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Abstract

Given a set of data, one central goal is to group them into clusters based on some notion
of similarity between the individual objects. One of the most popular and widely-used
approaches is K-means despite the computational hardness to find its global minimum.
We study and compare the properties of different convex relaxations by relating them to
corresponding proximity conditions, an idea originally introduced by Kumar and Kannan.
Using conic duality theory, we present an improved proximity condition under which the
Peng-Wei relaxation of K-means recovers the underlying clusters exactly. Our proximity
condition improves upon Kumar and Kannan, and is comparable to that of Awashti and
Sheffet where proximity conditions are established for projective K-means. In addition, we
provide a necessary proximity condition for the exactness of the Peng-Wei relaxation. For the
special case of equal cluster sizes, we establish a different and completely localized proximity
condition under which the Amini-Levina relaxation yields exact clustering, thereby having
addressed an open problem by Awasthi and Sheffet in the balanced case.

Our framework is not only deterministic and model-free but also comes with a clear
geometric meaning which allows for further analysis and generalization. Moreover, it can be
conveniently applied to analyzing various data generative models such as the stochastic ball
models and Gaussian mixture models. With this method, we improve the current minimum
separation bound for the stochastic ball models and achieve the state-of-the-art results of
learning Gaussian mixture models.

1 Introduction

K-means clustering is one of the most well-known and widely-used clustering methods in unsu-
pervised learning. Given N data points in Rm, the goal is to partition them into k clusters by
minimizing the total squared distance between each data point and the corresponding cluster
center. It is a problem related to Voronoi tessellations [10]. However, K-means is combinato-
rial in nature since it is essentially equivalent to an integer programming problem [21]. Thus,
minimizing the K-means objective function turns out to be an NP-hard problem, even if there
are only two clusters [2] or if the data points are on a 2D plane [18].

Despite its hardness, numerous efforts have been made to develop effective and efficient
heuristic algorithms to handle the K-means problem in practice. A famous example is Lloyd’s
algorithm [16] which was originally introduced for vector quantization and then became popular
in data clustering due to its high efficiency and simplicity of implementation. One of the earliest
convergence analyses of Lloyd’s algorithm was given by Selim and Ismail [21]: Under certain
conditions, the algorithm converges to a stationary point within a finite number of iterations
but may fail to converge to a local minimum. A smoothed analysis given by Arthur, Manthey
and Roglin [4] shows that the smoothed/expected number of iterations is bounded polynomially
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by N , k and m while the worst-case running time can be 2Ω(N) even for the case when data
points are on a plane [23].

We are particularly interested in the semidefinite programming (SDP) relaxation for K-
means by Peng and Wei [20], who observed that the K-means objective function can be written
as the inner product between a projection matrix and a distance matrix constructed from the
data, and the combinatorial constraints of the projection matrix can be convexified. Thus,
whenever the Peng-Wei relaxation produces an output corresponding to a partition of the data
set, the K-means problem is solved in polynomial time [26]. The details of the Peng-Wei
relaxation will be explained in Section 2.

Theoretical properties of the Peng-Wei relaxation have also been studied under specific
stochastic models in the literature. Minimum separation conditions were established in [5, 13]
to guarantee exact clustering for the stochastic ball models with balanced clusters (i.e., each
cluster has the same number of points), while a similar study was conducted in [19] for the
Gaussian mixture model.

Despite these efforts, the Peng-Wei relaxation is not yet thoroughly understood. Several
fundamental questions of vital importance remain unexplored or require better answers, such
as

• How do the number of clusters and the data dimension affect the performance of the Peng-
Wei relaxation?

• How does the performance of the Peng-Wei relaxation depend on the balancedness of the
cluster sizes and covariance structures within each cluster?

• Can the global minimum separation condition be localized?

• Under the special case of equal cluster sizes, does the tighter Amini-Levina relaxation [3]
improve the Peng-Wei relaxation? If so, in which sense?

The studies in [5, 13, 19] reveal certain information about the Peng-Wei relaxation based on
the assumption of sufficient minimum center separation: guaranteed exact recovery in the case
of the stochastic ball model [5, 13] and learning of centers for the Gaussian mixture model [19].
The price to obtain such information, the requirement imposed upon the minimum center
separation, is the homogeneity of the criteria forced on all different clusters. In other words, each
pair of clusters, regardless of their shapes and cardinalities, must have their centers separated
by a uniform distance determined by the entire data set. As a consequence of this “global”
condition, the effect of an isolated but huge cluster ripples throughout the entire data set by
raising the minimum center separation. Thus, a more “localized” condition, i.e., a condition on
the center separation for each pair of clusters that relies largely on local information, is much
desired. Such a more localized condition might pave the way to address the aforementioned
fundamental questions regarding the Peng-Wei relaxation.

To that end, in this paper we introduce a proximity condition enabling us to relate the
pairwise center distances to more localized quantities. Interestingly, it turns out that our
proximity condition improves the one in [15] and is comparable to that in [6], the state-of-
the-art proximity conditions in the literature of SVD-based projective K-means. Furthermore,
under the Amini-Levina relaxation for clusters of equal cardinality, the associated proximity
condition becomes even “fully localized”, as it only involves information about pairs of clusters.

1.1 Organization of our paper

Our paper is organized as follows. In the remainder of this introductory section we present our
aforementioned proximity condition, discuss its implication for various stochastic cluster models
and briefly compare our results to the state of the art. In Section 2, we discuss K-means and
its convex relaxation introudced by Peng and Wei. In Section 3, we show that the Peng-Wei
relaxation yields the solution of the K-means objective as long as our proximity condition (1.1)
is satisfied. A different proximity condition for the exactness of Amini-Levina relaxation is
discussed in the same section. In Section 4, we consider the application of our framework to the
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stochastic ball model and the Gaussian mixture model. Numerical simulations that illustrate
our theoretical findings are presented in Section 5. All proofs can be found in Sections 6–8.

1.2 Proximity conditions under deterministic models

The idea of proximity conditions originates from the work [15] by Kumar and Kannan who use a
proximity condition to characterize the performance of Lloyd’s algorithm with an initialization
given by an SVD-based projection under deterministic models. The result is later improved by
Awasthi and Sheffet [6], who perform a finer analysis and redesign the proximity condition for
the same algorithm. To the best of our knowledge, no such type of proximity conditions has
been established for the Peng-Wei relaxation so far, and we will fill this gap in this paper.

Conceptually speaking, our proximity condition can be interpreted as follows:

For each pair of clusters, every point is closer to the center of its own cluster, while the
bisector hyperplane of the centers keeps all points in the two clusters at a certain distance

determined by global information of the data set.

Roughly speaking, the proximity condition characterizes for each pair of clusters how much
closer each point is to the within-cluster center than the cross-cluster center. This is conceptually
much more localized than minimum separation, which compares all pairwise center distances to
a uniform quantity.

