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Abstract

Assume we are given a sum of linear measurements of s different rank-r matrices
of the form y =

∑s
k=1Ak(Xk). When and under which conditions is it possible to

extract (demix) the individual matrices Xk from the single measurement vector y?
And can we do the demixing numerically efficiently? We present two computationally
efficient algorithms based on hard thresholding to solve this low rank demixing problem.
We prove that under suitable conditions these algorithms are guaranteed to converge
to the correct solution at a linear rate. We discuss applications in connection with
quantum tomography and the Internet-of-Things. Numerical simulations demonstrate
the empirical performance of the proposed algorithms.

1 Introduction

Demixing problems appear in a wide range of areas, including audio source separation [16],
image processing [3], communications engineering [25], and astronomy [20]. A vast amount
of recent literature focuses on the demixing of signals with very different properties. For
instance one may be interested in the demixing of a signal that is the sum of spikes and
sines [17] or the separation of a matrix that is the sum of a sparse matrix and a low rank
matrix [4]. This paper focuses on the demixing problem where the signals to be separated
all have similar properties, i.e., they are all low rank matrices. Assume we are given a sum
of linear measurements

y =
s∑

k=1

Ak(Xk), (1)
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where {Ak}sk=1 is a set of linear operators from n × n matrices to m-dimensional vectors
and the constituents {Xk}sk=1 are unknown rank-r matrices. Our goal is to extract each
constituent matrix Xk from the single observation vector y. We face different challenges in
this homogeneous scenario, and one way to make the separation possible is by ensuring that
the sensing operators Ak are sufficiently different from each other. The problem of demixing
a sum of low rank matrices arises in quantum tomography [8], dictionary learning [12] and
wireless communications [29].

In quantum tomography one tries to reconstruct an unknown quantum state from experi-
mental data [13]. The state of a quantum system in quantum mechanics is often described by
a density matrix, which is a positive semi-definite Hermitian matrice with unit trace. Many
density matrices of interest are (or at least approximately) low rank—for instance pure states
can be represented by rank-one matrices. Hence, in quantum tomography the goal is to re-
construct low rank matrices from a set of linear measurements, and ideally by using as few
measurements as possible. In [8], a specific measurement protocol for quantum tomography
is described in which states get mixed together. In this case one has to reconstruct and
demix quantum states (i.e., low rank matrices) from a set of linear measurements.

Demixing problems of the form (1) are also expected to arise in the future Internet-of-
Things (IoT). The IoT will connect billions of wireless devices, which is far more than the
current wireless systems can technically and economically accommodate. One of the many
challenges in the design of the IoT will be its ability to manage the massive number of
sporadic traffic generating devices which are inactive most of the time, but regularly access
the network for minor updates with no human interaction [29]. It is common understand-
ing among communication engineers that this traffic cannot be handled within the current
random access procedures. Dimensioning the channel access according to classical informa-
tion and communication theory results in a severe waste of resources which does not scale
towards the requirements of the IoT. This means among others that the overhead caused
by the exchange of certain types of information between transmitter and receiver, such as
channel estimation, assignment of data slots, etc, has to be avoided as much as possible.
Without explicit channel estimation the receiver needs to blindly deconvolve (to undo the
effect of the channel) and demix the signals arriving from many different devices. We will
describe in Section 3 how this blind deconvolution-demixing problem can be phrased as a
demixing problem of rank-one matrices.

1.1 State of the Art

The low rank matrix demixing problem in (1) is a generalization of the well-known low
rank matrix recovery problem [19]. The task in low rank matrix recovery is to reconstruct
a single low rank matrix X from a few linear measurements y = A(X); that is, we have
s = 1 in (1). This problem finds applications in a wide range of disciplines, including
quantum tomography [13], and image processing [19, 30]. Many different algorithms have
been proposed for its solution [30], including convex optimization based methods [6] and non-
convex methods such as thresholding algorithms [2, 22]. The thresholding-based algorithms
proposed in this paper can be viewed as natural generalizations of the latter algorithms.
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There is a plethora of literature of various demixing problems, such as demixing of a
low rank matrix and a sparse matrix, see for example [4]. However, most of these problems
differ considerably from the one studied in this paper, since they focus on the separation of
two signals with complementary properties. Therefore we will not discuss them here in any
further detail.

Two of the first papers that consider the demixing of a sum of low rank matrices are [28]
and [18]. In [18], the authors consider a general demixing framework of the form

y = A

(
s∑

k=1

UkXk +wk

)
, (2)

where A is a right-invertible matrix, the matrices {Uk}sk=1 are random unitary matrices,
the matrices {Xk}sk=1 are the signals of interest and the vectors {wk}sk=1 are noise. In the
framework by McCoy and Tropp the signals Xk are assumed to be highly structured, which
includes the scenario where all the Xk are rank-r matrices. Thus, in that case the setup (2)
is a special instance of (1). The focus of [18] is on theoretical performance bounds of convex
approaches for solving (2). In a nutshell the authors derive compelling quantitative phase
transition bounds which show that demixing can succeed if and only if the dimension of the
observation exceeds the total degrees of freedom present in the signals.

A special case of (1) where the constituents {Xk}sk=1 are rank-one matrices has been
analyzed from a theoretical and a numerical viewpoint in [14]. There, the authors investigate
nuclear norm minimization (NNM) for the demixing problem under structured measurements
of practical interest, and show that m & s2n number of measurements are sufficient for NNM
to reliably extract each constituentXk from the single measurement vector y. It is also worth
noting that an improvement of the theoretical analysis in [14] has been announced in [21].

A limitation of the numerical methods proposed in [14] and [18] is that the resulting
semidefinite program is computationally rather expensive to solve for medium-size and large-
size problems. Some applications require numerical efficiency, in which case a different
numerical approach is needed. The goal of this paper is to develop numerically efficient algo-
rithms that can solve the nonlinear low rank matrix demixing problem without resorting to
convex optimization, and meanwhile to provide competitive theoretical recovery guarantees
for the proposed algorithms. Closest to the goal of this paper is arguably a very recent paper
by Ling and one of the authors [15]. There, the authors consider the same setup as in [14],
and propose a non-convex regularized gradient-descent based method. The differences to
this paper are that (i) [15] is specialized to the joint blind deconvolution-demixing setting
and is not designed for (1), where the unknown matrices Xk are general rank-r matrices and
the linear operators Ak are more general sensing matrices; (ii) while both algorithms fall in
the realm of non-convex optimization, [15] uses a gradient descent method and this paper
uses thresholding-based methods; (iii) the theoretical analysis in this paper does not apply
to the joint blind deconvolution-demixing setting in [15].
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1.2 Outline and Notation

The remainder of the paper is organized as follows. The numerical algorithms and their
theoretical guarantees for the demixing problem are presented in Section 2. We also introduce
an Amalgam form of restricted isometry property in Section 2 around which our theoretical
analysis revolves. In Section 3 we test our algorithms on a variety of numerical examples.
The proofs of the theoretical results are presented in Section 4. We conclude this paper with
some potential future directions in Section 5.

Throughout the paper we use the following notational conventions. We denote vectors by
bold lowercase letters and matrices by bold uppercase letters. In particular, we fix {Xk}sk=1

as the target matrices and {Xk,l}sk=1 as the iterates of the algorithms. For a matrix Z,
we use ‖Z‖ and ‖Z‖F to denote its spectral norm and Frobenius norm, respectively. For
both vectors and matrices, zT and ZT denote their transpose while z∗ and Z∗ denote
their conjugate transpose. The inner product of two matrices Z1 and Z2 is defined as
〈Z1,Z2〉 = trace(Z∗1Z2).

