, 1],

such that max1≤i≤s
‖hix∗i−hi0x∗i0‖F

di0
= ε. Therefore, z(λ0) ∈ N

F̃
∩ Nε and Lemma 5.5 implies

max1≤i≤s
‖hix∗i−hi0x∗i0‖F

di0
≤ 9

10ε, which contradicts max1≤i≤s
‖hix∗i−hi0x∗i0‖F

di0
= ε.

Lemma 5.8. Let the stepsize η ≤ 1
CL

, z(t) := (u(t),v(t)) ∈ Cs(K+N) and CL be the Lipschitz

constant of ∇F̃ (z) over Nd ∩ Nµ ∩ Nε in (5.2). If z(t) ∈ Nε ∩ NF̃ , we have z(t+1) ∈ Nε ∩ NF̃
and

F̃ (z(t+1)) ≤ F̃ (z(t))− η‖∇F̃ (z(t))‖2 (5.8)

where z(t+1) = z(t) − η∇F̃ (z(t)).

Remark 5.9. This lemma tells us that once z(t) ∈ Nε ∩ NF̃ , the next iterate z(t+1) = z(t) −
η∇F̃ (z(t)) is also inside Nε ∩ NF̃ as long as the stepsize η ≤ 1

CL
. In other words, Nε ∩ NF̃

is in fact a stronger version of the basin of attraction. Moreover, the objective function will
decay sufficiently in each step as long as we can control the lower bound of the ∇F̃ , which is
guaranteed by the Local Regularity Condition 5.3.

Proof: Let φ(τ) := F̃ (z(t) − τ∇F̃ (z(t))), φ(0) = F̃ (z(t)) and consider the following quantity:

τmax := max{µ : φ(τ) ≤ F̃ (z(t)), 0 ≤ τ ≤ µ},

where τmax is the largest stepsize such that the objective function F̃ (z) evaluated at any point
over the whole line segment {z(t) − τF̃ (z(t)), 0 ≤ τ ≤ τmax} is not greater than F̃ (z(t)). Now
we will show τmax ≥ 1

CL
. Obviously, if ‖F̃ (z(t))‖ = 0, it holds automatically.

Consider ‖F̃ (z(t))‖ 6= 0 and assume τmax <
1
CL

. First note that,

d

dτ
φ(τ) < 0 =⇒ τmax > 0.

By the definition of τmax, there holds φ(τmax) = φ(0) since φ(τ) is a continuous function w.r.t.
τ . Lemma 5.7 implies

{z(t) − τ∇F̃ (z(t)), 0 ≤ τ ≤ τmax} ⊆ Nε ∩NF̃ .

16



Now we apply Lemma 6.19, the modified descent lemma, and obtain

F̃ (z(t) − τmax∇F̃ (z(t))) ≤ F̃ (z(t))− (2τmax − CLτ2
max)‖F̃ (z(t))‖2 ≤ F̃ (z(t))− τmax‖F̃ (z(t))‖2

where CLτmax ≤ 1. In other words, φ(τmax) ≤ F̃ (z(t) − τmax∇F̃ (z(t))) < F̃ (z(t)) = φ(0) contra-
dicts φ(τmax) = φ(0).

Therefore, we conclude that τmax ≥ 1
CL

. For any η ≤ 1
CL

, Lemma 5.7 implies

{z(t) − τ∇F̃ (z(t)), 0 ≤ τ ≤ η} ⊆ Nε ∩NF̃
and applying Lemma 6.19 gives

F̃ (z(t) − η∇F̃ (z(t))) ≤ F̃ (z(t))− (2η − CLη2)‖F̃ (z(t))‖2 ≤ F̃ (z(t))− η‖F̃ (z(t))‖2.

5.3 Proof of Theorem 3.3

Combining all the considerations above, we now prove Theorem 3.3 to conclude this section.

Proof: The proof consists of three parts:

Part I: Proof of z(0) := (u(0),v(0)) ∈ Nε ∩NF̃ . From the assumption of Theorem 3.3,

z(0) ∈ 1√
3
Nd
⋂ 1√

3
Nµ ∩N 2ε

5
√
sκ
.

First we show G(u(0),v(0)) = 0: for 0 ≤ i ≤ s and the definition of Nd and Nµ,

‖u(0)
i ‖2

2di
≤ 2di0

3di
< 1,

L|b∗lu
(0)
i |2

8diµ2
≤ L

8diµ2
· 16di0µ

2

3L
≤ 2di0

3di
< 1,

where ‖u(0)
i ‖ ≤

2
√
di0√
3

,
√
L‖Bu

(0)
i ‖∞ ≤

4
√
di0µ√
3

and 9
10di0 ≤ di ≤

11
10di0. Therefore

G0

(
‖u(0)

i ‖2

2di

)
= G0

(
‖v(0)

i ‖2

2di

)
= G0

(
L|b∗lu

(0)
i |2

8diµ2

)
= 0

for all 1 ≤ l ≤ L and G(u(0),v(0)) = 0.

For z(0) = (u(0),v(0)) ∈ N 2ε
5
√
sκ

, we have δ(z(0)) :=

√∑s
i=1 δ

2
i d

2
i0

d0
≤ 2ε

5
√
sκ
. By (5.5), there holds

δ(z(0)) ≤ 2ε
5
√
sκ

and G(u(0),v(0)) = 0,

F̃ (u(0),v(0)) = F (u(0),v(0)) ≤ ‖e‖2 +
3

2
δ2(z(0))d2

0 +
εδ(z(0))d2

0

5
√
sκ

≤ ‖e‖2 +
ε2d2

0

3sκ2

and hence z(0) = (u(0),v(0)) ∈ Nε
⋂
N
F̃
.

Part II: The linear convergence of the objective function F̃ (z(t)). Denote z(t) :=
(u(t),v(t)). Note that z(0) ∈ Nε ∩ NF̃ , Lemma 5.8 implies z(t) ∈ Nε ∩ NF̃ for all t ≥ 0 by
induction if η ≤ 1

CL
. Moreover, combining Condition 5.1 with Lemma 5.8 leads to

F̃ (z(t)) ≤ F̃ (z(t−1))− ηω
[
F̃ (z(t−1))− c

]
+
, t ≥ 1

with c = ‖e‖2 + a‖A∗(e)‖2 and a = 2000s. Therefore, by induction, we have[
F̃ (z(t))− c

]
+
≤ (1− ηω)

[
F̃ (z(t−1))− c

]
+
≤ (1− ηω)t

[
F̃ (z(0))− c

]
+
≤ ε2d2

0

3sκ2
(1− ηω)t

where F̃ (z(0)) ≤ ε2d20
3sκ2

+ ‖e‖2 and
[
F̃ (z(0))− c

]
+
≤
[

1
3sκ2

ε2d2
0 − a‖A∗(e)‖2

]
+
≤ ε2d20

3sκ2
. Now we

conclude that
[
F̃ (z(t))− c

]
+

converges to 0 linearly.
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Part III: The linear convergence of the objective function F̃ (z(t)). Denote

δ(z(t)) :=
‖H(u(t),v(t))−H(h0,x0)‖F

d0
.

Note that z(t) ∈ Nε∩NF̃ ⊆ Nd∩Nµ∩Nε and overNd∩Nµ∩Nε, there holds F0(z(t)) ≥ 2
3δ

2(z(t))d2
0

which follows from Local RIP Condition in (5.3) and F0(z(t)) defined in (2.12). Moreover

F̃ (z(t))− ‖e‖2 ≥ F0(z(t))− 2 Re
(
〈A∗(e),H(u(0),v(0))−H(h0,x0)〉

)
≥ 2

3
δ2(z(t))d2

0 − 2
√

2s‖A∗(e)‖δ(z(t))d0

where G(z(t)) ≥ 0 and the second inequality follows from (5.6). There holds

2

3
δ2(z(t))d2

0 − 2
√

2s‖A∗(e)‖δ(z(t))d0 − a‖A∗(e)‖2 ≤
[
F̃ (z(t))− c

]
+
≤ ε2d2

0

3sκ2
(1− ηω)t

and equivalently,∣∣∣∣∣δ(z(t))d0 −
3
√

2

2
‖A∗(e)‖

∣∣∣∣∣
2

≤ ε2d2
0

2sκ2
(1− ηω)t +

(
3

2
a+

9

2

)
‖A∗(e)‖2.

Solving the inequality above for δ(z(t)), we have

δ(z(t))d0 ≤ εd0√
2sκ2

(1− ηω)t/2 +

(
3
√

2

2
+

√
3

2
a+

9

2

)
‖A∗(e)‖

≤ εd0√
2sκ2

(1− ηω)t/2 + 60
√
s‖A∗(e)‖ (5.9)

where a = 2000s. Let d(t) :=

√∑s
i=1 ‖u

(t)
i ‖2‖v

(t)
i ‖2 for t ∈ Z≥0. By (5.9) and triangle inequality,

we immediately obtain |d(t) − d0| ≤ εd0√
2sκ2

(1− ηω)t/2 + 60
√
s‖A∗(e)‖.

6 Proof of the four conditions

This section is devoted to proving the four key conditions introduced in Section 5. The local
smoothness condition and the robustness condition are relatively less challenging to deal with.
The more difficult part is to show the local regularity condition and the local isometry property.
The key to solve those problems is to understand how the matrix-valued linear operator A
in (2.7) behaves on block-diagonal matrices, such asH(h,x), H(h0,x0) andH(h,x)−H(h0,x0).
In particular, when s = 1, all those matrices become rank-1 matrices, which have been well
discussed in our previous work [18].