Let us introduce some necessary notation before we proceed to the exact statement of our
proximity condition. Given a set of N data points Γ = {xl}Nl=1 with k mutually disjoint clusters
Γ = tka=1Γa, we can re-index x1, . . . ,xN according to the clusters: Γa = {xa,i}1≤i≤na for all
1 ≤ a ≤ k. Denote by na = |Γa| the number of elements in Γa.

Denote the data matrix of the a-th cluster by

X>a =
[
xa,1 . . . xa,na

]
∈ Rm×na .

Furthermore, define

ca =
1

na

na∑
i=1

xa,i, wa,b =
cb − ca
‖cb − ca‖

, and Xa = Xa − 1nac
>
a .

In other words, ca is the sample mean (cluster center) of the a-th cluster, wa,b is the unit vector
pointing from ca to cb, and Xa is the centered data matrix of the a-th cluster. Now we are
ready to give a mathematical characterization of the proximity condition.

Condition 1.1 (Proximity condition). The partition Γ = tka=1Γa satisfies the proximity
condition if for any a 6= b, there holds

min
1≤i≤na

〈
xa,i −

ca + cb
2

,wb,a

〉
>

1

2

√√√√( k∑
l=1

‖X l‖2
)(

1

na
+

1

nb

)
. (1.1)

The proximity condition has a very intuitive geometric interpretation, see also Figure 1.
Suppose the partition of data points satisfies the proximity condition. Then each pair of clusters
Γa and Γb can be separated by a plane through the bisector of their sample means ca and cb.
Moreover, the distance between every point in those two clusters and the bisector must be greater
than the right hand side of (1.1). This geometric interpretation can be further illustrated by
rewriting (1.1): Denote by ha,b = ‖ca − cb‖ the distance between the two centers ca and cb.
Moreover, define

τa,b = max{max(ua,b),max(ub,a)} where ua,b = Xawa,b for 1 ≤ a, b ≤ k.
Clearly, τa,b is the maximum signed projection distance over all the data points in the clusters
Γa and Γb. As illustrated in Figure 1, one can easily check that the left hand side of proximity
condition (1.1) is in fact equal to 1

2ha,b−τa,b which is the shortest distance between the midpoint
ca+cb

2 and the projections of all the data points in Γa and Γb on the line connecting ca and cb.
This observation gives us the following proposition.
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Figure 1: Proximity condition: If the partition of data points satisfies the proximity condition,
then each pair of clusters Γa and Γb can be separated by a plane through the bisector of their
sample means ca and cb, and the distance between each individual point in those two clusters
and the bisector is greater than the right hand side of (1.1).

Proposition 1.2. The proximity condition (1.1) is equivalent to

ha,b > 2τa,b +

√√√√ k∑
l=1

‖X l‖2
(

1

na
+

1

nb

)
, ∀a 6= b. (1.2)

Besides showing that the proximity condition (1.1) guarantees the exactness of Peng-Wei
relaxation, we also obtain a necessary proximity condition. If a deterministic mixture fails to
fulfill the necessary condition, exact recovery by the Peng-Wei relaxation is provably impossible.

Awasthi and Sheffet’s has raised an open question in [6]: can the pairwise separation con-
dition be fully localized, i.e., depend only on information of the corresponding pair of clusters?
We apply the Amini and Levina’s relaxation [3], originally intended to address the weak assor-
tativity issue in community detection among networks, to convexify the K-means problem in
the case of balanced clusters. Surprisingly, we end up with a completely localized proximity
condition for the exactness of the convex relaxation, thus solving Awasthi and Sheffet’s open
problem for the balanced case.

Furthermore, beyond the scope of the Peng-Wei relaxation of K-means, the proximity con-
dition itself provides an algorithm that can accept answers to the NP-hard K-means problem
(although it is not able to reject an answer). For a given solution to K-means, one can simply
check whether the proximity condition holds, and if it does hold, then the solution is provably
the unique global minimum. The time cost is proportional to O(kN + m2N). Assuming the
number of clusters k and the dimension of data m are fixed, the time complexity is linear in
the total number of points N , which improves the quasilinear-time algorithm proposed in [13]
in terms of the time complexity.

1.3 Comparison to existing proximity conditions in the literature

As mentioned before, in the literature of projective K-means, proximity conditions have been
proposed in [15] and later improved in [6]. In this section we compare our proximity conditions
with these existing results.

Denote W = [X
>
1 , . . . ,X

>
k ]>. By our notation, the original Kumar-Kannan proximity

condition [15] is equivalent to

ha,b > 2τa,b + Ck

(
1√
na

+
1√
nb

)
‖W ‖, ∀a 6= b,
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for some large absolute constant C > 0. The fact that max1≤l≤k ‖X l‖ ≤ ‖W ‖ implies√∑k
l=1 ‖X l‖2 ≤

√
k‖W ‖. Therefore, our proximity condition (1.2) is strictly weaker than

the Kumar-Kannan condition by at least a factor of
√
k.

The comparison between (1.1) and the Awasthi-Sheffet conditions in [6] is less straightfor-
ward. Theorem 4 therein states that consistent clustering is guaranteed by projective K-means
plus Lloyd’s algorithm as long as

ha,b > max

{
2τa,b + C

(
1√
na

+
1√
nb

)
‖W ‖, C

√
k

(
1√
na

+
1√
nb

)
‖W ‖

}
∀a 6= b. (1.3)

Compared to our proximity condition (1.1), the second term on the right-hand side of (1.3)

could be more stringent given the fact
√∑k

l=1 ‖X l‖2 ≤
√
k‖W ‖, whereas the first term is less

stringent than ours since

‖W ‖2 = ‖W>
W ‖ =

∥∥∥∥∥
k∑
a=1

X
>
aXa

∥∥∥∥∥ ≤
k∑
a=1

∥∥∥X>aXa

∥∥∥ =

k∑
a=1

∥∥Xa

∥∥2
.

Therefore, it is fair to say our proximity condition is comparable to the Awasthi-Sheffet condi-
tion.

1.4 Implications under stochastic models

We should emphasize that in order to prove our main results, we benefit a lot from the existing
primal-dual analyses in [5, 13]. The major difference between our analysis and [5, 13] is that
we aim at deriving proximity conditions under deterministic models rather than establishing
minimum separation results under stochastic models.

However, we are still curious about what minimum separation conditions our proximity
condition can yield when applied to both the stochastic ball model and the Gaussian mixture
model. Before presenting conditions given by our proximity condition, we first review the state-
of-the-art results on both models.

Existing work on the Peng-Wei relaxation: The stochastic ball model can be viewed as
a special case of mixture models where the distributions of sample data points are compactly
supported on k disjoint unit balls in Rm. The clusters are balanced and the covariance structure
is fairly rigid since all the distributions are assumed to be identical and isotropic.