2 Amalgam-RIP and Algorithms

2.1 Problem Setup and Amalgam-RIP

As outlined in the introduction, we want to solve the following demixing problem:

Find all rank-r matrices Xk, given y =
s∑

k=1

Ak(Xk), (3)

where {Ak}sk=1 is a set of linear operators mapping n×n matrices to m-dimensional vectors.
Let {Ak,p | 1 ≤ k ≤ s, 1 ≤ p ≤ m} be a set of measurement matrices. We can write Ak(Z)
explicitly as

Ak(Z) =
1√
m

 〈Ak,1,Z〉
...

〈Ak,m,Z〉

 . (4)

For conciseness, we only present our algorithms and theoretical results for n×n real matrices,
but it is straightforward to modify them for n1 × n2 complex matrices.

We will propose two iterative hard thresholding algorithms for low rank matrix demix-
ing. A question of central importance is how many measurements are needed so that the
algorithms can successfully extract all the constituents {Xk}sk=1 from y. Since each Xk is
determined by r(2n−r) parameters [5], we need at least m ≥ sr(2n−r) many measurements
for the problem to be well-posed. One of our goals is to show that the proposed algorithms
can succeed already if the number of measurements is close to this information-theoretic
minimum. As is common for hard thresholding algorithms in compressed sensing and low
rank matrix recovery, the convergence analysis here will rely on some form of restricted
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isometry property (RIP). The notion most fitting to the demixing setting requires the RIP
in an amalgamated form.

Definition 2.1 (Amalgam-RIP). The set of linear operators {Ak}sk=1 satisfy the Amalgam-
RIP (ARIP) with the parameter δr if

(1− δr)
s∑

k=1

‖Zk‖2
F ≤

∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥
2

≤ (1 + δr)
s∑

k=1

‖Zk‖2
F (5)

holds for all the matrices Zk, k = 1, · · · , s of rank at most r.

Fix an index k and take Zk′ = 0 for all k′ 6= k. The ARIP implies that

(1− δr) ‖Zk‖2
F ≤ ‖Ak(Zk)‖2 ≤ (1 + δr) ‖Zk‖2

F

hold for all matrices Zk of rank at most r, which is indeed the RIP introduced in [19] for
low rank matrix recovery. When the measurements matrices in (4) have i.i.d N (0, 1) entries,
we can show that {Ak}sk=1 satisfy the ARIP with overwhelmingly high probability provided
the number of measurements is proportional to the number of degrees of freedom within the
constituents {Xk}sk=1.

Theorem 2.1. If {Ak,p | 1 ≤ k ≤ s, 1 ≤ p ≤ m} is a set of standard Gaussian matrices, then
{Ak}sk=1 satisfy the ARIP with the parameter δ with probability at least 1− 2 exp(−mδ2/64)
provided

m ≥ Cδ−2(2n+ 1)rs log(1/δ),

where C > 0 is an absolute numerical constant.

2.2 Iterative Hard Thresholding Algorithms

In this subsection, we present two iterative hard thresholding algorithms for the low rank
demixing problem. The algorithms are developed by targeting the following rank constraint
problem directly

min
{Zk}sk=1

∥∥∥∥∥y −
s∑

k=1

Ak(Zk)

∥∥∥∥∥
2

subject to rank(Zk) ≤ r.

The first algorithm, simply referred to as iterative hard thresholding (IHT), is presented
in Algorithm 1. In each iteration, the algorithm first computes the residual and then updates
each constituent separately by projected gradient descent. The search direction with respect
to each constituent is computed as the negative gradient descent direction of the objective
function when the other constituents are fixed. The hard thresholding operator Hr in the
algorithm returns the best rank r approximation of a matrix. The stepsize within the line
search can be either fixed or computed adaptively. In Algorithm 1, we compute it as the
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steepest descent stepsize along the projected gradient descent direction PTk,l(Gk,l), where
Tk,l is the tangent space of the rank r matrix manifold at the current estimate Xk,l. Let
Xk,l = Uk,lΣk,lV

∗
k,l be the singular value decomposition of Xk,l. The tangent space Tk,l

consists of matrices which share the same column or row subspaces with Xk,l [1],

Tk,l = {Uk,lZ
∗
1 +Z2V

∗
k,l | Z1 ∈ Rn×r, Z2 ∈ Rn×r}. (6)

Note that the inner loop within the algorithm is fully parallel since we update each con-
stituent separately.

Algorithm 1 Iterative Hard Thresholding for Low Rank Demixing

Initialization: Xk,0 = Uk,0Σk,0V
∗
k,0 = Hr(A∗k(y))

for l = 0, 1, · · · do
rl = y −

∑s
k=1Ak(Xk,l)

for k = 1, · · · , s do {Fully Parallel}
1. Gk,l = A∗k(rl)
2. αk,l =

‖PTk,l
(Gk,l)‖2F

‖AkPTk,l
(Gk,l)‖22

3. Xk,l+1 = Hr(Xk,l + αk,lGk,l)
end for

end for

Theorem 2.2. Assume the linear operators {Ak}sk=1 satisfy the ARIP with the parameter
δ3r. Define

γ1 =
4δ3r

1− δ3r

.

If γ1 < 1, then the iterates of IHT satisfy∥∥∥∥∥∥∥
X1,l+1 −X1

...
Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ γ1

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

.

It follows immediately that the iterates of IHT converge linearly to the underlying constituents
provided δ3r < 1/5.

If {Ak}sk=1 consist of standard Gaussian measurement matrices, then Theorem 2.2 to-
gether with Theorem 2.1 implies that the number of necessary measurements for IHT to
achieve successful recovery is O(snr) which is optimal. In addition, we can establish the
robustness of IHT against additive noise by considering the model y =

∑s
k=1Ak(Xk) + e,

where e represents a noise term.

6



Theorem 2.3. Assume y =
∑s

k=1Ak(Xk) + e and the linear operators {Ak}sk=1 satisfy the
ARIP with parameter δ3r. If γ1 < 1, then the iterates of IHT satisfy∥∥∥∥∥∥∥

X1,l −X1
...

Xs,l −Xs


∥∥∥∥∥∥∥
F

≤ γl1

∥∥∥∥∥∥∥
X1,0 −X1

...
Xs,0 −Xs


∥∥∥∥∥∥∥
F

+
ξ

1− γ1

‖e‖ ,

where

ξ =
2
√

1 + δ3r

1− δ2r

.

The application of the hard thresholding operator in Algorithm 1 requires the singular
value decomposition (SVD) of an n × n matrix in each iteration, which is computationally
expensive for unstructured matrices. Inspired by the work of Riemannian optimization for
low rank matrix reconstruction in [23, 27, 26], we propose to accelerate IHT by updating each
constituent along a projected gradient descent direction, see fast iterative hard thresholding
(FIHT) described in Algorithm 2. The key difference between Algorithms 1 and 2 lies in
Step 3. Instead of updating Xk,l along the gradient descent direction Gk,l as in IHT, FIHT
updates Xk,l along the projected gradient descent direction PTk,l(Gk,l), where Tk,l is the
tangent space defined in (6), and then followed by the hard thresholding operation.