First of all, we define the linear subspace Ti ⊂ CK×N along with its orthogonal complement
for 1 ≤ i ≤ s as

Ti := {Zi ∈ CK×N : Zi = hi0v
∗
i + uix

∗
i0, ui ∈ CK ,vi ∈ CN},

T⊥i :=

{(
IK −

hi0h
∗
i0

di0

)
Zi

(
IN −

xi0x
∗
i0

di0

)
: Zi ∈ CK×N

}
where ‖hi0‖ = ‖xi0‖ =

√
di0. In particular, hi0x

∗
i0 ∈ Ti for all 1 ≤ i ≤ s.

The proof also requires us to consider block-diagonal matrices whose i-th block belongs to
Ti (or T⊥i ). Let Z = blkdiag(Z1, · · · ,Zs) ∈ CKs×Ns be a block-diagonal matrix and say Z ∈ T
if

T := {blkdiag({Zi}si=1)|Zi ∈ Ti}
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and Z ∈ T⊥ if
T⊥ := {blkdiag({Zi}si=1)|Zi ∈ T⊥i }

where both T and T⊥ are subsets in CKs×Ns and H(h0,x0) ∈ T.

Now we take a closer look at a special case of block-diagonal matrices, i.e., H(h,x) and
calculate its projection onto T and T⊥ respectively and it suffices to consider PTi(hix∗i ) and
PT⊥i (hix

∗
i ). For each block hix

∗
i and 1 ≤ i ≤ s, there are unique orthogonal decompositions

hi := αi1hi0 + h̃i, x := αi2xi0 + x̃i, (6.1)

where hi0 ⊥ h̃i and xi0 ⊥ x̃i. It is important to note that αi1 = αi1(hi) = 〈hi0,hi〉
di0

and αi2 =

αi2(xi) = 〈xi0,xi〉
di0

and thus αi1 and αi2 are functions of hi and xi respectively. Immediately, we

have the following matrix orthogonal decomposition for hix
∗
i onto Ti and T⊥i ,

hix
∗
i − hi0x

∗
i0 = (αi1αi2 − 1)hi0x

∗
i0 + αi2h̃ix

∗
i0 + αi1hi0x̃

∗
i︸ ︷︷ ︸

belong to Ti

+ h̃ix̃
∗
i︸ ︷︷ ︸

belongs to T⊥i

(6.2)

where the first three components are in Ti while h̃ix̃
∗
i ∈ T⊥i .

6.1 Key lemmata

From the decomposition in (6.1) and (6.2), we want to analyze how ‖h̃i‖, ‖x̃i‖, αi1 and αi2

depend on δi =
‖hix∗i−hi0x∗i0‖F

di0
if δi < 1. The following lemma answers this question, which can

be viewed as an application of singular value/vector perturbation theory [33] applied to rank-1
matrices. From the lemma below, we can see that if hix

∗
i is close to hi0x

∗
i0, then PT⊥i (hix

∗
i ) is

in fact very small (of order O(δ2
i di0)).

Lemma 6.1. (Lemma 5.9 in [18]) Recall that ‖hi0‖ = ‖xi0‖ =
√
di0. If δi :=

‖hix∗i−hi0x∗i0‖F
di0

<
1, we have the following useful bounds

|αi1| ≤
‖hi‖
‖hi0‖

, |αi1αi2 − 1| ≤ δi,

and

‖h̃i‖ ≤
δi

1− δi
‖hi‖, ‖x̃i‖ ≤

δi
1− δi

‖xi‖, ‖h̃i‖‖x̃i‖ ≤
δ2
i

2(1− δi)
di0.

Moreover, if ‖hi‖ ≤ 2
√
di0 and

√
L‖Bhi‖∞ ≤ 4µ

√
di0, i.e., hi ∈ Nd

⋂
Nµ, we have

√
L‖Bih̃i‖∞ ≤

6µ
√
di0.

Now we start to focus on several results related to the linear operator A.

Lemma 6.2. (Operator norm of A). For A defined in (2.7), there holds

‖A‖ ≤
√
s(N log(NL/2) + (γ + log s) logL) (6.3)

with probability at least 1− L−γ .

Proof: Note that Ai(Zi) := {b∗lZiail}Ll=1 in (2.2). Lemma 1 in [1] implies

‖Ai‖ ≤
√
N log(NL/2) + γ′ logL

with probability at least 1− L−γ′ . By taking the union bound over 1 ≤ i ≤ s,

max ‖Ai‖ ≤
√
N log(NL/2) + (γ + log s) logL

with probability at least 1− sL−γ−log s ≥ 1− L−γ .
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For A defined in (2.7), applying the triangle inequality gives

‖A(Z)‖ =

∥∥∥∥∥
s∑
i=1

Ai(Zi)

∥∥∥∥∥ ≤
s∑
i=1

‖Ai‖‖Zi‖F ≤ max
1≤i≤s

‖Ai‖

√√√√s
s∑
i=1

‖Zi‖2F =
√
s max

1≤i≤s
‖Ai‖‖Z‖F

where Z = blkdiag(Z1, · · · ,Zs) ∈ CKs×Ns. Therefore,

‖A‖ ≤
√
s max

1≤i≤s
‖Ai‖ ≤

√
s(N log(NL/2) + (γ + log s) logL)

with probability at least 1− L−γ .

Lemma 6.3. (Restricted isometry property for A on T ). A restricted on T is well-
conditioned, i.e.,

‖PTA∗APT − PT ‖ ≤
1

10
(6.4)

where PT is the projection operator from CKs×Ns onto T , given L ≥ Cγs2 max{K,µ2
hN} log2 L

with probability at least 1− L−γ .

Remark 6.4. Here APT and PTA∗ are defined as

APT (Z) =

s∑
i=1

Ai(PTi(Zi)), PTA∗(z) = blkdiag(PT1(A∗1(z)), · · · ,PTs(A∗s(z)))

respectively where Z is a block-diagonal matrix and z ∈ CL.

Proof: From Corollary 5.3 and 5.8 in [19], we know that

‖PTiA∗iAjPTj‖ ≤
1

10s
, ∀i 6= j; ‖PTiA∗iAiPTi − PTi‖ ≤

1

10s
, ∀1 ≤ i ≤ s (6.5)

with probability at least 1− L−γ+1 if L ≥ Cγs2 max{K,µ2
hN} log2 L log(s+ 1).

For any block diagonal matrix Z = blkdiag(Z1, · · · ,Zs) ∈ CKs×Ns and Zi ∈ CK×N ,

〈Z,PTA∗APT (Z)− PT (Z)〉 =
∑

1≤i,j≤s
〈AiPTi(Zi),AjPTj (Zj)〉 − ‖PT (Z)‖2F

=

s∑
i=1

〈Zi,PTiA∗iAiPTi(Zi)− PTi(Zi)〉+
∑
i 6=j
〈AiPTi(Zi),AjPTj (Zj)〉.

(6.6)

Using (6.5), the following two inequalities hold,

|〈Zi,PTiA∗iAiPTi(Zi)− PTi(Zi)〉| ≤ ‖PTiA∗iAiPTi − PTi‖‖Zi‖2F ≤
‖Zi‖2F

10s
,

|〈AiPTi(Zi),AjPTj (Zj)〉| ≤ ‖PTiA∗iAjPTj‖‖Zi‖F ‖Zj‖F ≤
‖Zi‖F ‖Zj‖F

10s
.

After substituting both estimates into (6.6), we have

|〈Z,PTA∗APT (Z)− PT (Z)〉| ≤
∑

1≤i,j≤s

‖Zi‖F ‖Zj‖F
10s

≤ 1

10s

(
s∑
i=1

‖Zi‖F

)2

≤
‖Z‖2F

10
.

Finally, we show how A behaves when applied to block-diagonal matrices X = H(h,x).
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Lemma 6.5. (A restricted on block-diagonal matrices with rank-1 blocks).
Consider X = H(h,x) and

σ2
max(h,x) := max

1≤l≤L

s∑
i=1

|b∗l hi|2‖xi‖2. (6.7)

Conditioned on (6.3), we have

‖A(X)‖2 ≤ 4

3
‖X‖2F +2

√
2s‖X‖2Fσ2

max(h,x)(K +N) logL+8sσ2
max(h,x)(K+N) logL, (6.8)

uniformly for any h ∈ CKs and x ∈ CNs with probability at least 1 − 1
γ exp(−s(K + N)) if

L ≥ Cγs(K +N) logL. Here ‖X‖2F = ‖H(h,x)‖2F =
∑s

i=1 ‖hi‖2‖xi‖2.

Remark 6.6. Here are a few more explanations and facts about σ2
max(h,x). Note that ‖A(X)‖2

is the sum of L sub-exponential random variables, i.e.,

‖A(X)‖2 =
L∑
l=1

∣∣∣∣∣
s∑
i=1

b∗l hix
∗
iail

∣∣∣∣∣
2

. (6.9)

Here σ2
max(h,x) corresponds to the largest expectation of all those components in ‖A(X)‖2.

For σ2
max(h,x), without loss of generality, we assume ‖xi‖ = 1 for 1 ≤ i ≤ s and let h ∈ CKs

be a unit vector, i.e., ‖h‖2 =
∑s

i=1 ‖hi‖2 = 1. The bound

1

L
≤ σ2

max(h,x) ≤ K

L
(6.10)

follows from Lσ2
max(h,x) ≥

∑L
l=1

∑s
i=1 |b∗l hi|2 = ‖h‖2 = 1.