Let ∆ be the minimal separation between the cluster centers. In [5], it is proven that the
Peng-Wei relaxation achieves exact recovery provided ∆ > 2

√
2(1 + 1/

√
m), where the lower

bound of ∆ is independent of the number of clusters k. By the same group of authors, another
bound of ∆ is given in [13] stating that exact recovery is guaranteed if ∆ > 2 + k2/m which is
near-optimal in the m� k2 regime.

The Gaussian mixture model (GMM) as a stochastic model is more flexible. This model
is characterized by its density function which is a weighted sum of the density functions of
Gaussian or subgaussian distributions. In [19], assuming the Gaussian distributions are identical
and isotropic, Mixon, Villar and Ward prove that the Peng-Wei relaxation learns the Gaussian
centers for balanced clusters when the center separations are required to be above kσ, where
σI is the common covariance of all Gaussian distributions.

Existing work on other algorithms: Clustering Gaussian mixture models has received
extensive attention in machine learning and statistics communities. Besides [19], a lot of progress
has been made in developing efficient algorithms for this task. Among them are a family of
algorithms here referred to as the projective K-means [24, 1, 14, 15, 6, 9, 17]. In general, the
projective K-means works in two steps: first project all the data points onto a lower dimensional
space usually based on singular value decomposition (SVD), and then classify each point by
heuristic methods such as single linkage clustering in [1] or Lloyd’s algorithm in [6].
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Vempala and Wang [24] show that if each pairwise center separation is larger than a quan-
tity determined by the number of clusters k, the dimension m and the variances of the clusters,
the projective algorithm can classify a mixture of k isotropic Gaussians with high probability.
Achlioptas and McSherry [1] show that SVD-based projection followed by single-linkage cluster-
ing is able to classify all the sampled data points accurately if the center separation of each pair
of clusters is greater than the operator norm of the covariance matrix and the weights of the
two clusters plus a term which depends on the concentration properties of the distributions in
the mixture. The algorithm studied by Kannan and Kumar in [15]—the work that first devises
the idea of proximity condition—also begins with an SVD-based projection and proceeds by
Lloyd’s algorithm which is initialized by an unspecified near-optimal solution to the K-means
problem. As stated before, its technical results are improved by Awatshi and Sheffet in [6].
Recently, Lu and Zhou [17] provide a more detailed estimation of misclassification rate for each
iteration of Lloyd’s algorithm with initialization given by spectral methods [14].

Our results: We can easily apply the proximity condition to the stochastic ball model and
the Gaussian mixture model. The corresponding recovery guarantees are competitive with or
improve upon other state-of-the-art results.

• For the stochastic ball model, we show that ∆ > 2 +O(
√
k/m) is sufficient to guarantee

the exact recovery of the Peng-Wei relaxation, which improves the separation condition
∆ > 2 + k2/m in [13] when k is large. Moreover, our result applies to a broader class of
stochastic ball models where each cluster can have a different number of points and may
even satisfy a different probability distribution as long as the support of density function
is contained within a unit ball.

• For the Gaussian mixture model, we summarize our result for the Peng-Wei relaxation and
other state-of-the-art results for both the Peng-Wei relaxation and projective K-means in
Table 1. It has been shown in [19] that the centers of a Gaussian mixture can be accurately
estimated by Peng-Wei relaxation provided the minimal separation is O(k). In contrast,
our proximity improves the minimal separation condition to O(k1/2 + log1/2 (kN)), which
is also better than [15] and comparable to [6] for projective K-means. Though our bound
loses a k1/4 factor vis-à-vis the one in [24] for the special case of spherical Gaussian
mixtures, we can handle more general Gaussian mixtures where the density functions do
not have to be spherical or identical.

Table 1: Comparison of results on GMM: the separation bound for [24] only applies to mixtures
of isotropic Gaussian distributions and the bound for [19] is used to guarantee learning cluster
centers instead of recovering the labels of data points.

Authors Separation bounds Algorithms Exact Year

Vempala and Wang [24] O(k1/4 log1/4(m)) Projective k-means Yes 2004

Achlioptas and McSherry [1] O(k + k1/2 log1/2N) Projective k-means Yes 2005

Kumar and Kannan [15] O(k(polylog(N))) Projective k-means Yes 2010

Awasthi and Sheffet [6] O(k1/2(polylog(N))) Projective k-means Yes 2012

Lu and Zhou [17] O(k3/2) Projective k-means No 2016

Mixon, Villar, and Ward [19] O(k) SDP k-means No 2017

Our work O(k1/2 + log1/2 (kN)) SDP k-means Yes -

1.5 Notation

Let 1Γa be the indicator vector of Γa ⊆ Γ. 1n is an n×1 vector with all entries equal to 1. Given
any two real matrices U and V in Rm×n, we define the inner product as 〈U ,V 〉 = Tr(UV >) =
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∑m
i=1

∑n
j=1 UijVij . For a vector v, max(v) is equal to the largest entry of v. We denote Z ≥ 0

if Z is a nonnegative matrix, i.e., each entry is nonnegative; Z � 0 if Z is a symmetric positive
semi-definite matrix. Besides, we also use the notation listed below throughout the paper.

m Dimension of data
k Number of clusters
Γ Set of N data points in Rm

Γa The a-th cluster
N Total number of data points
na Number of points in the a-th cluster
SN Set of N ×N symmetric matrices
SN+ Set of N ×N positive semi-definite matrices

RN×N+ Set of N ×N nonnegative matrices
W Data matrix of all N data points
Xa Data matrix of the a-th cluster

Xa Centered data matrix of the a-th cluster
D Squared distance matrix
X Ground-truth solution to the SDP relaxation of K-means

Y (a,b) Submatrix of any N ×N matrix Y given by {ys,t}s∈Γa,t∈Γb

xa,i The i-th data point in the a-th cluster
µa Population mean of the a-th cluster in a generative model
ca Sample mean of the a-th cluster
wa,b Unit vector pointing from ca to cb
ua,b Signed projection distance given by ua,b = Xawa,b

ha,b Distance between ca and cb
τa,b Maximum signed projection distance determined by ua,b and ub,a

2 K-means and the Peng-Wei relaxation

In this section, we briefly review the formulation of K-means and its SDP relaxation introduced
by Peng and Wei [20]. Let Γ = {xl}Nl=1 be a set of N data points in Rm. K-means attempts to
divide Γ into k disjoint clusters by seeking a solution to the following minimization problem:

min
{Γa}ka=1

min
{γa}ka=1

k∑
a=1

∑
l∈Γa

‖xl − γa‖2 ,

where {Γa}ka=1 form a partition of Γ (i.e., tka=1Γa = Γ and Γa u Γb = ∅ if a 6= b). For any
given partition {Γa}ka=1, choosing γa as the centroid γa = ca = 1

|Γa|
∑

j∈Γa
xj (a = 1, . . . , k)

minimizes the objective function. Therefore, the K-means problem is equivalent to:

min
{Γa}ka=1

k∑
a=1

∑
l∈Γa

‖xl − ca‖2 , (2.1)

Given an arbitrary partition {Γa}ka=1 of Γ, let 1Γa (a = 1, . . . , k) be the indicator function
of the a-th cluster. That is,

1Γa(l) =

{
1 if l ∈ Γa,

0 otherwise.