Algorithm 2 Fast Iterative Hard Thresholding for Low Rank Demixing

Initialization: Xk,0 = Uk,0Σk,0V
∗
k,0 = Hr(A∗k(y))

for l = 0, 1, · · · do
rl = y −

∑s
k=1Ak(Xk,l)

for k = 1, · · · , s do {Fully Parallel}
1. Gk,l = A∗k(rl)
2. αk,l =

‖PTk,l
(Gk,l)‖2F

‖AkPTk,l
(Gk,l)‖22

3. Xk,l+1 = Hr(Xk,l + αk,lPTk,l(Gk,l))
end for

end for

LetWk,l = Xk,l+αk,lPTk,l(Gk,l). One can easily observe thatWk,l ∈ Tk,l and rank(Wk,l) ≤
2r. Moreover, Wk,l obeys the following decomposition [27]:

Wk,l =
[
Uk,l Q1

]
Mk,l

[
V ∗k,l
Q∗2

]
where Q1 and Q2 are two n × r orthonormal matrices such that Q1 ⊥ Uk,l and Q2 ⊥ Vk,l,
and Mk,l is a 2r × 2r matrix of the form

Mk,l =

[
Σk,l + ξk,l R∗1
R∗2 0

]
.
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Consequently, the SVD of Wk,l can be obtained from the SVD of the 2r × 2r matrix Mk,l.
Therefore, the introduction of the extra projection PTk,l for the search direction can reduce
the computational complexity of the partial SVD of Wk,l from O(n2r) flops to O(nr2 + r3)
flops. The recovery guarantee of FIHT can also be established in terms of the ARIP.

Theorem 2.4. Assume the linear operators {Ak}sk=1 satisfy the ARIP with the parameter
δ3r. Define

γ2 = 2

(
2δ2r

1− δ2r

+
δ3r

1− δ2r

+ 2δ3r

√
rs
σmax

σmin

)
,

where σmax := maxk σmax(Xk) and σmin := maxk σmin(Xk). If γ2 < 1, then the iterates of
Algorithm 2 satisfy ∥∥∥∥∥∥∥

X1,l+1 −X1
...

Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ γ2

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

.

It follows that the iterates of FIHT converge linearly to the underlying constituents provided

δ3r .
σmin

σmax

1√
rs
.

Assume {Ak}sk=1 consist of standard Gaussian matrices. In contrast to the O(srn) nec-
essary measurements for IHT to achieve successful recovery, Theorem 2.4 implies that FIHT
requires O((σmax / σmin)2s2nr2) measurements which is not optimal. However, numerical
simulations in Section 3 suggest that FIHT needs fewer measurements than IHT to be able
to successfully reconstruct s rank-r matrices.

3 Numerical Simulations and Applications

We evaluate the empirical performance of IHT and FIHT on simulated problems as well
as application examples from quantum states demxing and the Internet of Things. In the
implementation IHT and FIHT are terminated when a maximum of 500 iterations is met or
the relative residual is small,

‖y −
∑s

k=1Ak(Xk,l)‖
‖y‖

≤ 10−4.

They are considered to have successfully recovered a set of matrices {Xk}sk=1 if the returned
approximations {Xk,l}sk=1 satisfy√∑s

k=1 ‖Xk,l −Xk‖2
F√∑s

k=1 ‖Xk‖2
F

≤ 10−2.

All the random tests are repeated ten times in this section.
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3.1 Phase Transitions under Gaussian Measurements

The ARIP-based theoretical recovery guarantees in Theorems 2.2 and 2.4 are worst-case
analysis which are uniform over all rank r matrices. However, these conditions are highly
pessimistic when compared with average-case empirical observations. In this subsection we
investigate the empirical recovery performance of IHT and FIHT under Gaussian measure-
ments. The tests are conducted on n × n rank-r matrices with n = 50 and r = 5, and the
number of constituents s varies from 1 to 7. For a fixed value of constituents, a number of
equispaced values of m are tested.

We first test IHT and FIHT on well-conditioned matrices which are formed via Xk =
LkR

∗
k, where Lk ∈ Rn×r, Rk ∈ Rn×r, and their entries are drawn i.i.d. from the standard

normal distribution. The phase transitions of IHT and FIHT on well-conditioned matrices
are presented in Figures 1a and 1b, respectively. Figure 1a shows a linear correlation between
the number of measurements m and the number of constituents s for the successful recovery
of IHT. Though the recovery guarantee of FIHT in Theorem 2.4 is worse than that of IHT in
Theorem 2.2, Figure 1b shows that FIHT requires fewer measurements than IHT to achieve
successful recovery with high probability. In particular, m ≈ 3.3sr(2n − r) is sufficient for
FIHT to successfully reconstruct a set of s low rank matrices for all the tested values of s.

m vs. s for IHT: n=50, r=5
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m vs. s for FIHT: n=50, r=5
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(b)

m vs. s for FIHT on ill-conditioned matrices: n=50, r=5
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Figure 1: Empirical phase transitions of IHT and FIHT under Gaussian measurements.

To explore how the condition number of the test matrices impact the recovery of FIHT, we
further test FIHT on ill-conditioned matrices. The matrices are computed as Xk = UkΣV

∗
k ,

where Uk and Vk are two 50 by 5 random orthonormal matrices, and Σ is a 5 by 5 diagonal
matrix with the diagonal entries being 5 uniformly spaced values from 1 to 1000. So the
condition number of the test matrices is 1000. The phase transition plot of FIHT on ill-
conditioned matrices is presented in Figure 1c. The figure shows that FIHT requires more
measurements to reconstruct the test ill-conditioned matrices than to reconstruct the well-
conditioned matrices when s ≥ 5. However, FIHT is still able to reconstruct all the test
ill-conditioned matrices when m ≈ 3.8sr(2n − r). Hence, there is no strong evidence from
Figure 1c to support that the number of measurements for the successful recovery of FIHT
relies on the square of the condition number of the target matrices, which may suggest the
possibility of improving the result in Theorem 2.4.
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In the reminder of this section, we focus on the empirical performance of FIHT for its
superiority and flexibility. Though we have only established the recovery guarantee of FIHT
for real matrices under the Gaussian measurements, the algorithm is equally effective for
complex matrices and other types of measurements. In the next two subsections, we study
the applications of FIHT in quantum states demixing and the Internet of Things.

3.2 An Application in Quantum States Demixing

As stated in the introduction, the state of a quantum system can be represented by a low rank,
positive semidefinite density matrix of unit trace. Next, we present a stylized application of
FIHT to the demixing of quantum states. When the target constituents are n by n rank-r
positive semidefinite matrices of unit trace, FIHT in Algorithm 2 can be modified accordingly
to preserve the matrix structures, see Algorithm 3 for complete description.

Algorithm 3 Fast Iterative Hard Thresholding for Quantum States Demixing

Initialization: Xk,0 = Uk,0Λk,0U
∗
k,0 = P∆ (PΠ(A∗k(y)))

for l = 0, 1, · · · do
rl = y −

∑s
k=1Ak(Xk,l)

for k = 1, · · · , s do {Fully Parallel}
1. Gk,l = A∗k(rl)
2. αk,l =

‖PTk,l
(Gk,l)‖2F

‖AkPTk,l
(Gk,l)‖22

3. Xk,l+1 = P∆

(
PΠ(Xk,l + αk,lPTk,l(Gk,l))

)
end for

end for

Let Xk,l be the current rank-r estimate which is Hermitian, positive semidefinite, and so
admits an eigenvalue decomposition (equivalent to its SVD) Xk,l = Uk,lΛk,lU

∗
k,l with non-

negative eigenvalues. There are two key differences between Algorithms 2 and 3. Firstly, the
tangent space can be defined as

Tk,l = {Uk,lZ
∗ +ZU ∗k,l | Z ∈ Cn×r}.

so that all the matrices in Tk,l are Hermitian. Therefore after Xk,l is updated along the
projected gradient descent direction, Wk,l = Xk,l + αk,lPTk,l(Gk,l) remains Hermitian. In
addition, the eigenvalue decomposition of Wk,l can also be computed using O(nr2) flops as
in the computation of the SVD of the non-symmetric matrices in Algorithm 2, since Wk,l

has the following decomposition:

Wk,l =
[
Uk,l Q

]
Mk,l

[
U ∗k,l
Q∗

]
,

where
[
Uk,l Q

]
is an n× 2r orthonormal matrix and Mk,l is a 2r× 2r Hermitian matrix of

the form

Mk,l =

[
Λk,l + ξk,l R∗

R∗ 0

]
.
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Secondly, the hard thresholding operator Hr is replaced by the projection PΠ, followed by
another projection P∆, where PΠ projects Wk,l onto the set of low rank positive semidefinite
matrices

Π = {Z ∈ Cn×n | Z = Z∗, rank(Z) ≤ r, and Z � 0};

and PS projects the eigenvalues of PΠ(Wk,l) onto the simplex

∆ =

{
x ∈ Rr |

r∑
i=1

xi = 1, xi ≥ 0

}
.