Moreover, σ2
max(h,x) and σmax(h,x) are both Lipschitz functions w.r.t. h. Now we want to

determine their Lipschitz constants. First note that for ‖xi‖ = 1, σmax(h,x) equals

σmax(h,x) = max
1≤l≤L

‖(Is ⊗ b∗l )h‖

where “⊗” denotes Kronecker product. Let u ∈ CKs be another unit vector and we have

|σmax(h,x)− σmax(u,x)| =
∣∣∣∣ max
1≤l≤L

‖(Is ⊗ b∗l )h− max
1≤l≤L

‖(Is ⊗ b∗l )u‖
∣∣∣∣

= max
1≤l≤L

|‖(Is ⊗ b∗l )h‖ − ‖(Is ⊗ b∗l )u‖|

≤ max
1≤l≤L

‖(Is ⊗ b∗l )(h− u)‖ ≤ ‖h− u‖ (6.11)

where ‖Is ⊗ b∗l ‖ = ‖bl‖
√

K
L < 1. For σ2

max(h,x),

|σ2
max(h,x)− σ2

max(u,x)| ≤ (σmax(h,x) + σmax(u,x)) · |σmax(h,x)− σmax(u,x)|

≤ 2K

L
‖h− u‖ ≤ 2‖h− u‖. (6.12)

Proof: Without loss of generality, let ‖xi‖ = 1 and
∑s

i=1 ‖hi‖2 = 1. It suffices to prove
f(h,x) ≤ 4

3 for all (h,x) ∈ CKs ⊕ CNs in (2.5) where f(h,x) is defined as

f(h,x) := ‖A(X)‖2 − 2
√

2sσ2
max(h,x)(K +N) logL− 8sσ2

max(h,x)(K +N) logL.
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Part I: Bounds of ‖A(X)‖2 for any fixed (h,x). From (6.9), we already know that Y =
‖A(X)‖2F =

∑2L
i=1 ciξ

2
i where {ξi} are i.i.d. χ2

1 random variables and c = (c1, · · · , c2L)T ∈ R2L.
More precisely, we can determine {ci}2Li=1 as∣∣∣∣∣

s∑
i=1

b∗l hix
∗ail

∣∣∣∣∣
2

= c2l−1ξ
2
2l−1 + c2lξ

2
2l, c2l−1 = c2l =

1

2

s∑
i=1

|b∗l hi|2

because
∑s

i=1 b
∗
l hix

∗
iail ∼ CN

(
0,
∑s

i=1 |b∗l hi|2
)
.

By the Bernstein inequality, there holds

P(Y − E(Y ) ≥ t) ≤ exp

(
− t2

8‖c‖2

)
∨ exp

(
− t

8‖c‖∞

)
(6.13)

where E(Y ) = ‖X‖2F = 1. In order to apply the Bernstein inequality, we need to estimate ‖c‖2
and ‖c‖∞ as follows,

‖c‖∞ =
1

2
max

1≤l≤L

s∑
i=1

|b∗l hi|2 =
1

2
σ2

max(h,x),

‖c‖22 =
1

2

L∑
l=1

∣∣∣∣∣
s∑
i=1

|b∗l hi|2‖

∣∣∣∣∣
2

≤ 1

2
max

1≤l≤L

s∑
i=1

|b∗l hi|2 ≤
1

2
σ2

max(h,x).

Applying (6.13) gives

P(‖A(X)‖2 ≥ 1 + t) ≤ exp

(
− t2

4σ2
max(h,x)

)
∨ exp

(
− t

4σ2
max(h,x)

)
.

In particular, by setting

t = g(h,x) := 2
√

2sσ2
max(h,x)(K +N) logL+ 8sσ2

max(h,x)(K +N) logL,

we have
P
(
‖A(X)‖2 ≥ 1 + g(h,x)

)
≤ e−2s(K+N)(logL).

So far, we have shown that f(h,x) ≤ 1 with probability at least 1− e−2s(K+N)(logL) for a fixed
pair of (h,x).

Part II: Covering argument. Now we will use a covering argument to extend this result
for all (h,x) and thus prove that f(h,x) ≤ 4

3 uniformly for all (h,x).
We start with defining K and Ni as ε0-nets of SKs−1 and SN−1 for h and xi, 1 ≤ i ≤ s,

respectively. The bounds |K| ≤ (1 + 2
ε0

)2sK and |Ni| ≤ (1 + 2
ε0

)2N follow from the covering
numbers of the sphere (Lemma 5.2 in [31]). Here we let N := N1 × · · · × Ns. By taking the
union bound over K×N , we have that f(h,x) ≤ 1 holds uniformly for all (h,x) ∈ K×N with
probability at least

1− (1 + 2/ε0)2s(K+N) e−2s(K+N) logL = 1− e−2s(K+N)(logL−log(1+2/ε0)).

For any (h,x) ∈ SKs−1 × SN−1 × · · · × SN−1︸ ︷︷ ︸
s times

, we can find a point (u,v) ∈ K × N satisfying

‖h− u‖ ≤ ε0 and ‖xi − vi‖ ≤ ε0 for all 1 ≤ i ≤ s. Conditioned on (6.3), we know that

‖A‖2 ≤ s(N log(NL/2) + (γ + log s) logL) ≤ s(N + γ + log s) logL.

Now we aim to evaluate |f(h,x) − f(u,v)|. First we consider |f(u,x) − f(u,v)|. Since
σ2

max(u,x) = σ2
max(u,v) if ‖xi‖ = ‖vi‖ = ‖u‖ = 1 for 1 ≤ i ≤ s, we have

|f(u,x)− f(u,v)| =
∣∣∣‖A(H(u,x))‖2F − ‖A(H(u,v))‖2F

∣∣∣
≤ ‖A(H(u,x− v))‖ · ‖A(H(u,x + v))‖

≤ ‖A‖2
√√√√ s∑

i=1

‖ui‖2‖xi − vi‖2

√√√√ s∑
i=1

‖ui‖2‖xi + vi‖2

≤ 2‖A‖2ε0 ≤ 2s(N + γ + log s)(logL)ε0
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where the first inequality is due to ||z1|2 − |z2|2| ≤ |z1 − z2||z1 + z2| for any z1, z2 ∈ C.
We proceed to estimate |f(h,x)− f(u,x)| by using (6.12) and (6.11),

|f(h,x)− f(u,x)| ≤ J1 + J2 + J3

≤ (2‖A‖2 + 2
√

2s(K +N) logL+ 16s(K +N) logL)ε0

≤ 25s(K +N + γ + log s)(logL)ε0

where (6.12) and (6.11) give

J1 =
∣∣‖A(H(h,x))‖2F − ‖A(H(u,x))‖2F

∣∣ ≤ ‖A(H(h− u,x))‖ ‖A(H(h + u,x))‖ ≤ 2‖A‖2ε0,

J2 = 2
√

2s(K +N) logL · |σmax(h,x)− σmax(u,x)| ≤ 2
√

2s(K +N) logLε0,

J3 = 8s(K +N)(logL) · |σ2
max(h,x)− σ2

max(u,x)| ≤ 16s(K +N)(logL)ε0.

Therefore, if ε0 = 1
81s(N+K+γ+log s) logL , there holds

f(h,x) ≤ f(u,v) + |f(u,x)− f(u,v)|+ |f(h,x)− f(u,x)|︸ ︷︷ ︸
≤27s(K+N+γ+log s)(logL)ε0≤ 1

3

≤ 4

3

for all (h,x) uniformly with probability at least 1 − e−2s(K+N)(logL−log(1+2/ε0)). By letting
L ≥ Cγs(K + N) logL with Cγ reasonably large and γ ≥ 1, we have logL − log (1 + 2/ε0) ≥
1
2(1 + log(γ)) and with probability at least 1− 1

γ exp(−s(K +N)).

6.2 Proof of the local restricted isometry property

Lemma 6.7. Conditioned on (6.4) and (6.8), the following RIP type of property holds:

2

3
‖X −X0‖2F ≤ ‖A(X −X0)‖2 ≤ 3

2
‖X −X0‖2F

uniformly for all (h,x) ∈ Nd ∩ Nµ ∩ Nε with µ ≥ µh and ε ≤ 1
15 if L ≥ Cγµ

2s(K + N) log2 L
for some numerical constant Cγ.

Proof: The main idea of the proof follows two steps: decompose X −X0 onto T and T⊥,
then apply (6.4) and (6.8) to PT (X −X0) and PT⊥(X −X0) respectively.

For any X = H(h,x) ∈ Nε with δi ≤ ε ≤ 1
15 , we can decompose X −X0 as the sum of two

block diagonal matrices U = blkdiag(Ui, 1 ≤ i ≤ s) and V = blkdiag(Vi, 1 ≤ i ≤ s) where each
pair of (Ui,Vi) corresponds to the orthogonal decomposition of hix

∗
i − hi0x

∗
i0,

hix
∗
i − hi0x

∗
i0 := (αi1αi2 − 1)hi0x

∗
i0 + αi2h̃ix

∗
i0 + αi1hi0x̃

∗
i︸ ︷︷ ︸

Ui∈Ti

+ h̃ix̃
∗
i︸ ︷︷ ︸

Vi∈T⊥i

(6.14)

which has been briefly discussed in (6.1) and (6.2). Note that A(X −X0) = A(U + V ) and

‖A(U)‖ − ‖A(V )‖ ≤ ‖A(U + V )‖ ≤ ‖A(U)‖+ ‖A(V )‖.