A simple calculation can reveal that

1

|Γa|
∑

l∈Γa,s∈Γa

‖xl − xs‖2 = 2
∑
l∈Γa

‖xl − γa‖2
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and hence,

k∑
a=1

∑
l∈Γa

‖xl − µa‖2 =
1

2

k∑
a=1

1

|Γa|
∑

l∈Γa,s∈Γa

‖xl − xs‖2

=
1

2

k∑
a=1

1

|Γa|
〈1Γa1

>
Γa ,D〉,

whereD ∈ RN×N is the distance matrix with the (l, s)-th entry being given byDl,s = ‖xl−xs‖2.
Therefore, we can rewrite the K-means problem as

min 〈Z,D〉

s.t. Z =
k∑
a=1

1

|Γa|
1Γa1

>
Γa with tka=1 Γa = Γ and Γa u Γb = ∅ for a 6= b.

(2.2)

It is self-evident that (2.2) is a non-convex problem due to the combinatorial nature of the
feasible set. Indeed, (2.2) is an NP-hard problem [2]. Despite this, it can be easily verified that
Z =

∑k
a=1

1
|Γa|1Γa1

>
Γa

satisfies the following four properties:

Z � 0, Z ≥ 0, Z1N = 1N , Tr(Z) = k.

Replacing the constraint in (2.2) by the above four properties leads to the SDP relaxation of
K-means introduced by Peng and Wei in [20],

min 〈Z,D〉
s.t. Z � 0, Z ≥ 0, Z1N = 1N , Tr(Z) = k,

(2.3)

which will be the focus of this paper.
The Peng-Wei relaxation is a convex problem and can be solved in polynomial time using the

interior-point method [26]. We denote by X the optimal solution to the Peng-Wei relaxation.
Clearly, every feasible point of (2.2) is also feasible for (2.3); so once the optimal solution to (2.3)
has the form X =

∑k
a=1

1
|Γa|1Γa1

>
Γa

, it must be an optimal solution to the K-means problem.
Therefore, the question of central importance is:

When is the solution to (2.3) of the form X =
∑k

a=1
1
|Γa|1Γa1

>
Γa
?

3 Exact recovery guarantees

3.1 Exact clustering and proximity conditions

In a nutshell our following main theorem states that the proximity condition (1.1) implies the
exactness of the Peng-Wei relaxation (2.3):

Theorem 3.1 (Main theorem). Suppose the partition {Γa}ka=1 obeys the proximity condition
(1.1). Then the minimizer of the Peng-Wei relaxation (2.3) is unique and given by X =∑k

a=1
1
|Γa|1Γa1

>
Γa
.

Since the global minimum of (2.3) is always smaller than that of (2.1), Theorem 3.1 implies
that the proximity condition provides a simple algorithm that is able to accept answers to the
K-means problem.

Corollary 3.2 (Algorithm accepting answers to K-means). If a partition Γ = tka=1Γa
satisfies the proximity condition (1.1), then it is the unique global minimum to the K-means
objective function.
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Note that each data point xa,i appears k − 1 times on the left hand side of (1.1), and it
takes O(m2na) amount of time to compute each matrix operator norm using the Golub-Reisch
SVD algorithm [11]. Thus, the time cost to examine the proximity condition is proportional to
O(kN +m2N).

We want to emphasize that the polynomial time examination of the proximity condition
(1.1) does not imply that an answer to the K-means problem can be verified in polynomial
time since it has no capability to reject wrong answers. To the best of our knowledge, no
efficient algorithms have been found to be able to successfully verify (both accept and reject) an
answer to the K-means problem due to the NP-hardness. A different approach that leverages
the dual certificate associated with the Peng-Wei relaxation to test under certain conditions the
optimality of a candidate K-means solution can be found in [13]. The algorithm proposed in [13]
tests the optimality of a candidate solution in quasilinear time. Hence, our method improves
the time complexity by a logarithmic factor.

While the main theorem provides a sufficient condition for the Peng-Wei relaxation to exactly
recover a given partition, the following theorem gives a necessary condition.

Theorem 3.3 (Necessary condition). Suppose X =
∑k

a=1
1
|Γa|1Γa1

>
Γa

is a global minimum

of (2.3). Then the partition {Γa}ka=1 must satisfy

ha,b ≥ τa,b +

√
τ2
a,b + max ‖Xa‖2

(
1

na
+

1

nb

)
, ∀a 6= b. (3.1)

Notice that as long as X is a solution to (2.3), {Γa}ka=1 must be a global minimum to the
K-means. In other words, it is harder for a deterministic mixture to be exactly recovered by
the Peng-Wei relaxation than being the global minimum to the K-means. It remains unclear
whether this necessary condition (Theorem 3.3) is only necessary for the Peng-Wei relaxation
or is necessary for the K-means itself as well.

3.2 Balanced case: Amini-Levina relaxation and proximity condition

One special case of interest is the balanced case where each cluster has the same number of
points, i.e. |Γ1| = . . . = |Γk| = n. We have seen in Section 2 that the K-means problem can be
rewritten as (2.2):

min 〈Z,D〉

s.t. Z =
k∑
a=1

1

|Γa|
1Γa1

>
Γa with tka=1 Γa = Γ and Γa u Γb = ∅ for a 6= b.

(3.2)

With the balanced assumption, i.e., the cardinalities of all clusters being the same, it is easy to
verify that Z =

∑k
a=1

1
n1Γa1

>
Γa

obeys the following four constraints:

Z � 0, Z ≥ 0, Z1N = 1N , diag(Z) =
1

n
1N .

This leads to the Amini-Levina relaxation of K-means, which was first introduced in [3] for
community detection under balanced case in order to address the weak assortativity issue:

min 〈Z,D〉

s.t. Z � 0, Z ≥ 0, Z1N = 1N , diag(Z) =
1

n
1N .