Notice that the inertia of a Hermitian matrix H , denoted by inertia(H), is a triple of
integer numbers (ip, in, iz), where ip, in, iz are the number of positive, negative, and zero
eigenvalues ofH . From [9, Lemma A.15], we know that inertia(Mk,l) = inertia(N ∗Mk,lN )+
(t, t, r−t), where t = rank(R) andN is an r×(r−t) matrix whose columns forms a null space
of R. This implies that Mk,l has at most r positive eigenvalues, so does Wk,l. Therefore by
[11, Theorem 2.1], we can compute PΠ(Wk,l) by only keeping the positive eigenvalues and
the corresponding eigenvectors of Mk,l. To compute PS(·), we use an algorithm proposed in
[7], in which the computational cost is dominated by sorting a vector of length r.

m vs. s for FIHT: n=26, r=1
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m vs. s for FIHT: n=26, r=3
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Figure 2: Empirical phase transitions of FIHT for quantum states demixing.

We evaluate the recovery performance of FIHT for quantum states demixing under the
Pauli measurements, where the measurement matrices in (4) are tensor products of the Pauli
matrices. That is,

Ak,p = 2−q/2 ⊗qi=1 σa,

where

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
, σ4 =

[
1 0
0 1

]
.
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The target matrices are computed as Xk,l = 1
r
Uk,lU

∗
k,l, where Uk,l are random n×r complex

orthonormal matrices. We conduct the experiments with q = 6, r = 1 and 3, and a is selected
uniformly at random. When r = 1, it corresponds to demixing the pure states in quantum
mechanics. The phase transitions of FIHT under the Pauli measurements is presented in
Figure 2, which shows that FIHT is equally effective for quantum states demixing and
m ≈ 3.5sr(2n− r) is sufficient for successful demixing all the tested values of s from 1 to 7.

3.3 An Application from the Internet-of-Things

Demixing problems of the form (1) are also expected to play an important role in the future
IoT. In this subsection we conduct some numerical simulations for a demixing problem
related to the IoT. Before we proceed to the simulations we describe in more detail how such
a demixing problem does arise in the IoT and how it is connected to the demixing of low
rank matrices.

z1 = A1x1

z1 ∗ g1

z2 = A2x2

z2 ∗ g2

z3 = A3x3

z3 ∗ g3

z4 = A4x4

z4 ∗ g4

y =
∑

zk ∗ gkx

Figure 3: A random access wireless communication scenario in the Internet of Things: Each
device communicates with a common basestation. No explicit channel estimation is done
in order to reduce the scheduling overhead. The transmitted signals zk are of the form
zk = Ckxk, where the Ck are encoding matrices and the xk represent the data to be
transmitted. Each signal zk travels through a wireless communication channel, represented
by gk, which acts as convolution. The base station measures the signal y, which is the sum
of all received signals; and it knows the encoding matrices Ck of the individual users, but
it does neither know the zk’s (or the xk’s) nor the transmission channels gk. The goal is to
demix the received signal y and recover the signals xk of the individual users.

In mathematical terms we are dealing—in somewhat simplified form—with the following
problem. We consider a scenario where many different users/devices communicate with a
base station, see Figure 3 for an illustration of the described setup. Let xk ∈ Cn1 be the
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data that are supposed to be transmitted by the k-th user. Before transmission we encode
xk by computing zk = Ckxk, where Ck ∈ Cm×n1 is a fixed precoding matrix of the k-th
user. The encoding matrice Ck differs from user to user but is known to the receiver. Let gk
be the associated impulse response of the communication channel between the k-th user and
the base station. Since we assume that the channel does not change during the transmission
of the signal zk, gk acts as convolution operator, i.e., the signal arriving at the base station
becomes zk ∗ gk (ignoring additive noise for simplicity). However, the channels gk are not
known to the base station (or to the transmitter), since this is the overhead information that
we want to avoid transmitting, as it may change from transmission to transmission. The
signal recorded at the base station is given by a mixture of all transmitted signals convolved
with their respective channel impulse responses, i.e.,

y =
∑
k

zk ∗ gk. (7)

The goal is to demix the received signal y and recover the signals xk of the individual users.
But how is (7) related to our setup in (1)? We first note that in all wireless communication

scenarios of relevance the impulse response gk is compactly supported. In engineering terms
the size of the support of gk, denoted here by n2, is called its maximum delay spread. In
practice, the length of the transmitted signals m is typically (much) larger than the maximum
delay spread n2. Thus, gk is a m-dimensional vector which is formed by the channel impulse
responses being padded with zeroes. We can write gk as gk = [hTk , 0, . . . , 0]T , where hk is the
non-zero padded impulse response of length n2. Let F denote the m ×m unitary Discrete
Fourier Transform matrix and let B be the m×n2 matrix consisting of the first n2 columns
of F . By the circular convolution theorem, we can express the convolution between zk and
gk in the Fourier domain via

1√
m
ŷ = (FCkxk)�Bhk, (8)

where � denotes the componentwise product. Let c∗k,p represent the p-th row of FCk and
let b∗p represent the p-th row of B. A simple calculation shows that [14]

[(FCkxk)�Bhk]p = (c∗k,pxk) · (b∗phk) =
〈
ck,pb̄

∗
p,xkh̄

∗
k

〉
=
〈
ck,pb̄

∗
p,Xk

〉
, (9)

where Xk := xkh̄
∗
k is an n1 × n2 rank-one matrix containing the unknown signal and the

unknown channel of the k-th user, while ck,p and b∗p are known vectors (since Ck and B
are known). Hence, at the base station the observed signal y =

∑s
k=1 zk ∗ gk can be

expressed in the Fourier domain as 1√
m
ŷ =

∑s
k=1Ak(Xk), which is of the same form as (1)

(modulo replacing 1√
m
ŷ with y). The measurement matrices in this scenario are given by

Ak,p = ck,pb̄
∗
p.

We test FIHT (Algorithm 2) for the demixing problem described in (8) with n1 = 128
and n2 = 32, which are of interest in practice. As a result, the constituents are non-square
matrices. Two types of encoding matrices are tested: a) the entries of Ck are standard
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Figure 4: Empirical phase transitions of FIHT for the application from the IoT.

complex Gaussian variables; and b) Ck = DkH , whereH is the first n2 columns of an m×m
Hadamard matrix, and then premultiplied by an m×m diagonal random sign matrixD. The
target signals xk and hk are complex Gaussian random vectors. The phase transition plot
for Ck being a Gaussian matrix is presented in Figure 4a, where the number of constituents
varies from 1 to 7. Figure 4a displays a linear correlation between the number of necessary
measurements and the number of the constituents, and it shows that m ≈ 3s(n1 + n2)
number of measurements are sufficient for successful demixing of the transmission signals
and the impulse responses. When Ck is formed from a partial Hadamard matrix, we only
test m = 210, 211, 212, and 213 due to the Hadamard conjecture [10], but a larger range of s
are tested. The phase transition plot presented in Figure 4b shows that FIHT is still able to
successfully demix the transmission signals and the impulse responses when m ≈ 3s(n1 +n2).