Therefore, it suffices to have a two-side bound for ‖A(U)‖ and an upper bound for ‖A(V )‖
where U ∈ T and V ∈ T⊥ in order to establish the local isometry property.

Estimation of ‖A(U)‖: For ‖A(U)‖, we know from Lemma 6.3 that√
9

10
‖U‖F ≤ ‖A(U)‖ ≤

√
11

10
‖U‖F (6.15)

and hence we only need to compute ‖U‖F . By Lemma 6.1, there also hold ‖Vi‖F ≤
δ2i

2(1−δi)di0
and δi − ‖Vi‖F ≤ ‖Ui‖F ≤ δi + ‖Vi‖F , i.e.,(

δi −
δ2
i

2(1− δi)

)
di0 ≤ ‖Ui‖F ≤

(
δi +

δ2
i

2(1− δi)

)
di0, 1 ≤ i ≤ s.
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With ‖U‖2F =
∑s

i=1 ‖Ui‖2F , it is easy to get δd0

(
1− ε

2(1−ε)

)
≤ ‖U‖F ≤ δd0

(
1 + ε

2(1−ε)

)
.

Combined with (6.15), we get√
9

10

(
1− ε

2(1− ε)

)
δd0 ≤ ‖A(U)‖ ≤

√
11

10

(
1 +

ε

2(1− ε)

)
δd0. (6.16)

Estimation of ‖A(V )‖: Note that V is a block-diagonal matrix with rank-1 block. So
applying Lemma 6.5 gives us

‖A(V )‖2 ≤ 4

3
‖V ‖2F + 2

√
2s‖V ‖2Fσ2

max(h̃, x̃)(K +N) logL+ 8sσ2
max(h̃, x̃)(K +N) logL

(6.17)

where V = H(h̃, x̃) and h̃ =

h̃1
...

h̃s

 . It suffices to get an estimation of ‖V ‖F and σ2
max(h̃, x̃) to

bound ‖A(V )‖ in (6.17).

Lemma 6.1 says that ‖h̃i‖‖x̃i‖ ≤
δ2i

2(1−δi)di0 ≤
ε

2(1−ε)δidi0 if ε < 1. Moreover,

‖x̃i‖ ≤
δi

1− δi
‖xi‖ ≤

2δi
1− δi

√
di0,

√
L‖Bh̃i‖∞ ≤ 6µ

√
di0, 1 ≤ i ≤ s (6.18)

if (h,x) belongs to Nd ∩Nµ ∩Nε. For ‖V ‖F ,

‖V ‖F =

√√√√ s∑
i=1

‖Vi‖2F =

√√√√ s∑
i=1

‖h̃i‖2‖x̃i‖2 ≤
εδd0

2(1− ε)
.

Now we aim to get an upper bound for σ2
max(h̃, x̃) by using (6.18),

σ2
max(h̃, x̃) = max

1≤l≤L

s∑
i=1

|b∗l h̃i|2‖x̃i‖2 ≤ C0
µ2
∑s

i=1 δ
2
i d

2
i0

L
= C0

µ2δ2d2
0

L
.

By substituting the estimations of ‖V ‖F and σ2
max(h̃, x̃) into (6.17)

‖A(V )‖2 ≤ ε2δ2d2
0

3(1− ε)2
+

√
2εδ2d2

0

1− ε

√
C0µ2s(K +N) logL

L
+

8C0µ
2δ2d2

0s(K +N) logL

L
. (6.19)

By letting L ≥ Cγµ2s(K+N) log2 L with Cγ sufficiently large and combining (6.19) and (6.16),
we have√

2

3
δd0 ≤ ‖A(U)‖ − ‖A(V )‖ ≤ ‖A(U + V )‖ ≤ ‖A(U)‖+ ‖A(V )‖ ≤

√
3

2
δd0,

which gives 2
3‖X −X0‖2F ≤ ‖A(X −X0)‖2 ≤ 3

2‖X −X0‖2F .

6.3 Proof of the local regularity condition

We first introduce a few notations: for all (h,x) ∈ Nd ∩Nε, consider αi1, αi2, h̃i and x̃i defined
in (6.1) and define

∆hi = hi − αihi0, ∆xi = xi − α−1
i xi0

where

αi(hi,xi) =

{
(1− δ0)αi1, if ‖hi‖2 ≥ ‖xi‖2

1
(1−δ0)αi2

, if ‖hi‖2 < ‖xi‖2
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with

δ0 :=
δ

10
. (6.20)

The function αi(hi,xi) is defined for each block of X = H(h,x). The particular form of
αi(h,x) serves primarily for proving the Lemma 6.10, i.e., local regularity condition of G(h,x).
We also define

∆h :=

h1 − α1h1,0
...

hs − αshs0

 ∈ CKs, ∆x :=

x1 − α1x1,0
...

xs − αsxs0

 ∈ CNs.

The following lemma gives bounds of ∆xi and ∆hi.

Lemma 6.8. For all (h,x) ∈ Nd ∩Nε with ε ≤ 1
15 , there hold

max{‖∆hi‖22, ‖∆xi‖22} ≤ (7.5δ2
i + 2.88δ2

0)di0,

‖∆hi‖22‖∆xi‖22 ≤
1

26
(δ2
i + δ2

0)d2
i0.

Moreover, if we assume (hi,xi) ∈ Nµ additionally, we have
√
L‖B(∆hi)‖∞ ≤ 6µ

√
di0.

Proof: We only consider ‖hi‖2 ≥ ‖xi‖2 and αi = (1 − δ0)α1i, and the other case is exactly
the same due to the symmetry. For both ∆hi and ∆xi, by definition,

∆hi = hi − αihi0 = δ0αi1hi0 + h̃i, (6.21)

∆xi = xi −
1

(1− δ0)αi1
xi0 =

(
αi2 −

1

(1− δ0)αi1

)
xi0 + x̃i, (6.22)

where hi = αi1hi0 + h̃i and xi = αi2xi0 + x̃i come from the orthogonal decomposition in (6.1).

We start with estimating ‖∆hi‖2. Note that ‖hi‖22 ≤ 4di0 and ‖αi1hi0‖22 ≤ ‖hi‖22 since
(h,x) ∈ Nd ∩Nµ. By Lemma 6.1, we have

‖∆hi‖22 = ‖h̃i‖22 + δ2
0‖αi1hi0‖22 ≤

((
δi

1− δi

)2

+ δ2
0

)
‖hi‖22 ≤ (4.6δ2

i + 4δ2
0)di0. (6.23)

Then we calculate ‖∆xi‖: from (6.22), we have

‖∆xi‖2 =

∣∣∣∣αi2 − 1

(1− δ0)αi1

∣∣∣∣2 di0 + ‖x̃i‖2 ≤
∣∣∣∣αi2 − 1

(1− δ0)αi1

∣∣∣∣2 di0 +
4δ2
i di0

(1− δi)2
,

where Lemma 6.1 gives ‖x̃i‖2 ≤ δi
1−δi ‖xi‖2 ≤

2δi
1−δi
√
di0 for (h,x) ∈ Nd ∩Nε.

So it suffices to estimate
∣∣∣αi2 − 1

(1−δ0)αi1

∣∣∣, which satisfies∣∣∣∣αi2 − 1

(1− δ0)αi1

∣∣∣∣ =
1

|αi1|

∣∣∣∣αi1αi2 − 1− δ0

1− δ0

∣∣∣∣ ≤ 1

|αi1|

(
|(αi1αi2 − 1)|+ δ0

1− δ0

)
. (6.24)

Lemma 6.1 implies that |αi1αi2 − 1| ≤ δi, and (6.1) gives

|αi1|2 =
1

di0
(‖hi‖2 − ‖h̃i‖2) ≥ 1

di0

(
1− δ2

i

(1− δi)2

)
‖hi‖2 ≥

(
1− δ2

i

(1− δi)2

)
(1− ε) (6.25)

where ‖h̃i‖ ≤ δi
1−δi ‖hi‖ and ‖hi‖2 ≥ ‖hi‖‖xi‖ ≥ (1 − ε)di0 if ‖hi‖ ≥ ‖xi‖. Substituting (6.25)

into (6.24) gives∣∣∣∣αi2 − 1

(1− δ0)αi1

∣∣∣∣ ≤ 1√
1− ε

(
1− δ2

i

(1− δi)2

)−1/2(
δi +

δ0

1− δ0

)
≤ 1.2(δi + δ0).
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Then we have

‖∆xi‖22 ≤
(

1.44(δi + δ0)2 +
4δ2
i

(1− δi)2

)
di0 ≤ (7.5δ2

i + 2.88δ2
0)di0. (6.26)

Finally, we try to bound ‖∆hi‖2‖∆xi‖2. Lemma 6.1 gives ‖h̃i‖2‖x̃i‖2 ≤
δ2i di0

2(1−δi) and |αi1| ≤ 2.