(3.3)

As with the analyses on the Peng-Wei relaxation, once the optimal solution to (3.3) takes the
form X =

∑k
a=1

1
n1Γa1

>
Γa

, the Amini-Levina relaxation gives an optimal solution to the K-
means problem with balanced assumption. Once again, we ask the same question for Peng and
Wei’s relaxation: When is the solution to (3.3) of the form X =

∑k
a=1

1
n1Γa1

>
Γa

?
Unsurprisingly, the answer is another proximity condition specially tailored for Amini and

Levina’s relaxation.
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Condition 3.4 (Proximity condition for balanced clusters). A partition Γ = tka=1Γa with
|Γ1| = . . . = |Γk| = n satisfies the proximity condition for balanced clusters if for any a 6= b,
there holds

min
1≤i≤na

〈
xa,i −

ca + cb
2

,wb,a

〉
>

√
k

4n

(
‖Xa‖2 + ‖Xb‖2

)
. (3.4)

Similar to the general case, the proximity condition for balanced clusters also has an equiv-
alent formulation:

ha,b > 2τa,b +

√
k

n

(
‖Xa‖2 + ‖Xb‖2

)
. (3.5)

Theorem 3.5 (Exact recovery for balanced clusters). Suppose the partition {Γa}ka=1 with |Γ1| =
. . . = |Γk| = n obeys the proximity condition for balanced clusters (3.4). Then the minimizer of
the Amini-Levina relaxation (3.3) is unique and given by X =

∑k
a=1

1
n1Γa1

>
Γa
. Therefore, the

partition {Γa}ka=1 can be recovered exactly by the Amini-Levina relaxation.

Compared with the proximity condition for Peng and Wei’s relaxation (1.1), the proximity
condition for Amini and Levina’s relaxation distinguishes itself by decoupling the clusters in the
sense that each of the k(k − 1) inequalities in (3.4) only depends on the two clusters involved
in the inequality. In the case of balanced clusters, this immediately solves the open question
posed by Awasthi and Sheffet [6], which asks if such a proximity condition exists.

The completely localized proximity condition is particularly meaningful when there are a
few abnormal clusters whose covariance matrices are huge in matrix operator norm, but at the
same time being away from all the other clusters. In this case, the proximity condition for
Amini and Levina’s relaxation has far better chance than that for Peng and Wei’s relaxation to
detect a reasonable partition of the data set. Figure 2 provides such an example.

Figure 2: An example of three clusters in the plane. Each contains 20 points. The proximity
for the general case (1.1) fails for this instance. However, the proximity condition for balanced
clusters (3.4) is satisfied and hence ensures the partition is optimal to the K-means problem
with balanced assumption.

4 Results under random models

Next we apply the proximity condition (1.1) to data sets generated from the generalized stochas-
tic ball model and the Gaussian mixture model, respectively. We first give a formal definition for
each model and then present the minimal separation condition which is sufficient to guarantee
the exact recovery of underlying clusters by the Peng-Wei relaxation. The minimal separa-
tion conditions are established by verifying the proximity condition (1.1) for those two random
models. For proofs, see Sections 8.2 and 8.3.

4.1 Stochastic ball model

The definition of generalized stochastic ball model is given as follows where we only assume the
support of the density function is contained in the unit ball of Rm for all clusters.

10



Definition 4.1 (Generalized stochastic ball model). Let {µa}ka=1 be a set of k determin-
istic vectors in Rm. For each 1 ≤ a ≤ k, Da is a distribution supported on the unit ball of Rm

with a covariance matrix Σa and {ra,i}nai=1 are i.i.d. zero-mean random vectors drawn from the
distribution Da. The a-th cluster is formed by {xa,i}nai=1, where xa,i = µa + ra,i for 1 ≤ i ≤ na.

Corollary 4.1. Denote σ2
max = max1≤a≤k ‖Σa‖, N =

∑k
a=1 na, wmin = 1

N min1≤a≤k na, and
∆ = mina6=b ‖µa − µb‖. For the generalized stochastic ball model, we draw na points from the
a-th ball for each 1 ≤ a ≤ k. The Peng-Wei relaxation achieves exact recovery with probability
at least 1−N−γ if N ≥ 4

wmin
log(4kmNγ) and

∆ ≥ 2 +

√
2

wmin
σmax + 7

√
t

wmin
, (4.1)

where t =
√

4 log(4kmNγ)
Nwmin

and γ > 0. In particular, if na = n for all a, wmin = 1
k and each Da is

a uniform distribution over the unit ball of Rm, then (4.1) can be simplified to

∆ ≥ 2 +

√
2k

m+ 2
+ 7
√
tk

by noting that σ2
max = ‖Σa‖ = 1

m+2 .

Remark 4.2. As the number of data points N goes to infinity provided k and wmin are fixed,

the value of t =
√

4 log(4kmNγ)
Nwmin

vanishes. So asymptotically the minimal separation condition

reduces to ∆ > 2 +
√

2k
m+2 when na = n and Σa = 1

m+2Im. Compared with the result in [13, 12]

where ∆ > 2 + k2

m is required, we have achieved a better bound when k is large.

We can also apply the necessary lower bound (Theorem 3.3) to the generalized stochastic
ball model. To illustrate this, let us study a special case where the following Corollary holds.

Corollary 4.3. For the generalized ball model, if for all 1 ≤ a ≤ k we have na = n and Da is
the uniform distribution over the unit ball, then with high probability, the Peng-Wei relaxation
fails to achieve exact recovery provided that N is large enough and

∆ < 1 +

√
1 +

2

m+ 2
.

4.2 Gaussian mixture model

The definition of Gaussian mixture model is given below, followed by the minimal separation
condition for the exactness of the Peng-Wei relaxation.

Definition 4.2 (Gaussian mixture model). Consider a mixture of k Gaussian distributions
N (µa,Σa) in Rm with a set of weights {wa}ka=1 obeying wa ≥ 0 and

∑k
a=1wa = 1. The

probability density function of this mixture model is

p(x) =
k∑
a=1

wapN (x;µa,Σa), x ∈ Rm,

where pN (x;µa,Σa) is the probability density function of the Gaussian distribution N (µa,Σa).