3.4 Robustness to Additive Noise

We explore the robustness of FIHT against additive noise by conducting tests on the problem
instances set up in the last three subsections. We have established in Theorem 2.3 that
Algorithm 1 (IHT) is stable in the presence of additive noise, but could not provide a similar
theoretical robustness guarantee for FIHT because of the more involved nature of the current
convergence analysis framework of FIHT. Yet, empirical evidence clearly indicates that FIHT
also shows the desirable stability vis-à-vis noise, as we will demonstrate in this subsection.

We assume that the measurement vectors y in the tests are corrupted by

e = σ · ‖y‖ · w
‖w‖

,

where w is an m × 1 standard Gaussian vector, either real or complex up to the testing
environment, and σ takes nine different values of σ from 10−4 to 1. For each problem instance,
two values of the number of measurements are tested. The average relative reconstruction
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error out in dB against the signal to noise ratio (SNR) is plotted in Figure 5. The figure
shows that the relative reconstruction error scales linearly with the noise levels under different
measurement schemes. Moreover, as desired, the relative reconstruction error decreases
linearly on a log-log scale as the number of measurements increases.

3.5 A Rank Increasing Heuristic

While in some applications the rank of the target matrices is known a priori, for example
in pure states demxing and the IoT application, we may not know the matrix rank exactly
in other applications. Here, we suggest a rank increasing heuristic when the rank of the
matrices is not known. Starting from rank one, we execute FIHT until the residual is not
decreasing significantly; and then we successively increase the rank and repeat this procedure
until the residual is sufficiently small. We test this heuristic using problems instances from
Subsections 3.1 and 3.2. The relative residual plotted against the number of iterations is
presented in Figure 6. The jumps in the error curves correspond to the iteration steps when
the algorithm increases the assumed rank of the unknown matrices by 1.

4 Proofs

4.1 Proof of Theorem 2.1

Proof. Let {Zk}sk=1 be a set of fixed matrices with rank(Zk) ≤ r for all 1 ≤ k ≤ s. One can
easily see that

√
m

s∑
k=1

Ak(Zk) =


∑s

k=1 〈Ak,1,Zk〉
...∑s

k=1 〈Ak,m,Zk〉

 .
Since for any 1 ≤ p ≤ m, A1,p,A2,p, · · · ,As,p are independent from each other, one has

s∑
k=1

〈Ak,p,Zk〉 ∼ N (0,
s∑

k=1

‖Zk‖2
F ).

Therefore,

m

∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥
2

=
m∑
p=1

∣∣∣∣∣
s∑

k=1

〈Ak,p,Zk〉

∣∣∣∣∣
2

∼
m∑
p=1

(
s∑

k=1

‖Zk‖2
F

)
ξ2
p ,

where ξ2
p , p = 1, · · · ,m are i.i.d χ2 variables. Consequently,

E

m∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥
2
 = m

s∑
k=1

‖Zk‖2
F ,
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Figure 5: Robustness of FIHT under different measurements: (a) Gaussian measurements
with s = 5, (b) and (c) Pauli measurements with s = 5 , (d) and (e) applications in the IoT
with s = 5 and s = 10, respectively.
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Figure 6: Rank increasing heuristic for FIHT: (a) Gaussian measurements with s = 5,
n = 50, r = 5, and m = 3sr(2n− r), and (b) Pauli measurements with s = 5, n = 26, r = 5,
and m = 3sr(2n − r). The jumps in the two error curves correspond to the iteration steps
when the algorithm increases the assumed rank of the unknown matrices.

and the application of the Bernstein inequality for Chi-squared variables [24] gives

P

∣∣∣∣∣∣m
∥∥∥∥∥

s∑
k=1

Ak(Zk)

∥∥∥∥∥
2

−m
s∑

k=1

‖Zk‖2
F

∣∣∣∣∣∣ ≥ t


≤ 2 exp

(
−min

{
t2

8m
(∑s

k=1 ‖Zk‖2
F

)2 ,
t

8
∑s

k=1 ‖Zk‖2
F

})
.

Taking t = δ ·m
∑s

k=1 ‖Zk‖2
F gives

P

∣∣∣∣∣∣
∥∥∥∥∥

s∑
k=1

Ak(Zk)

∥∥∥∥∥
2

−
s∑

k=1

‖Zk‖2
F

∣∣∣∣∣∣ ≥ δ
s∑

k=1

‖Zk‖2
F

 ≤ 2 exp

(
−mδ

2

8

)
for 0 < δ < 1. This implies for fixed {Zk}sk=1, we have that

(1− δ)
s∑

k=1

‖Zk‖2
F ≤

∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥
2

≤ (1 + δ)
s∑

k=1

‖Zk‖2
F (10)

holds with probability at least 1− 2e−mδ
2/8.

The rest of the proof follows essentially from the proof of Theorem 2.3 in [5]. Due to the
homogeneity of the problem with respect to

∑s
k=1 ‖Zk‖2

F , we only need to show (10) for the
set of matrices in

Sr =

{
[Z1, · · · ,Zs]

T : rank(Zk) ≤ r and
s∑

k=1

‖Z‖2
F = 1

}
.
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Based on the SVD of each Zk, we have

Sr =

{
[U1Σ1V

∗
1 , · · · ,UsΣsV

∗
s ]T : U ∗kUk = I,V ∗k V = I and

s∑
k=1

r∑
i=1

|Σi,i
k |

2 = 1

}
.

Define Qn,r = {Q ∈ Rn×r : Q∗Q = I}. It has been shown in [5] that Qn,r has a ε-net
Qn,r ⊂ Qn,r of cardinality |Qn,r| ≤ (3/ε)nr under the ‖·‖1,2 norm. In other words, for any

Q ∈ Qn,r, there exists a Q ∈ Qn,r such that∥∥Q−Q∥∥
1,2

= max
1≤i≤r

∥∥Q(:, i)−Q(:, i)
∥∥ ≤ ε.

Let D be the set of rs × rs diagonal matrices with unit norm diagonal entries. It is well
known that D has a ε-net D ⊂ D of cardinality |D| ≤ (3/ε)rs [24]. Define

Sr =
{

[U 1Σ1V
∗
1, · · · ,U sΣsV

∗
s]
T : U k ∈ Qn,r, V k ∈ Qn,r, and diag(Σ1, · · · ,Σk) ∈ D

}
.

We are going to show that Sr is a 3ε-net of Sr with cardinality |Sr| ≤ (3/ε)(2n+1)rs.
First note that for any [U1Σ1V

∗
1 , · · · ,UsΣsV

∗
s ]T , there exists a [U 1Σ1V

∗
1, · · · ,U sΣsV

∗
s]
T ∈

Sr such that
∥∥Uk −U k

∥∥
1,2
≤ ε,

∥∥Vk − V k

∥∥
1,2
≤ ε, and

√∑s
k=1

∥∥Σk −Σk

∥∥2

F
≤ ε. Thus,∥∥∥∥∥∥∥

U1Σ1V
∗

1
...

UsΣsV
∗
s

−
U 1Σ1V

∗
1

...