Combining them along with (6.21), (6.22), (6.23) and (6.26), we have

‖∆hi‖22‖∆xi‖22 ≤ ‖h̃i‖22‖x̃i‖22 + δ2
0 |αi1|2‖hi0‖22‖∆xi‖22 +

∣∣∣∣αi2 − 1

(1− δ0)αi1

∣∣∣∣2 ‖xi0‖22‖∆hi‖22

≤
(

δ4
i

4(1− δi)2
+ 4δ2

0(7.5δ2
i + 2.88δ2

0) + 1.44(δi + δ0)2(4.6δ2
i + 4δ2

0)

)
d2
i0

≤ (δ2
i + δ2

0)d2
i0

26
.

By symmetry, similar results hold for the case ‖hi‖2 < ‖xi‖2 and max{‖∆hi‖, ‖∆xi‖} ≤
(7.5δ2

i + 2.88δ2
0)di0.

Next, under the additional assumption (h,x) ∈ Nµ, we now prove
√
L‖B(∆hi)‖∞ ≤

6µ
√
di0:

Case 1: ‖hi‖2 ≥ ‖xi‖2 and αi = (1− δ0)αi1. By Lemma 6.1 gives |αi1| ≤ 2, which implies

√
L‖B(∆hi)‖∞ ≤

√
L‖Bhi‖∞ + (1− δ0)|αi1|

√
L‖Bhi0‖∞

≤ 4µ
√
di0 + 2(1− δ0)µh

√
di0 ≤ 6µ

√
di0.

Case 2: ‖hi‖2 < ‖xi‖2 and αi = 1
(1−δ0)αi2

. Using the same argument as (6.25) gives

|αi2|2 ≥
(

1− δ2
i

(1− δi)2

)
(1− ε).

Therefore,

√
L‖B(∆hi)‖∞ ≤

√
L‖Bhi‖∞ +

1

(1− δ0)|αi2|
√
L‖Bh0‖∞

≤ 4µ
√
d0 +

(
1− δ2

i

(1− δi)2

)−1/2
µh
√
d0

(1− δ0)
√

1− ε
≤ 6µ

√
d0.

Lemma 6.9. (Local Regularity for F (h,x)) Conditioned on (5.3) and (6.8), the following
inequality holds

Re (〈∇Fh,∆h〉+ 〈∇Fx,∆x〉) ≥ δ2d2
0

8
− 2
√
sδd0‖A∗(e)‖,

uniformly for any (h,x) ∈ Nd ∩ Nµ ∩ Nε with ε ≤ 1
15 if L ≥ Cµ2s(K + N) log2 L for some

numerical constant C.

Proof: First note that for

I0 = 〈∇Fh,∆h〉+ 〈∇Fx,∆x〉 =

s∑
i=1

〈∇Fhi ,∆hi〉+ 〈∇Fxi ,∆xi〉.

For each component, recall that (2.18) and (2.19), we have

〈∇Fhi ,∆hi〉+ 〈∇Fxi ,∆xi〉 = 〈A∗i (A(X −X0)− e)xi,∆hi〉+ 〈(A∗i (A(X −X0)− e))∗hi,∆xi〉
= 〈A(X −X0)− e,Ai((∆hi)x

∗
i + hi(∆xi)

∗)〉 .
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Define Ui and Vi as

Ui := αihi0(∆xi)
∗ + αi

−1(∆hi)x
∗
i0 ∈ Ti, Vi := ∆hi(∆xi)

∗. (6.27)

Here Vi does not necessarily belong to T⊥i . From the way of how ∆hi, ∆xi, Ui and Vi are
constructed, two simple relations hold:

hix
∗
i − hi0x

∗
i0 = Ui + Vi,

(∆hi)x
∗
i + hi(∆xi)

∗ = Ui + 2Vi.

Define U := blkdiag(U1, · · · ,Us) and V := blkdiag(V1, · · · ,Vs). I0 can be simplified to

I0 =
s∑
i=1

〈∇Fhi ,∆hi〉+ 〈∇Fxi ,∆xi〉 =
s∑
i=1

〈A(U + V )− e,Ai(Ui + 2Vi)〉

= 〈A(U + V ),A(U + 2V )〉︸ ︷︷ ︸
I01

−〈e,A(U + 2V )〉︸ ︷︷ ︸
I02

.

Now we will give a lower bound for Re(I01) and an upper bound for Re(I02) so that the lower
bound of Re(I0) is obtained. By the Cauchy-Schwarz inequality, Re(I01) has the lower bound

Re(I01) ≥ (‖A(U)‖ − ‖A(V )‖)(‖A(U)‖ − 2‖A(V )‖). (6.28)

In the following, we will give an upper bound for ‖A(V )‖ and a lower bound for ‖A(U)‖.

Upper bound for ‖A(V )‖: Note that V is a block-diagonal matrix with rank-1 blocks, and
applying Lemma 6.5 results in

‖A(V )‖2 ≤ 4

3

s∑
i=1

‖V ‖2F+2σmax(∆h,∆x)‖V ‖F
√

2s(K +N) logL+8sσ2
max(∆h,∆x)(K+N) logL.

By using Lemma 6.8, we have ‖∆hi‖2 ≤ (7.5δ2
i + 2.88δ2

0)di0 and
√
L‖B(∆hi)‖∞ ≤ 6µ

√
di0.

Substituting them into σ2
max(∆h,∆x) gives

σ2
max(∆h,∆x) = max

1≤l≤L

(
s∑
i=1

|b∗l ∆hi|2‖∆xi‖2
)
≤ 36µ2

L

s∑
i=1

(7.5δ2
i + 2.88δ2

0)d2
i0 ≤

272µ2δ2d2
0

L
.

For ‖V ‖F , note that ‖∆hi‖2‖∆xi‖2 ≤ 1
26(δ2

i + δ2
0)d2

i0 and thus

‖V ‖2F =

s∑
i=1

‖∆hi‖2‖∆xi‖2 ≤
1

26

s∑
i=1

(δ2
i + δ2

0)d2
i0 ≤

1

26
· 1.01δ2d2

0 =
δ2d2

0

25
.

Then by δ ≤ ε ≤ 1
15 and letting L ≥ Cµ2s(K + N) log2 L for a sufficiently large numerical

constant C, there holds

‖A(V )‖2 ≤ δ2d2
0

16
=⇒ ‖A(V )‖ ≤ δd0

4
. (6.29)

Lower bound for ‖A(U)‖: By the triangle inequality, ‖U‖F ≥ δd0 − 1
5δd0 ≥ 4

5δd0 if ε ≤ 1
15

since ‖V ‖F ≤ 0.2δd0. Since U ∈ T , by Lemma 6.3, there holds

‖A(U)‖ ≥
√

9

10
‖U‖F ≥

3

4
δd0. (6.30)

With the upper bound of A(V ) in (6.29), the lower bound of A(U) in (6.30), and (6.28), we

get Re(I01) ≥ δ2d20
8 .
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Now let us give an upper bound for Re(I02),

‖I02‖ ≤ ‖A∗(e)‖‖U + 2V ‖∗ = ‖A∗(e)‖
s∑
i=1

‖Ui + 2Vi︸ ︷︷ ︸
rank-2

‖∗

≤
√

2‖A∗(e)‖
s∑
i=1

‖Ui + 2Vi‖F

≤
√

2s‖A∗(e)‖‖U + 2V ‖F ≤ 2
√
sδd0‖A∗(e)‖

where ‖ · ‖ and ‖ · ‖∗ are a pair of dual norms and

‖U + 2V ‖F ≤ ‖U + V ‖F + ‖V ‖F ≤ δd0 + 0.2δd0 ≤ 1.2δd0.

Combining the estimation of Re(I01) and Re(I02) above leads to

Re(〈∇Fh,∆h〉+ 〈∇Fx,∆x〉) ≥ δ2d2
0

8
− 2
√
sδd0‖A∗(e)‖.

Lemma 6.10. (Local Regularity for G(h,x) For any (h,x) ∈ Nd
⋂
Nε with ε ≤ 1

15 and
9
10d0 ≤ d ≤ 11

10d0, 9
10di0 ≤ di ≤

11
10di0, the following inequality holds uniformly

Re (〈∇Ghi ,∆hi〉+ 〈∇Gxi ,∆xi〉) ≥ 2δ0

√
ρGi(hi,xi) =

δ

5

√
ρGi(hi,xi), (6.31)

where ρ ≥ d2 + 2‖e‖2. Immediately, we have

Re (〈∇Gh,∆h〉+ 〈∇Gx,∆x〉) =
s∑
i=1

Re (〈∇Ghi ,∆hi〉+ 〈∇Gxi ,∆xi〉) ≥
δ

5

√
ρG(h,x). (6.32)

Remark 6.11. For the local regularity condition for G(h,x), we use the results from [18] when
s = 1. This is because each component Gi(h,x) only depends on (hi,xi) by definition and thus
the lower bound of Re (〈∇Ghi ,∆hi〉+ 〈∇Gxi ,∆xi〉) is completely determined by (hi,xi) and
δ0, and is independent of s.

Proof: For each i : 1 ≤ i ≤ s, ∇Ghi (or ∇Gxi) only depends on hi (or xi) and there holds

Re (〈∇Ghi ,∆hi〉+ 〈∇Gxi ,∆xi〉) ≥ 2δ0

√
ρGi(hi,xi) =

δ

5

√
ρGi(hi,xi),

which follows exactly from Lemma 5.17 in [18]. For (6.32), by definition of ∇Gh and ∇Gx

in (2.22),

Re (〈∇Gh,∆h〉+ 〈∇Gx,∆x〉) =

s∑
i=1

Re (〈∇Ghi ,∆hi〉+ 〈∇Gxi ,∆xi〉)

≥ δ

5

s∑
i=1

√
ρGi(hi,xi) ≥

δ

5

√
ρG(h,x)

where G(h,x) =
∑s

i=1Gi(hi,xi).