Corollary 4.4. Denote σ2
max = max1≤a≤k{‖Σa‖}, wmin = min1≤a≤k{wa} and ∆ = mina6=b ‖µa−

µb‖. For the Gaussian mixture model, the Peng-Wei relaxation achieves exact recovery with
probability at least 1− 6N−1 if

∆ ≥ σmax

(
2√
wmin

+ 4
√

2 log1/2(kN2) + q(N ;m, k,wmin)

)
,

where q(N ;m, k,wmin) = o(1) if N � m2k2 log(k)/wmin. In particular, if na = n and Σa = Im
for all 1 ≤ a ≤ k, then the above condition reduces to

∆ ≥ 2
√
k + 4

√
2 log1/2(kN2) + q(N ;m, k, 1/k),

and q(N ;m, k, 1/k) = o(1) if N � m2k3 log(k).
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5 Numerical experiments

Consider applying the Peng-Wei relaxation to the generalized stochastic ball model. When the
total number of the data points N becomes large enough, the parameter t vanishes and the
sufficient lower bound predicted by Corollary 4.1 as in (4.1) becomes

∆ ≥ 2 + σmax

√
2

wmin
. (5.1)

The state-of-the-art bound for the stochastic ball model proved in [5, 13] is

∆ > min

{
2
√

2

(
1 +

1√
m

)
, 2 +

k2

m

}
. (5.2)

The exact phase transition bound, above which exact recovery can be achieved by the Peng-
Wei relaxation of K-means, is smaller than both of the above sufficient lower bounds. As one
would expect, the actual lower bound is hard to find in practice. The major difficulty occurs
when the number of clusters k is greater than 2. In this case, when creating an instance of the
stochastic ball model with prescribed minimal separation distance ∆, there are infinitely many
possible ways to place the centers and this cannot be resolved by translation, rotation, and
scaling. To address this, we investigate the worst case where centers are packed as compactly
as possible while points in each cluster are chosen in the most scattered way. We have a better
chance finding a more accurate lower bound under this arrangement.

Three typical centroidal geometries, the geometries formed by the locations of the centers,
are considered, and we call them circle-shaped geometry, line-shaped geometry, and hive-shaped
geometry respectively. Centers are packed compactly under these shapes, especially the hive-
shaped geometry. We can rescale the three geometries to change the minimal separation distance
∆. An illustration of these geometries formed by the locations of the centers is shown in Figure 3.

µ1 µ2 µk�1 µk

(a) Line-shaped geometry

µk

µk�1

µk�2µ2

µ3µ1

(b) Hive-shaped geometry

µ1

µ2

µ3

µk

µk�1

µk�2

(c) Circle-shaped geometry

Figure 3: Illustration of three typical centroidal geometries. The minimal separation ∆ is the
distance between two adjacent centers. Our bound refers to (5.1) with parameters calculated
for the given distribution. The state-of-the-art bound (5.2) is the bound proved by [5, 13]

We let the number of data points in each cluster be na = 100. Hence, the total number of
points N = 100k. As a result, wmin = 1/k. These na points are equispaced points on the unit
circle centered at µa. The data points are chosen in this way since it maximizes the variance.
Because the data is isotropic and the variance is equal to 1, we have σmax = 1/

√
m = 1/

√
2.

For k and m chosen above, we can see that our bound is an improvement to the state-of-the-
art result. Overall, it is still a meaningful addition to the state-of-the-art result. Nevertheless,
it is not yet tight. Figure 4 shows that the actual lower bound is almost independent of the
parameter k, while our theory still relies on the assumption that ∆ ≥ 2 +O(

√
k/m).

Another parameter that may affect the bound is the dimension m. To reveal dependence
of the bound on the dimension, we fix the number of clusters k to be 2 and let the dimension
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Figure 4: Numerical experiment on the stochastic ball model with dimension 2 and number of
clusters varying from 2 to 6. The sufficient lower bound here is the bound proved in Corollary 4.1.
The Peng-Wei relaxation (SDP) is solved by SDPNAL+v0.5 (beta) [27, 28].

m vary between 2 and 10. The center separation ∆ is chosen among 100 equispaced number
between 2 and 4. The number of points in each cluster na is equal to 25 × 2m−1, so there are
N = 50 × 2m−1 in total. The distribution Da for each ball is the uniform distribution on the
unit sphere centered at µa. For any fixed pair of m and ∆, we generate 20 instances of the
stochastic ball model.

From Figure 5, it is evident that neither our bound nor the state-of-the-art bound is tight.
The blue line, which represents the bound ∆ ≥ 2 + 2

m , fits our empircal result the best. Based
on the observation of dependence between the empirical lower bound and the parameters k and
m as in Figure 4 and 5 , we formulate a conjecture as stated below.

Conjecture 5.1. For a mixture generated by the generalized stochastic ball model, the Peng-Wei
relaxation achieves exact recovery with high probability if

∆ ≥ 2 +O
(

1

m

)
, (5.3)

provided that the total number of points N is large enough.

6 Proofs for Section 3.1

We will prove the main theorem and related results under the proximity condition given in
Proposition 1.2. The proof for the equivalence of the two proximity conditions is presented at
the end of this section. The key ingredient in the proof of the main theorem is to construct a
dual variable to certify the optimality of the desired solution X =

∑k
a=1

1
|Γa|1Γa1

>
Γa

based on

the conic duality theorem in convex optimization [7].

6.1 Conic duality

We first rewrite (2.3) as a cone program in standard form which naturally leads to its dual
formulation. Noting that Z is a symmetric variable, the Peng-Wei relaxation of K-means (2.3)
is equivalent to the following optimization problem:

min 〈Z,D〉

s.t. Z � 0, Z ≥ 0,
1

2
(Z +Z>)1N = 1N , Tr(Z) = k.

(6.1)
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Figure 5: Numerical experiment on the stochastic ball model with 2 clusters and dimension
varying from 2 to 7. For given dimension and separation, the lighter the color is, the higher the
probability of success is. The sufficient lower bound here is the bound given by Corollary 4.1,
while the necessary lower bound is obtained by applying Theorem 3.3 directly to the stochastic
ball model, which is 1 +

√
1 + 2/m in this case. Being constrained by computational resources,

we are not able to sample more points in higher dimension since the time cost is prohibitive.
This infers that the right half of the empirical lower bound is potentially smaller than the exact
phase transition bound, which is what we are trying to approximate in this experiment. The
Peng-Wei relaxation (SDP) is executed via SDPNAL+v0.5 (beta) [27, 28].

Let K = SN+ ∩RN×N+ , the intersection of two self-dual cones: the positive semi-definite cone

SN+ and the nonnegative cone RN×N+ . By definition, it is a pointed1 and closed convex cone

with a nonempty interior. Moreover, its dual cone2 is given by K∗ = SN+ + RN×N+ = {B +Q :
B ≥ 0,Q � 0}. Let A be a linear map A from SN to RN+1 defined as follows:

A(Z) : Z →
[

〈Z, IN 〉
1
2(Z +Z>)1N )

]
.

We can express (6.1) in the form of a standard cone program,

min 〈Z,D〉, s.t. A(Z) =

[
k

1N

]
, Z ∈ K. (6.2)

Thus, using the standard derivation in Lagrangian duality theory [8], the dual problem of (6.1)
can be easily obtained and given by

max −kz − 〈α,1N 〉, s.t. D +A∗ (λ) ∈ K∗, (6.3)

where λ =

[
z
α

]
∈ RN+1 is the dual variable with respect to the affine constraints and

A∗(λ) :=
1

2
(α1>N + 1Nα

>) + zIN (6.4)

is the adjoint operator of A under the canonical inner product over RN×N .