U sΣsV
∗
s


∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥
(U1 −U 1)Σ1V

∗
1

...
(Us −U s)ΣsV

∗
s


∥∥∥∥∥∥∥
F

+

∥∥∥∥∥∥∥
U 1(Σ1 −Σ1)V ∗1

...
U s(Σs −Σs)V

∗
s


∥∥∥∥∥∥∥
F

+

∥∥∥∥∥∥∥
U1Σ1(V1 − V 1)∗

...
UsΣs(Vs − V s)

∗


∥∥∥∥∥∥∥
F

:= I1 + I2 + I3 .

Since ∥∥∥∥∥∥∥
(U1 −U 1)Σ1V

∗
1

...
(Us −U s)ΣsV

∗
s


∥∥∥∥∥∥∥

2

F

=
s∑

k=1

∥∥(Uk −U k)ΣkV
∗
k

∥∥2

F

=
s∑

k=1

∥∥(Uk −U k)Σk

∥∥2

F

=
s∑

k=1

r∑
i=1

|Σi,i
k |

2
∥∥Uk(:, i)−U k(:, i)

∥∥2

≤
s∑

k=1

r∑
i=1

|Σi,i
k |

2
∥∥Uk −U k

∥∥2

1,2
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≤ ε2
s∑

k=1

r∑
i=1

|Σi,i
k |

2 = ε2,

we have I1 ≤ ε. Similarly, the third term can be bounded as I3 ≤ ε. To bound I2, note that∥∥∥∥∥∥∥
U 1(Σ1 −Σ1)V ∗1

...
U s(Σ1 −Σs)V

∗
s


∥∥∥∥∥∥∥

2

F

=
s∑

k=1

∥∥U k(Σk −Σk)V
∗
k

∥∥2

F

=
s∑

k=1

∥∥Σk −Σk

∥∥2

F
= ε2.

So we also have I2 ≤ ε. Combining the bounds for I1, I2 and I3 together implies that Sr is
a 3ε-net of Sr with cardinality |Sr| ≤ (3/ε)(2n+1)rs. Therefore,

P

 max
{Zk}sk=1∈Sr

∣∣∣∣∣∣
∥∥∥∥∥

s∑
k=1

Ak(Zk)

∥∥∥∥∥
2

−
s∑

k=1

‖Zk‖2
F

∣∣∣∣∣∣ ≥ δ/2

 ≤ 2

(
3

ε

)(2n+1)rs

e−mδ
2/32 ≤ 2e−mδ

2/64

provided

m ≥ 64δ−2(2n+ 1)rs log(3/ε).

So for all
{
Zk

}
∈ Sk, we have

1− δ/2 ≤

∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥ ≤ 1 + δ/2

with probability at least 1− 2e−mδ
2/64.

Define

κr = sup
{Zk}sk=1∈Sr

∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥ .
In the following, we will take ε = δ/(12

√
2). So Sr is a δ/(4

√
2)-net of Sr; and for any

{Zk}sk=1 ∈ Sr, there exist {Zk}sk=1 ∈ Sr such that∥∥∥∥∥∥∥
Z1 −Z1

...
Zs −Zs


∥∥∥∥∥∥∥
F

=

√√√√ s∑
k=1

∥∥Zk −Zk

∥∥2

F
≤ δ/(4

√
2).

Thus, ∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥ ≤
∥∥∥∥∥

s∑
k=1

Ak
(
Zk

)∥∥∥∥∥+

∥∥∥∥∥
s∑

k=1

Ak
(
Zk −Zk

)∥∥∥∥∥
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≤ 1 + δ/2 +

∥∥∥∥∥
s∑

k=1

Ak
(
Zk −Zk

)∥∥∥∥∥ . (11)

Since Zk −Zk is a matrix of rank at most 2r, we can decompose it as

Zk −Zk = Y 1
k + Y 2

k ,

where 〈Y 1
k ,Y

2
k 〉 = 0, rank(Y i

k ) ≤ r (i = 1, 2), and ‖Y 1
k ‖

2
F + ‖Y 2

k ‖
2
F =

∥∥Zk −Zk

∥∥2

F
. Then it

follows that ∥∥∥∥∥
s∑

k=1

Ak
(
Zk −Zk

)∥∥∥∥∥ ≤
∥∥∥∥∥

s∑
k=1

Ak(Y 1
k )

∥∥∥∥∥+

∥∥∥∥∥
s∑

k=1

Ak(Y 2
k )

∥∥∥∥∥
≤ κr

√√√√ s∑
k=1

‖Y 1
k ‖

2
F +

√√√√ s∑
k=1

‖Y 2
k ‖

2
F


≤
√

2κr

√√√√ s∑
k=1

‖Y 1
k ‖

2
F +

s∑
k=1

‖Y 2
k ‖

2
F

=
√

2κr

√√√√ s∑
k=1

∥∥Zk −Zk

∥∥2

F

≤ δκr
4
. (12)

where the second line follows from

{
Y i
k /
√∑s

k=1 ‖Y i
k ‖

2

F

}s
k=1

∈ Sr for i = 1, 2. Inserting (12)

into (11) gives
κr ≤ 1 + δ/2 + δκr/4,

which implies κr ≤ 1 + δ and ∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥ ≤ 1 + δ (13)

for all {Zk}sk=1 ∈ Sr. The lower bound can be obtained in the following way:∥∥∥∥∥
s∑

k=1

Ak(Zk)

∥∥∥∥∥ ≥
∥∥∥∥∥

s∑
k=1

Ak
(
Zk

)∥∥∥∥∥−
∥∥∥∥∥

s∑
k=1

Ak
(
Zk −Zk

)∥∥∥∥∥
≥ 1− δ/2− δ(1 + δ)/4

≥ 1− δ. (14)

where the second line follows from (12) and the bound for κr. The upper and lower bounds
in (13) and (14) can be easily transferred into the desired ARIP bounds by a change of
variables.
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4.2 Proof of Theorem 2.2

Proof. Let Uk,l+1, Uk,l, and Uk be the left singular vectors of Xk,l+1, Xk,l and Xk, respec-
tively. Let Qk,l be an n×3r orthonormal matrix which spans the union of the column spaces
of Uk,l+1, Uk,l, and Uk. We have Xk,l+1 = PUk,l+1

(Xk,l + αk,lGk,l). Moreover, by comparing
the following two equalities,

‖Xk,l+1 − (Xk,l + αk,lGk,l)‖2
F =

∥∥Xk,l+1 − PQk,l
(Xk,l + αk,lGk,l)

∥∥2

F
+
∥∥∥PQ⊥

k,l
(Xk,l + αk,lGk,l)

∥∥∥2

F
,

‖Xk − (Xk,l + αk,lGk,l)‖2
F =

∥∥Xk − PQk,l
(Xk,l + αk,lGk,l)

∥∥2

F
+
∥∥∥PQ⊥

k,l
(Xk,l + αk,lGk,l)

∥∥∥2

F
,

we have ∥∥Xk,l+1 − PQk,l
(Xk,l + αk,lGk,l)

∥∥
F
≤
∥∥Xk − PQk,l

(Xk,l + αk,lGk,l)
∥∥
F

since Xk,l+1 is the best rank r approximation of Xk,l + αk,lGk,l. Thus,

‖Xk,l+1 −Xk‖F ≤
∥∥Xk,l+1 − PQk,l

(Xk,l + αk,lGk,l)
∥∥
F

+
∥∥Xk − PQk,l

(Xk,l + αk,lGk,l)
∥∥
F

≤ 2
∥∥Xk − PQk,l

(Xk,l + αk,lGk,l)
∥∥
F

= 2
∥∥PQk,l

(Xk,l)− PQk,l
(Xk) + αk,lPQk,l

(Gk,l)
∥∥
F
.