Lemma 6.12. (Proof of the Local Regularity Condition) Conditioned on (5.3), for the
objective function F̃ (h,x) in (2.17), there exists a positive constant ω such that

‖∇F̃ (h,x)‖2 ≥ ω
[
F̃ (h,x)− c

]
+

(6.33)

with c = ‖e‖2 + 2000s‖A∗(e)‖2 and ω = d0
7000 for all (h,x) ∈ Nd ∩ Nµ ∩ Nε. Here we set

ρ ≥ d2 + 2‖e‖2.
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Proof: Following from Lemma 6.9 and Lemma 6.10, we have

Re(〈∇Fh,∆h〉+ 〈∇Fx,∆x〉) ≥ δ2d2
0

8
− 2
√
sδd0‖A∗(e)‖

Re(〈∇Gh,∆h〉+ 〈∇Gx,∆x〉) ≥ δd

5

√
G(h,x) ≥ 9δd0

50

√
G(h,x)

for all (h,x) ∈ Nd ∩ Nµ ∩ Nε where ρ ≥ d2 + 2‖e‖2 ≥ d2 and 9
10d0 ≤ d ≤ 11

10d0. Adding

them together gives Re
(
〈∇F̃h,∆h〉+ 〈∇F̃x,∆x〉

)
on the left side. Moreover, Cauchy-Schwarz

inequality implies

Re
(
〈∇F̃h,∆h〉+ 〈∇F̃x,∆x〉

)
≤ 4δ

√
d0‖∇F̃ (h,x)‖

where both ‖∆h‖2 and ‖∆x‖2 are bounded by 8δ2d0 in Lemma 6.8 since

‖∆h‖2 =
s∑
i=1

‖∆hi‖2 ≤
s∑
i=1

(7.5δ2
i + 2.88δ2

0)di0 ≤ 8δ2d0.

Therefore,
δ2d2

0

8
+

9δd0

√
G(h,x)

50
− 2
√
sδd0‖A∗(e)‖ ≤ 4δ

√
d0‖∇F̃ (h,x)‖. (6.34)

Dividing both sides of (6.34) by δd0, we obtain

4√
d0
‖∇F̃ (h,x)‖ ≥ δd0

12
+

9

50

√
G(h,x) +

δd0

24
− 2
√
s‖A∗(e)‖

≥ 1

6
√

6
[
√
F0(h,x) +

√
G(h,x)] +

δd0

24
− 2
√
s‖A∗(e)‖

where the Local RIP condition (5.3) implies F0(h,x) ≤ 3
2δ

2d2
0 and hence δd0

12 ≥
1

6
√

6

√
F0(h,x),

where F0(h,x) is defined in (2.12).
Note that (5.6) gives√

2 [Re(〈A∗(e),X −X0〉)]+ ≤
√

2
√

2s‖A∗(e)‖δd0 ≤
√

6δd0

4
+

4
√
s√
6
‖A∗(e)‖. (6.35)

By (6.35) and F̃ (h,x)− ‖e‖2 ≤ F0(h,x) + 2[Re(〈A∗(e),X −X0〉)]+ +G(h,x), there holds

4√
d0
‖∇F̃ (h,x)‖ ≥ 1

6
√

6

[ (√
F0(h,x) +

√
2 [Re(〈A∗(e),X −X0〉)]+ +

√
G(h,x)

)
+
δd0

24
− 1

6
√

6

(√
6δd0

4
+

4
√
s√
6
‖A∗(e)‖

)
− 2
√
s‖A∗(e)‖

≥ 1

6
√

6

[√[
F̃ (h,x)− ‖e‖2

]
+
−
√

1000s‖A∗(e)‖
]
.

For any nonnegative real numbers a and b, we have [
√

(x− a)+ − b]+ + b ≥
√

(x− a)+ and
it implies

(x− a)+ ≤ 2([
√

(x− a)+ − b]2+ + b2) =⇒ [
√

(x− a)+ − b]2+ ≥
(x− a)+

2
− b2.

Therefore, by setting a = ‖e‖2 and b =
√

1000s‖A∗(e)‖, there holds

‖∇F̃ (h,x)‖2 ≥ d0

3500

[
F̃ (h,x)− ‖e‖2

2
− 1000s‖A∗(e)‖2

]
+

≥ d0

7000

[
F̃ (h,x)− (‖e‖2 + 2000s‖A∗(e)‖2)

]
+
.
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6.4 Local smoothness

Lemma 6.13. Conditioned on (5.3), (5.4) and (6.3), for any z := (h,x) ∈ C(K+N)s and
w := (u,v) ∈ C(K+N)s such that z and z + w ∈ Nε ∩NF̃ , there holds

‖∇F̃ (z + w)−∇F̃ (z)‖ ≤ CL‖w‖,

with

CL ≤
(

10‖A‖2d0 +
2ρ

min di0

(
5 +

2L

µ2

))
where ρ ≥ d2 + 2‖e‖2 and ‖A‖ ≤

√
s(N log(NL/2) + (γ + log s) logL) holds with probability at

least 1− L−γ from Lemma 6.2.
In particular, L = O((µ2 + σ2)s(K + N) log2 L) and ‖e‖2 = O(σ2d2

0) follows from ‖e‖2 ∼
σ2d20
2L χ2

2L and (6.13). Therefore, CL can be simplified to

CL = O(d0sκ(1 + σ2)(K +N) log2 L)

by choosing ρ ≈ d2 + 2‖e‖2.

Proof: By Lemma 5.5, we know that both z = (h,x) and z+w = (h+u,x+v) ∈ Nd∩Nµ∩Nε.
Note that

∇F̃ = (∇F̃h,∇F̃x) = (∇Fh +∇Gh,∇Fx +∇Gx),

where (2.18), (2.19), (2.20) and (2.21) give ∇Fh,∇Fx,∇Gh and ∇Gx. It suffices to find out
the Lipschitz constants for all of those four functions.

Step 1: We first estimate the Lipschitz constant for ∇Fh and the result can be applied to
∇Fx due to symmetry.

∇Fh(z + w)−∇Fh(z) = A∗A(H(h + u,x + v))(x + v)− [A∗A(H(h,x))x +A∗(y)v]

= A∗(A(H(h + u,x + v)−H(h,x)))(x + v)

+A∗A(H(h,x)−H(h0,x0))v −A∗(e)v

= A∗(A(H(h + u,v) +H(u,x)))(x + v)

+A∗A(H(h,x)−H(h0,x0))v −A∗(e)v.

Note that ‖H(h,x)‖F ≤
√∑s

i=1 ‖hi‖2‖xi‖2 ≤ ‖h‖‖x‖ and z, z + w ∈ Nd directly implies

‖H(u,x) +H(h + u,v)‖F ≤ ‖u‖‖x‖+ ‖h + u‖‖v‖ ≤ 2
√
d0(‖u‖+ ‖v‖)

where ‖h + u‖ ≤ 2
√
d0. Moreover, (5.3) implies

‖H(h,x)−H(h0,x0)‖F ≤ εd0

since z ∈ Nd ∩Nµ ∩Nε. Combined with ‖A∗(e)‖ ≤ εd0 in (5.4) and ‖x + v‖ ≤ 2
√
d0, we have

‖∇Fh(z + w)−∇Fh(z)‖ ≤ 4d0‖A‖2(‖u‖+ ‖v‖) + εd0‖A‖2‖v‖+ εd0‖v‖
≤ 5d0‖A‖2(‖u‖+ ‖v‖). (6.36)

Due to the symmetry between ∇Fh and ∇Fx, we have,

‖∇Fx(z + w)−∇Fx(z)‖ ≤ 5d0‖A‖2(‖u‖+ ‖v‖). (6.37)

In other words,

‖∇F (z + w)−∇F (z)‖ ≤ 5
√

2d0‖A‖2(‖u‖+ ‖v‖) ≤ 10d0‖A‖2‖w‖

where ‖u‖+ ‖v‖ ≤
√

2‖w‖.
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Step 2: We estimate the upper bound of ‖∇Gxi(zi+wi)−∇Gxi(zi)‖. Implied by Lemma 5.19
in [18], we have

‖∇Gxi(zi + wi)−∇Gxi(zi)‖ ≤
5di0ρ

d2
i

‖vi‖. (6.38)

Step 3: We estimate the upper bound of ‖∇Ghi(z + w)−∇Ghi(z)‖. Denote

∇Ghi(z + w)−∇Ghi(z) =
ρ

2di

[
G′0

(
‖hi + ui‖2

2di

)
(hi + ui)−G′0

(
‖hi‖2

2di

)
hi

]
︸ ︷︷ ︸

j1

+
ρL

8diµ2

L∑
l=1

[
G′0

(
L|b∗l (hi + ui)|2

8diµ2

)
b∗l (hi + ui)−G′0

(
L|b∗l hi|2

8diµ2

)
b∗l hi

]
bl︸ ︷︷ ︸

j2

.