1K is pointed if for Z ∈ K and −Z ∈ K, Z must be 0, see Chapter 2 in [7].
2The dual cone of K is defined as {W : 〈W ,Z〉 ≥ 0,∀Z ∈ K}; in particular, there holds (K∗)∗ = K.
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6.2 Optimality condition

This subsection presents a necessary and sufficient condition for X =
∑k

a=1
1
|Γa|1Γa1

>
Γa

to be the
global minimum of the Peng-Wei relaxation. The result is summarized in Proposition 6.5, which
follows from the complementary slackness in the conic duality theory. Moreover, a stronger
sufficient condition has been established for the uniqueness of X in Proposition 6.6.

Theorem 6.1 (Conic Duality Theorem, Theorem 2.4.1 in [7]). There hold:

1. If the primal problem is strictly feasible and bounded below, then the dual program is solvable3

and the optimal values of the primal/dual problems are equal to each other;

2. If the dual problem is strictly feasible and bounded above, then the primal program is solvable
and the optimal values of the primal/dual problems are equal to each other;

3. Assume either the primal problem or the dual problem is bounded and strictly feasible. Then
(Z,λ) is a pair of primal/dual optimum if and only if either the duality gap is zero or the
complementary slackness holds.

The following lemma, tailored to (6.1) and (6.3), simply follows from the strict feasibility
of (6.1) or (6.3) and Theorem 6.1.

Lemma 6.2. Both primal/dual problems (6.1) and (6.3) are strictly feasible and bounded be-
low/above. Therefore, they are are solvable (so the optimal values are attained). Moreover,
(X,λ) is a pair of primal/dual optima if and only if the complementary slackness holds:
〈D +A∗(λ),X〉 = 0 where D +A∗(λ) ∈ K∗.

Proof: Consider Z̃ = 1−λ
N 1N1>N+λIN , where λ = k−1

N−1 > 0 for k ≥ 2. Note that Z̃ � λIN � 0

and Z̃ ≥ 1−λ
N 1N1>N > 0. So Z̃ is in the interior of K. It is also easy to verify that Z̃ satisfies

the other two equality constraints. This shows (6.1) is strictly feasible. In addition, we can
see that the objective function in (6.1) is also nonnegative since both Z and D are entrywise
nonnegative. In conclusion, the primal problem is strictly feasible and bounded below by 0.

Note that JN×N = 1N1>N is a strictly positive symmetric matrix. For the dual problem (6.3),
we can take α = 0 and let z be a sufficiently large positive number such that

D +A∗(λ) = JN×N︸ ︷︷ ︸
a positive matrix

+ (D + zIN − JN×N )︸ ︷︷ ︸
a positive definite matrix

is in the interior of K∗. Hence, the dual program is also strictly feasible. Its optimal value is
bounded above because it is always smaller than the optimal value of the primal problem.

Therefore, the application of Theorem 6.1 implies that (X,λ) is a pair of primal/dual optima
if and only if the complementary slackness holds, i.e., 〈D+A∗(λ),X〉 = 0 whereD+A∗(λ) ∈ K∗
and X ∈ K.

Remark 6.3. The complementary slackness is indeed equivalent to the zero duality gap since
the optimal values of both problems are attained and there holds

〈D,X〉 = −〈A∗(λ),X〉 = −〈λ,A(X)〉 = −
〈
λ,

[
k

1N

]〉
= −kz − 〈α,1N 〉.

In the following lemma, we will derive a more explicit expression for complementary slackness
which will be used in the analysis later. By definition of K∗, the matrix D+A∗(λ) must be in
the form of

D +A∗(λ) = B +Q, (6.5)

where B ≥ 0, Q � 0 and both of them are symmetric.

3The primal problem or dual problem is solvable if it is feasible, bounded and the optimal value is attained.
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Lemma 6.4. The complementary slackness 〈D +A∗(λ),X〉 = 0 is equivalent to

B(a,a) = 0 for all 1 ≤ a ≤ k, and QX = XQ = 0, (6.6)

where B ≥ 0 and Q � 0 obeys (6.5) for some λ. It follows immediately that Q(a,b)1nb = 0 for

1 ≤ a, b ≤ k. Moreover, (6.6) implies that the dual variable λ =

[
z
α

]
satisfies

αa = − 2

na
D(a,a)1na +

1

n2
a

〈D(a,a),Jna×na〉1na −
z

na
1na , (6.7)

where αa is the a-th block of α given by {αi}i∈Γa.

Proof: It suffices to prove (6.6) from 〈D +A∗(λ),X〉 = 0 since the other direction is trivial.
Note that the complementary slackness is equivalent to 〈B +Q,X〉 = 0 for some B ≥ 0 and
Q � 0. Since X ≥ 0 and X � 0, it follows that 〈B,X〉 = 〈Q,X〉 = 0. From 〈B,X〉 = 0 and
B ≥ 0, we have

〈B(a,a),Jna×na〉 = 0⇐⇒ B(a,a) = 0

where X(a,a) = Jna×na . Since both X and Q are positive semi-definite matrices, we have

0 = 〈X,Q〉 = Tr(XQ) = ‖X1/2Q1/2‖2F ,

which gives Q1/2X1/2 = X1/2Q1/2 = 0 and in turn implies QX = XQ = 0.
Now we proceed to derive (6.7). Following from Q(a,a)1na = 0 and B(a,a) = 0, we obtain{

Q(a,a)1na = D(a,a)1na + 1
2(naαa +α>a 1na1na) + z1na = 0,

1>naQ
(a,a)1na = 1>naD

(a,a)1na + naα
>
a 1na + naz = 0,

whereQ = D+ 1
2(α1>N+1Nα

>)+zIN−B follows fromB+Q = D+A∗(λ) and the definition of

A∗, see (6.5) and (6.4). From the second equation above, we get α>a 1na = − 1
na

1>naD
(a,a)1na−z.

Substituting it into the first one gives

αa =
1

na

(
−2D(a,a)1na −α>a 1na1na − 2z1na

)
=

1

na

(
−2D(a,a)1na +

1

na
1na1

>
naD

(a,a)1na − z1na
)
,

which completes the proof.

Because of (6.7), the effective dual variables are only z and B(a,b) with a 6= b since α can
be fully represented by a function of z if the complementary slackness holds, and plugging α
back into the expression of Q in (6.5) gives

Q = z(IN −E) +M −B, (6.8)

where 
E(a,b) = 1

2

(
1
na

+ 1
nb

)
Jna×nb ,

M (a,b) = D(a,b) − 1
n

[
D(a,a)Jna×nb + Jna×nbD

(b,b)
]

+ 1
2n2 〈D(a,a) +D(b,b),Jna×nb〉Jna×nb .

(6.9)

In particular, if a = b,{
E(a,a) = 1

na
Jna×na ,

M (a,a) =
(
Ina − 1

na
Jna×na

)
D(a,a)

(
Ina − 1

na
Jna×na

)
.