Consequently we have∥∥∥∥∥∥∥
X1,l+1 −X1

...
Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ 2

∥∥∥∥∥∥∥
PQ1,l

(X1,l)− PQ1,l
(X1) + α1,lPQ1,l

(G1,l)
...

PQs,l
(Xs,l)− PQs,l

(Xs) + αs,lPQs,l
(Gs,l)


∥∥∥∥∥∥∥
F

= 2

∥∥∥∥∥∥∥
PQ1,l

(X1,l −X1)− α1,lPQ1,l
A∗1
∑s

k=1Ak(Xk,l −Xk)
...

PQs,l
(Xs,l −Xs)− αs,lPQ1,l

A∗s
∑s

k=1Ak(Xk,l −Xk)


∥∥∥∥∥∥∥
F

= 2

∥∥∥∥∥∥∥
PQ1,l

(X1,l −X1)− α1,lPQ1,l
A∗1
∑s

k=1AkPQk,l
(Xk,l −Xk)

...
PQs,l

(Xs,l −Xs)− αs,lPQ1,l
A∗s
∑s

k=1AkPQk,l
(Xk,l −Xk)


∥∥∥∥∥∥∥
F

:= 2 ‖I1‖F (15)

where in the third line, we have used the fact PQk,l
(Xk,l−Xk) = (Xk,l−Xk) for all 1 ≤ k ≤ s.

In order to bound I1, we first rewrite it into the following matrix-vector product form

I1 = Aα

X1,l −X1
...

Xs,l −Xs

 , (16)
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where

Aα =

PQ1,l
· · · 0

...
. . .

...
0 · · · PQs,l

−
α1,l

. . .

αs,l


PQ1,l

A∗1
...

PQs,l
A∗s

 [A1PQ1,l
· · · AsPQs,l

]
.

So it suffices to bound the spectral norm of Aα. Denote Aα by A when αk,l = 1 for all
1 ≤ k ≤ s in Aα. Let Y = [Y1, · · · ,Ys]T . Since A is self-adjoint, we have

‖A‖ = sup
‖Y ‖F =1

|〈Y ,A(Y )〉|

= sup
‖Y ‖F =1

∣∣∣∣∣
s∑

k=1

∥∥PQk,l
(Yk)

∥∥2

F
−

∥∥∥∥∥
s∑

k=1

AkPQk,l
(Yk)

∥∥∥∥∥
∣∣∣∣∣

≤ sup
‖Y ‖F =1

δ3r

s∑
k=1

∥∥PQk,l
(Yk)

∥∥2

F

≤ δ3r,

where the third line follows from the ARIP and the fact PQk,l
(Yk), k = 1, · · · , s are matrices

of rank at most 3r. It follows that

‖Aα‖ ≤ ‖Aα −A‖+ ‖A‖

≤ max
k
|αk,l − 1|

∥∥∥∥∥∥∥∥∥


PQ1,l

A∗1
PQ2,l

A∗2
...

PQs,l
A∗s

 [A1PQ1,l
A2PQ2,l

· · · AsPQs,l

]
∥∥∥∥∥∥∥∥∥

≤ δ2r(1 + δ3r)

1− δ2r

+ δ3r

≤ 2δ3r

1− δ3r

,

where in the third line we use the following ARIP bound for αk,l

1

1 + δ2r

≤ αk,l =
‖PTk,l(Gk,l)‖2

F

‖AkPTk,l(Gk,l)‖2
2

≤ 1

1− δ2r

. (17)

Combining the spectral of Aα together with (15) and (16) gives∥∥∥∥∥∥∥
X1,l+1 −X1

...
Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ 4δ3r

1− δ3r

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

,

which completes the proof of the theorem.
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4.3 Proof of Theorem 2.3

Proof. To prove the convergence of IHT under additive noise, we only need to modify (15)
slightly as follows:∥∥∥∥∥∥∥

X1,l+1 −X1
...

Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ 2

∥∥∥∥∥∥∥
PQ1,l

(X1,l)− PQ1,l
(X1) + α1,lPQ1,l

(G1,l)
...

PQs,l
(Xs,l)− PQs,l

(Xs) + αs,lPQs,l
(Gs,l)


∥∥∥∥∥∥∥
F

≤ 2

∥∥∥∥∥∥∥
PQ1,l

(X1,l −X1)− α1,lPQ1,l
A∗1
∑s

k=1Ak(Xk,l −Xk)
...

PQs,l
(Xs,l −Xs)− αs,lPQ1,l

A∗s
∑s

k=1Ak(Xk,l −Xk)


∥∥∥∥∥∥∥
F

+ 2

∥∥∥∥∥∥∥
α1,lPQ1,l

A∗1(e)
...

αs,lPQs,l
A∗s(e)


∥∥∥∥∥∥∥
F

:= I′11 + I′12 .

The proof of Theorem 2.2 shows that

I′11 ≤
4δ3r

1− δ3r

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

,

while I′12 can be bounded as

I′12 ≤ 2 max
k
|αk,l|

∥∥∥∥∥∥∥
PQ1,l

A∗1(e)
...

PQs,l
A∗s(e)


∥∥∥∥∥∥∥
F

= 2 max
k
|αk,l| max

{Yk}sk=1,
∑s

k=1‖Yk‖2F =1

s∑
k=1

〈
PQk,l

A∗1(e),Yk
〉

≤ 2

1− δ2r

‖e‖ max
{Yk}sk=1,

∑s
k=1‖Yk‖2F =1

∥∥∥∥∥
s∑

k=1

AkPQk,l
(Yk)

∥∥∥∥∥
≤ 2
√

1 + δ3r

1− δ2r

‖e‖ ,

where in the third line we utilize the bound for αk,l in (17) and in the last line we utilize the
definition of the ARIP. Therefore,∥∥∥∥∥∥∥

X1,l+1 −X1
...

Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ 4δ3r

1− δ3r

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

+
2
√

1 + δ3r

1− δ2r

‖e‖ .

The proof is complete after we apply the above inequality recursively.
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4.4 Proof of Theorem 2.4

Proof. Let Wk,l = Xk,l + αk,lPTk,l(Gk,l). The following inequality holds:∥∥∥∥∥∥∥
X1,l+1 −X1

...
Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

=

√√√√ s∑
k=1

‖Xk,l+1 −Xk‖2
F ≤

√√√√4
s∑

k=1

‖Wk,l −Xk‖2
F = 2

∥∥∥∥∥∥∥
W1,l −X1

...
Ws,l −Xs


∥∥∥∥∥∥∥
F

,

where the inequality follows from

‖Xk,l+1 −Xk‖F ≤ ‖Xk,l+1 −Wk,l‖F + ‖Wk,l −Xk‖F ≤ 2 ‖Wk,l −Xk‖F .