Following the same estimation of j1 and j2 in Lemma 5.19 of [18], we have

‖j1‖ ≤
5di0ρ

d2
i

‖ui‖, ‖j2‖ ≤
3ρLdi0
2d2

iµ
2
‖ui‖. (6.39)

Therefore, combining (6.38) and (6.39) gives

‖∇G(z + w)−∇G(z)‖ =

√√√√ s∑
i=1

(‖∇Ghi(z + w)−∇Ghi(z)‖2 + ‖∇Gxi(z + w)−∇Gxi(z)‖2)

≤ max

{
5di0ρ

d2
i

+
3ρLdi0
2d2

iµ
2

}√√√√ s∑
i=1

‖ui‖2 + max

{
5di0ρ

d2
i

}√√√√ s∑
i=1

‖vi‖2

≤ max

{
5di0ρ

d2
i

+
3ρLdi0
2d2

iµ
2

}
‖u‖+ max

{
5di0ρ

d2
i

}
‖v‖

≤ 2ρ

min di0

(
5 +

2L

µ2

)
‖w‖.

In summary, the Lipschitz constant CL of F̃ (z) has an upper bound as follows:

‖∇F̃ (z + w)−∇F̃ (z)‖ ≤ ‖∇F (z + w)−∇F (z)‖+ ‖∇G(z + w)−∇G(z)‖

≤
(

10‖A‖2d0 +
2ρ

min di0

(
5 +

2L

µ2

))
‖w‖.

6.5 Robustness condition and spectral initialization

In this section, we will prove the robustness condition (5.4) and also Theorem 3.2. To prove (5.4),
it suffices to show the following lemma, which is a more general version of (5.4).

Lemma 6.14. Consider a sequence of Gaussian independent random variable c = (c1, · · · , cL) ∈
CL where cl ∼ CN (0,

λ2i
L ) with λi ≤ λ. Moreover, we assume Ai in (2.2) is independent of c.

Then there holds
‖A∗(c) = ‖ max

1≤i≤s
‖A∗i (c)‖ ≤ ξ

with probability at least 1− L−γ if L ≥ Cγ+log(s)(
λ
ξ + λ2

ξ2
) max{K,N} logL/ξ2.
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Proof: It suffices to show that max1≤i≤s ‖A∗i (c)‖ ≤ ξ. For each fixed i : 1 ≤ i ≤ s,

A∗i (c) =
L∑
l=1

clbla
∗
il

The key is to apply the matrix Bernstein inequality (6.52) and we need to estimate ‖Zl‖ψ1 , and

the variance of
∑L

l=1Zl. For each l, ‖clbla∗il‖ψ1 ≤ λ
√
KN
L follows from (6.57). Moreover, the

variance of A∗i (c) is bounded by λ2 max{K,N}
L since

E[A∗i (c)(A∗i (c))∗] =
L∑
l=1

E(|cl|2‖ail‖2)blb
∗
l =

N

L

L∑
l=1

λ2
l blb

∗
l �

λ2N

L
,

E[(A∗i (c))∗(A∗i (c))] =

L∑
l=1

‖bl‖2 E(|cl|2aila∗il) =
K

L2

L∑
l=1

λ2
i IN �

λ2K

L
.

Letting t = γ logL and applying (6.52) leads to

‖A∗i (c)‖ ≤ C0 max

{
λ
√
KN log2 L

L
,

√
Cγλ2 max{K,N} logL

L

}
≤ ξ.

Therefore, by taking the union bound over 1 ≤ i ≤ s,

‖A∗i (c)‖ ≤ ξ

with probability at least 1− L−γ if L ≥ Cγ+log(s)(
λ
ξ + λ2

ξ2
) max{K,N} log2 L.

The robustness condition is an immediate result of Lemma 6.14 by setting ξ = εd0
10
√

2sκ
and

λ = σd0.

Corollary 6.15. [Robustness Condition] For e ∼ CN (0,
σ2d20
L IL)

‖A∗i (e)‖ ≤ εd0

10
√

2sκ
, ∀1 ≤ i ≤ s

with probability at least 1− L−γ if L ≥ Cγ( s
2κ2σ2

ε2
+ sκσ

ε ) max{K,N} logL.

Lemma 6.16. For e ∼ CN (0,
σ2d20
L IL), there holds

‖A∗i (y)− hi0x
∗
i0‖ ≤ ξdi0, ∀1 ≤ i ≤ s (6.40)

with probability at least 1− L−γ if L ≥ Cγ+log(s)sκ
2(µ2

h + σ2) max{K,N} logL/ξ2.

Remark 6.17. The success of the initialization algorithm completely relies on the lemma above.
As mentioned in Section 3, E(A∗i (y)) = hi0x

∗
i0 and Lemma 6.40 confirms that A∗i (y) is close to

hi0x
∗
i0 in operator norm and hence the spectral method is able to give us a reliable initialization.

Proof: Note that

A∗i (y) = A∗iAi(hi0x∗i0) +A∗i (wi)

where
wi = y −Ai(hi0x∗i0) =

∑
j 6=i
Aj(hj0x∗j0) + e (6.41)

is independent of Ai. The proof consists of two parts: 1. show that ‖A∗iAi(hi0x∗i0)−hi0x
∗
i0‖ ≤

ξdi0
2 ; 2. prove that ‖A∗i (wi)‖ ≤ ξdi0

2 .
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Part I: Following from the definition of Ai and A∗i in (2.2),

A∗iAi(hi0x∗i0)− hi0x
∗
i0 =

L∑
l=1

blb
∗
l hi0x

∗
i0(aila

∗
il − IN )︸ ︷︷ ︸

defined as Zl

.

where B∗B = IK . The sub-exponential norm of Zl is bounded by

‖Zl‖ψ1 ≤ max
1≤l≤L

‖bl‖|b∗l hi0|‖(aila∗il − IN )xi0‖ψ1 ≤
µ
√
KNdi0
L

where ‖bl‖ =
√

K
L , maxl |b∗l hi0|2 ≤

µ2di0
L and ‖(aila∗il−IN )xi0‖ψ1 ≤

√
Ndi0 follows from (6.55).

We proceed to estimate the variance of
∑L

l=1Zl by using (6.54) and (6.56):∥∥∥∥∥
L∑
l=1

E(ZlZ∗l )

∥∥∥∥∥ =
∥∥∥∑ |b∗l hi0|2x∗i0 E(aila

∗
il − IN )2xi0blb

∗
l

∥∥∥ ≤ µ2Nd2
i0

L
,∥∥∥∥∥

L∑
l=1

E(Z∗l Zl)

∥∥∥∥∥ =
K

L

∥∥∥∥∥
L∑
l=1

|b∗l hi0|2 E [(aila
∗
il − IN )xi0x

∗
i0(aila

∗
il − IN )]

∥∥∥∥∥ ≤ Kd2
i0

L
.

Therefore, the variance of
∑L

l=1Zl is bounded by
max{K,µ2hN}d

2
i0

L . By applying matrix Bernstein
inequality (6.52) and taking the union bound over all i, we prove that

‖A∗iAi(hi0x∗i0)− hi0x
∗
i0‖ ≤

ξdi0
2
, ∀1 ≤ i ≤ s

holds with probability at least 1− L−γ+1 if L ≥ Cγ+log(s) max{K,µ2
hN} logL/ξ2.

Part II: For each 1 ≤ l ≤ L, the l-th entry of wi in (6.41), i.e., (wi)l =
∑

j 6=i b
∗
l hj0x

∗
j0ajl+el,

is independent of b∗l hi0x
∗
i0ail and obeys CN (0,

σ2
il
L ). Here

σ2
il = LE |(wi)l|2 = L

∑
j 6=i
|b∗l hj0|2‖xj0‖2 + σ2‖X0‖2F

≤ µ2
h

∑
j 6=i
‖hj0‖2‖xj0‖2 + σ2‖X0‖2F ≤ (µ2

h + σ2)‖X0‖2F .

This gives maxi,l σ
2
il ≤ (µ2

h + σ2)‖X0‖2F . Thanks to the independence between wi and Ai,
applying Lemma 6.14 results in

‖A∗i (wi)‖ ≤
ξdi0

2
(6.42)

with probability 1− L−γ+1 if L ≥ C max

(
(µ2h+σ2)‖X0‖2F

ξ2d2i0
,

√
µ2h+σ2‖X0‖F

ξdi0

)
max{K,N} logL.

Therefore, combining (6.41) with (6.42), we get

‖A∗i (y)− hi0x
∗
i0‖ ≤ ‖A∗iAi(hi0x∗i0)− hi0x

∗
i0‖+ ‖A∗i (wi)‖ ≤ ξdi0

for all 1 ≤ i ≤ s with probability at least 1− L−γ+1 if

L ≥ Cγ+log(s)(µ
2
h + σ2)sκ2 max{K,N} logL/ξ2

where ‖X0‖F /di0 ≤
√
sκ.

Before moving to the proof of Theorem 3.2, we introduce a property about the projection
onto a closed convex set.
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Lemma 6.18 (Theorem 2.8 in [12]). Let Q := {w ∈ CK |
√
L‖Bw‖∞ ≤ 2

√
dµ} be a closed

nonempty convex set. There holds

Re(〈z − PQ(z),w − PQ(z)〉) ≤ 0, ∀w ∈ Q, z ∈ CK

where PQ(z) is the projection of z onto Q.

With this lemma, we can easily see

‖z−w‖2 = ‖z−PQ(z)‖2+‖PQ(z)−w‖2+2 Re(〈z−PQ(z),PQ(z)−w〉) ≥ ‖PQ(z)−w‖2 (6.43)

for all z ∈ CK and w ∈ Q. It means that projection onto nonempty closed convex set is
non-expansive. Now we present the proof of Theorem 3.2.

Proof of Theorem 3.2. By choosing L ≥ Cγ+log(s)(µ
2
h+σ2)s2κ4 max{K,N} logL/ε2, we have

‖A∗i (y)− hi0x
∗
i0‖ ≤ ξdi0, ∀1 ≤ i ≤ s (6.44)

where ξ = ε
10
√

2sκ
.

By applying the triangle inequality to (6.44), it is easy to see that

(1− ξ)di0 ≤ di ≤ (1 + ξ)di0, |di − di0| ≤ ξdi0 ≤
εdi0

10
√

2sκ
<
di0
10
, (6.45)

which gives 9
10di0 ≤ di ≤

11
10di0 where di = ‖A∗i (y)‖ according to Algorithm 1.

Part I: Proof of (u(0),v(0)) ∈ 1√
3
Nd ∩ 1√

3
Nµ Note that v

(0)
i =

√
di‖x̂i0‖ =

√
di where x̂i0 is

the leading right singular vector of A∗i (y). Therefore,

‖v(0)
i ‖ =

√
di‖x̂i0‖ =

√
di ≤

√
(1 + ξ)di0 ≤

2√
3

√
di0, ∀1 ≤ i ≤ s

which implies {v(0)
i }si=1 ∈ 1√

3
Nd.

Now we will prove that u
(0)
i ∈ 1√

3
Nd ∩ 1√

3
Nµ by Lemma 6.18. By Algorithm 1, u

(0)
i is

the minimizer to the function f(z) = 1
2‖z −

√
diĥi0‖2 over Qi := {z|

√
L‖Bz‖∞ ≤ 2

√
diµ}.

Obviously, by definition, u
(0)
i is the projection of

√
diĥi0 onto Qi. Note that u

(0)
i ∈ Qi implies√

L‖Bu
(0)
i ‖∞ ≤ 2

√
diµ ≤ 2

√
(1 + ξ)di0µ ≤ 4

√
di0µ√
3

and hence u
(0)
i ∈

1√
3
Nµ.

Moreover, due to (6.43), there holds

‖
√
diĥi0 −w‖2 ≥ ‖u(0)

i −w‖2, ∀w ∈ Qi (6.46)

In particular, let w = 0 ∈ Qi and immediately we have

‖u(0)
i ‖

2 ≤ di ≤
4

3
=⇒ u

(0)
i ∈

1√
3
Nµ.

In other words, {(u(0)
i ,v

(0)
i )}si=1 ∈ 1√

3
Nd ∩ 1√

3
Nµ.

Part II: Proof of (u(0),v(0)) ∈ N 2ε
5
√
sκ

We will show ‖u(0)
i (v

(0)
i )∗ − hi0x

∗
i0‖F ≤ 4ξdi0 for

1 ≤ i ≤ s so that
‖u(0)

i (v
(0)
i )∗−hi0x∗i0‖F
di0

≤ 2ε
5
√
sκ

.

First note that σj(A∗i (y)) ≤ ξdi0 for all j ≥ 2, which follows from Weyl’s inequality [24] for
singular values where σj(A∗i (y)) denotes the j-th largest singular value of A∗i (y). Hence there
holds

‖diĥi0x̂∗i0 − hi0x
∗
i0‖ ≤ ‖A∗i (y)− diĥi0x̂∗i0‖+ ‖A∗i (y)− hi0x

∗
i0‖ ≤ 2ξdi0. (6.47)
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On the other hand, for any i,∥∥∥∥(IK − hi0h
∗
i0

di0

)
ĥi0

∥∥∥∥ =

∥∥∥∥(IK − hi0h
∗
i0

di0

)
ĥi0x̂

∗
i0x̂i0ĥ

∗
i0

∥∥∥∥
=

∥∥∥∥(IK − hi0h
∗
i0

di0

)[
1

di0
((A∗i (y)− diĥi0x̂∗i0) + ĥi0x̂

∗
i0 −

hi0x
∗
i0

di0

]
x̂i0ĥ

∗
i0

∥∥∥∥
=

1

di0
‖A∗i (y)− hi0x

∗
i0‖+

∣∣∣∣ didi0 − 1

∣∣∣∣ ≤ 2ξ

where (IK −
hi0h

∗
i0

di0
)hi0x

∗
i0 = 0 and (A∗i (y)− diĥi0x̂∗i0)x̂i0ĥ

∗
i0 = 0. Therefore, we have∥∥∥∥∥ĥi0 − h∗i0ĥi0

di0
hi0

∥∥∥∥∥ ≤ 2ξ, ‖
√
diĥi0 − ti0hi0‖ ≤ 2

√
diξ, (6.48)

where ti0 =
√
dih
∗
i0ĥi0

di0
and |ti0| ≤

√
di/di0 <

√
2. If we substitute w by ti0hi0 ∈ Qi into (6.46),

‖
√
diĥi0 − ti0hi0‖ ≥ ‖u(0)

i − ti0hi0‖. (6.49)

where ti0hi0 ∈ Qi follows from
√
L|ti0|‖Bhi0‖∞ ≤ |ti0|

√
di0µh ≤

√
2di0µ.

Now we are ready to estimate ‖u(0)
i (v

(0)
i )∗ − hi0x

∗
i0‖F as follows,

‖u(0)
i (v

(0)
i )∗ − hi0x

∗
i0‖F ≤ ‖u

(0)
i (v

(0)
i )∗ − ti0hi0(v

(0)
i )∗‖F + ‖ti0hi0(v

(0)
i )∗ − hi0x

∗
i0‖F

≤ ‖u(0)
i − ti0hi0‖‖v

(0)
i ‖︸ ︷︷ ︸

I1

+

∥∥∥∥ didi0hi0h∗i0ĥi0x̂∗i0 − hi0x
∗
i0

∥∥∥∥
F︸ ︷︷ ︸

I2

.

Here I1 ≤ 2ξdi because ‖v(0)
i ‖ =

√
di and ‖u(0)

i −ti0hi0‖ ≤ 2
√
diξ follows from (6.48) and (6.49).

For I2, there holds

I2 =

∥∥∥∥hi0h∗i0di0

(
diĥi0x̂

∗
i0 − hi0x

∗
i0

)∥∥∥∥
F

≤ ‖diĥi0x̂∗i0 − hi0x
∗
i0‖F ≤ 2

√
2ξdi0,

which follows from (6.47). Therefore,

‖u(0)
i (v

(0)
i )∗ − hi0x

∗
i0‖F ≤ 2ξdi + 2

√
2ξdi0 ≤ 5ξdi0 ≤

2εdi0
5
√
sκ
.

Appendix

Descent Lemma

Lemma 6.19 (Lemma 6.1 in [18]). If f(z, z̄) is a continuously differentiable real-valued function
with two complex variables z and z̄, (for simplicity, we just denote f(z, z̄) by f(z) and keep in
the mind that f(z) only assumes real values) for z := (h,x) ∈ Nε ∩ NF̃ . Suppose that there
exists a constant CL such that

‖∇f(z + t∆z)−∇f(z)‖ ≤ CLt‖∆z‖, ∀0 ≤ t ≤ 1,

for all z ∈ Nε ∩NF̃ and ∆z such that z + t∆z ∈ Nε ∩NF̃ and 0 ≤ t ≤ 1. Then

f(z + ∆z) ≤ f(z) + 2 Re((∆z)T∇f(z)) + CL‖∆z‖2

where ∇f(z) := ∂f(z,z̄)
∂z is the complex conjugate of ∇f(z) = ∂f(z,z̄)

∂z̄ .
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Concentration inequality

We define the matrix ψ1-norm via

‖Z‖ψ1 := inf
u≥0
{E[exp(‖Z‖/u)] ≤ 2}.

Theorem 6.20. [16] Consider a finite sequence of Zl of independent centered random matrices
with dimension M1×M2. Assume that R := max1≤l≤L ‖Zl‖ψ1 and introduce the random matrix

S =

L∑
l=1

Zl. (6.50)

Compute the variance parameter

σ2
0 = max

{∥∥∥∥∥
L∑
l=1

E(ZlZ∗l )

∥∥∥∥∥ ,
∥∥∥∥∥
L∑
l=1

E(Z∗l Zl)
∥∥∥} , (6.51)

then for all t ≥ 0

‖S‖ ≤ C0 max{σ0

√
t+ log(M1 +M2), R log

(√
LR

σ0

)
(t+ log(M1 +M2))} (6.52)

with probability at least 1− e−t where C0 is an absolute constant.

Lemma 6.21 (Lemma 10-13 in [1], Lemma 12.4 in [19]). Let u ∈ Cn ∼ CN (0, In), then
‖u‖2 ∼ 1

2χ
2
2n and

‖‖u‖2‖ψ1 = ‖〈u,u〉‖ψ1 ≤ Cn (6.53)

and
E(uu∗ − In)2 = nIn. (6.54)

Let q ∈ Cn be any deterministic vector, then the following properties hold

‖(uu∗ − I)q‖ψ1 ≤ C
√
n‖q‖, (6.55)

E[(uu∗ − I)qq∗(uu∗ − I)] = ‖q‖2In. (6.56)

Let v ∼ CN (0, Im) be a complex Gaussian random vector in Cm, independent of u, then

‖‖u‖ · ‖v‖‖ψ1
≤ C
√
mn. (6.57)
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