This leads to∥∥∥∥∥∥∥
X1,l+1 −X1

...
Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ 2

∥∥∥∥∥∥∥
X1,l + α1,lPT1,l(G1,l)−X1

...
Xs,l + αs,lPT1,l(Gs,l)−Xs


∥∥∥∥∥∥∥
F

= 2

∥∥∥∥∥∥∥
X1,l −X1 − α1,lPT1,lA∗1

∑s
k=1Ak(Xk,l −Xk)

...
Xs,l −Xs − αs,lPTs,lA∗s

∑s
k=1Ak(Xk,l −Xk)


∥∥∥∥∥∥∥
F

≤ 2

∥∥∥∥∥∥∥
PT1,l(X1,l −X1)− α1,lPT1,lA∗1

∑s
k=1AkPTk,l(Xk,l −Xk)

...
PTs,l(Xs,l −Xs)− αs,lPTs,lA∗s

∑s
k=1AkPTk,l(Xk,l −Xk)


∥∥∥∥∥∥∥
F

+ 2

∥∥∥∥∥∥∥
α1,lPT1,lA∗1

∑s
k=1Ak(I − PTk,l)(Xk,l −Xk)

...
αs,lPTs,lA∗s

∑s
k=1Ak(I − PTk,l)(Xk,l −Xk)


∥∥∥∥∥∥∥
F

+ 2

∥∥∥∥∥∥∥
(I − PT1,l)X1

...
(I − PTs,l)Xs


∥∥∥∥∥∥∥
F

:= 2 ‖I2‖F + 2 ‖I3‖F + 2 ‖I4‖F . (18)

Following the same argument for the bound of I1 in (15), we can bound I2 as

‖I2‖F ≤
2δ2r

1− δ2r

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

by noting that all the matrices in Tk,l are of rank at most 2r.
Next, I3 can be bounded in the following way:

‖I3‖F ≤ max
k
|αk,l| sup

{Yk}sk=1,
∑s

k=1‖Yk‖2F =1

∣∣∣∣∣
s∑

k=1

〈
Yk,PTk,lA∗k

s∑
k=1

Ak(I − PTk,l)(Xk,l −Xk)

〉∣∣∣∣∣
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= max
k
|αk,l| sup

{Yk}sk=1,
∑s

k=1‖Yk‖2F =1

∣∣∣∣∣
s∑

k=1

〈
AkPTk,l (Yk) ,

s∑
k=1

Ak(I − PTk,l)(Xk,l −Xk)

〉∣∣∣∣∣
≤ max

k
|αk,l| sup

{Yk}sk=1,
∑s

k=1‖Yk‖2F =1

δ3r

√√√√ s∑
k=1

∥∥PTk,l(Yk)∥∥2

F

√√√√ s∑
k=1

∥∥(I − PTk,l)(Xk,l −Xk)
∥∥2

F

≤ δ3r

1− δ2r

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

,

where the third line follows from Lemma 5.1 in the appendix, and the fourth line follows
from the ARIP bound for αk,l in (17).

To bound I4, first note that the application of Lemma 5.2 in the appendix gives

‖(I − PTk,l)(Xk)‖F ≤
‖Xk,l −Xk‖2

F

σmin(Xk)
≤

maxk ‖Xk,l −Xk‖F
σmin

‖Xk,l −Xk‖F ,

where σmin := mink σmin(Xk). Thus,

‖I4‖F ≤
maxk ‖Xk,l −Xk‖F

σmin

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

≤ 1

σmin

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

·

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

.

Substituting the bounds for I2, I3 and I4 into (18) gives∥∥∥∥∥∥∥
X1,l+1 −X1

...
Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ 2

 2δ2r

1− δ2r

+
δ3r

1− δ2r

+
1

σmin

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F


∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

.

Assume

ρ := 2

 2δ2r

1− δ2r

+
δ3r

1− δ2r

+
1

σmin

∥∥∥∥∥∥∥
X1,0 −X1

...
Xs,0 −Xs


∥∥∥∥∥∥∥
F

 < 1.

By induction, we have ∥∥∥∥∥∥∥
X1,l+1 −X1

...
Xs,l+1 −Xs


∥∥∥∥∥∥∥
F

≤ ρ

∥∥∥∥∥∥∥
X1,l −X1

...
Xs,l −Xs


∥∥∥∥∥∥∥
F

Note that the initial guess is obtained by one-step hard thresholding with αk,l = 1. So
following the proof of Theorem 2.2 we have∥∥∥∥∥∥∥

X1,0 −X1
...

Xs,0 −Xs


∥∥∥∥∥∥∥
F

≤ 2δ3r

∥∥∥∥∥∥∥
X1

...
Xs


∥∥∥∥∥∥∥
F

.
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Therefore, one has ρ < 1 if

2

 2δ2r

1− δ2r

+
δ3r

1− δ2r

+
2δ3r

σmin

∥∥∥∥∥∥∥
X1

...
Xs


∥∥∥∥∥∥∥
F

 < 1. (19)

Since ∥∥∥∥∥∥∥
X1

...
Xs


∥∥∥∥∥∥∥
F

=

√√√√ s∑
k=1

‖Xk‖2
F ≤

√√√√ s∑
k=1

r σmax
2(Xk) ≤

√
rs σmax,

(19) holds if

2

(
2δ2r

1− δ2r

+
δ3r

1− δ2r

+ 2δ3r

√
rs
σmax

σmin

)
< 1,

where σmax := maxk σmax(Xk).

5 Conclusion and Future Directions

We have presented the first computationally efficient algorithms that can extract low rank
matrices from a sum of linear measurements. These algorithms have potential applications
in areas such as wireless communications and quantum tomography. Numerical simulations
show an empirical performance that is quite close to the information theoretic limit in terms
of demixing ability with respect to the number of measurements.

At the same time, there are still a number of open questions for further directions.
Firstly, the robustness analysis of FIHT needs to be addressed in the future. Secondly,
our theoretical framework so far is still a bit restrictive, since it only yields close-to-optimal
results for Gaussian measurement matrices, which are however of limited use in applications.
Thus, one future challenge consist in establishing good Amalgam-RIP bounds for structured
measurement matrices. Thirdly, it is also interesting to see whether the Amalgam-RIP can
be used to analyse other approaches for low rank matrix demixing. In particular, we want to
investigate whether the Amalgam form of RIP in (5), but restricted onto a local subspace, is
sufficient for the guarantee analysis of the nuclear norm minimization studied in [14]. Finally,
in this paper the Amalgam-RIP is defined for homogeneous data, i.e., matrices of low rank.
It is likely that similar Amalgam-RIP can be established for heterogeneous data and then
be used in the analysis of different reconstruction programs.

Appendix

Lemma 5.1. Suppose 〈Yk,Zk〉 = 0 and rank(Yk +Zk) ≤ c for all 1 ≤ k ≤ s. Then∣∣∣∣∣
〈

s∑
k=1

Ak(Yk),
s∑

k=1

Ak(Zk)

〉∣∣∣∣∣ ≤ δc

√√√√ s∑
k=1

‖Yk‖2
F

√√√√ s∑
k=1

‖Zk‖2
F .
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Proof. Due to the homogeneity, we can assume
√∑s

k=1 ‖Yk‖
2
F = 1,

√∑s
k=1 ‖Zk‖2

F = 1.

Since 〈Yk,Zk〉 = 0, we have
∑s

k=1 ‖Yk +Zk‖2
F = 2. So

2(1− δc) ≤

∥∥∥∥∥
s∑

k=1

Ak(Yk ±Zk)

∥∥∥∥∥
2

≤ 2(1 + δc)

following from Def. 2.1. Then the application of the parallelogram identity implies∣∣∣∣∣
〈

s∑
k=1

Ak(Yk),
s∑

k=1

Ak(Zk)

〉∣∣∣∣∣ =
1

4

∣∣∣∣∣∣
∥∥∥∥∥

s∑
k=1

Ak(Yk +Zk)

∥∥∥∥∥
2

−

∥∥∥∥∥
s∑

k=1

Ak(Yk −Zk)

∥∥∥∥∥
2
∣∣∣∣∣∣ ≤ δc,

which concludes the proof.

Lemma 5.2 ([27, Lem. 4.1]). Let Xk,l = Uk,lΣk,lV
∗
k,l be rank r matrix and Tk,l be the tangent

space of the rank r matrix manifold at Xk,l. Let Xk be another rank r matrix. One has

‖(I − PTk,l)(Xk)‖F ≤
‖Xk,l −Xk‖2

F

σmin(Xk)
.
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