(6.10)

On the other hand, if B ≥ 0, B(a,a) = 0 for all 1 ≤ a ≤ k, and Q � 0 has the form of (6.8),
then one can easily verify that QX = 0 since 〈Q,X〉, and B +Q = D +A∗(λ) for z in (6.8)
and α in (6.7). Therefore, Lemma 6.4 implies that X is a global minimizer of (6.1).

In summary, we have established a necessary and sufficient condition for X to be a global
minimizer of the Peng-Wei relaxation of K-means, see also [12].
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Proposition 6.5 (Optimality condition). Any feasible pair of Q � 0 and B ≥ 0 where Q
has the form of (6.8) and B(a,a) = 0 for all 1 ≤ a ≤ k, certifies X to be a global minimum of
(6.1). Conversely, if X is a global minimum of (6.1), then such a pair of (Q,B) (or (z,B))
must exist.

However, the optimality condition in Proposition 6.5 is not strong enough to guarantee that
X is a unique solution to (6.1). The following proposition provides a sufficient condition for
the uniqueness of X by imposing a stricter condition on B.

Proposition 6.6 (A sufficient condition for the uniqueness of global minimum). Any
feasible pair of Q � 0 and B ≥ 0, where Q has the form of (6.8), B(a,a) = 0 for all 1 ≤ a ≤ k,
and B(a,b) > 0 for all a 6= b, certifies X to be a unique global minimum of (6.1).

Proof: Proposition 6.5 implies X is a global minimum of (6.1). Let X̃ ∈ RN×N be an

arbitrary feasible solution satisfying X̃1N = 1N , Tr(X̃) = k, X̃ � 0 and X̃ ≥ 0. We will prove

X is a unique solution by showing that if X̃ 6= X, there holds

〈D, X̃ −X〉 > 0.

We start with 〈Q, X̃ −X〉. Since Q � 0, X̃ � 0, and 〈Q,X〉 = 0, it follows that

〈Q, X̃ −X〉 = 〈Q, X̃〉 ≥ 0.

By the definition of Q, and the fact X̃1N = X1N = 1N and Tr(X̃) = Tr(X) = k, there holds,

〈Q, X̃ −X〉 = 〈D, X̃ −X〉 − 〈B, X̃ −X〉 ≥ 0.

Since the supports of B and X are disjoint, one has 〈B,X〉 = 0. Therefore, in order to show

〈D, X̃ −X〉 > 0, it suffices to prove that 〈B, X̃〉 > 0, which will be done by contradiction.

Suppose 〈B, X̃〉 =
∑

a6=b〈B(a,b), X̃(a,b)〉 = 0. Then we have X̃(a,b) = 0 which follows from

B(a,b) > 0 for all a 6= b and X̃ ≥ 0. Therefore, the support of X̃ must be the same as that of X.
Note that X̃ is a positive semi-definite matrix which satisfies X̃1N = 1N and Tr(X̃) = k. So

for any 1 ≤ a ≤ k, X̃(a,a)1na = 1na . This means that 1 is an eigenvalue of X̃ with multiplicity

at least k. Since all the eigenvalues of X̃ are nonnegative and their sum is equal to Tr(X̃) = k,

X̃ has only k nonzero eigenvalues and all of them are 1. Thus, each X̃(a,a) is a rank one matrix.
It follow that X̃(a,a) = 1

na
1na1

>
na = X(a,a) since X̃(a,a)1na = 1na and X̃(a,a) is symmetric. This

contradicts the assumption X̃ 6= X.

6.3 Sufficient condition for dual certificate

We will further reduce the sufficient condition in Proposition 6.6 to one that will be used in the
construction of the dual certificate. As suggested by that proposition, we need to find a number
z ∈ R and a symmetric matrix B ∈ RN×N+ such that the following sufficient condition holds:

Q � 0, B(a,b) > 0, B(a,a) = 0 ∀a 6= b, (6.11)

where Q is given in (6.8). As a result Q, satisfies QX = XQ = 0 automatically.
In order to present our final sufficient optimality condition, we first introduce two linear

subspaces. Note that X is clearly a projection matrix satisfying X2 = X. Let T and T⊥ be
two linear subspaces in RN×N defined as

T = {XY + Y X −XYX : Y ∈ RN×N},
T⊥ = {(IN −X)Y (IN −X) : Y ∈ RN×N}.
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Denote by PT : RN×N → T and PT⊥ : RN×N → T⊥ the corresponding projection operators.
We use subscripts to denote projections, for example letting PT (B) = BT and PT⊥(B) = BT⊥ .
For any Z ∈ RN×N , it can be easily verified that the (a, b)-th block of ZT and ZT⊥ are

Z
(a,b)
T =

1

na
Jna×naZ

(a,b) +
1

nb
Z(a,b)Jnb×nb −

1

nanb
Jna×naZ

(a,b)Jnb×nb , (6.12)

Z
(a,b)

T⊥
=

(
Ina −

1

na
Jna×na

)
Z(a,b)

(
Inb −

1

nb
Jnb×nb

)
. (6.13)

Proposition 6.7. The optimality condition with uniqueness in (6.11) is equivalent to
zPT⊥(IN ) +MT⊥ −BT⊥ � 0,

M
(a,b)
T −B(a,b)

T − z(na+nb)
2nanb

Jna×nb = 0, ∀a 6= b,

B(a,b) = (B(b,a))>, B(a,a) = 0, B(a,b) > 0, ∀ a 6= b.

(6.14)

Proof: We first show that (6.11) implies (6.14), and then show the other direction.

(6.11) =⇒ (6.14): Noting that E ∈ T , P(IN ) = IN −X and Q has the form of (6.8), the
projection of Q on T⊥ is given by

QT⊥ = (IN −X)Q(IN −X) = z(IN −X) +MT⊥ −BT⊥ � 0

which gives the first expression in (6.14). For the second one in (6.14), we have QT = 0 since
QX = XQ = 0 and thus Q(a,b)1nb = 0 for all pairs of (a, b). For Q(a,a) with 1 ≤ a ≤ k,
Q(a,a)1na = 0 holds automatically by the definition of Q in (6.8). For a 6= b, straightforward
calculations lead to

Q(a,b)1nb = −nbz
2

(
1

na
+

1

nb

)
1na +M (a,b)1nb −B(a,b)1nb = 0. (6.15)

Thus, one has 1
nb
B(a,b)Jnb×nb = 1

nb
M (a,b)Jnb×nb − z

2

(
1
na

+ 1
nb

)
Jna×nb for all a 6= b, which

implies B
(a,b)
T = M

(a,b)
T − z(na+nb)

2nanb
Jna×nb . The third formula in (6.14) satisfies automatically.

(6.14) =⇒ (6.11): It suffices to prove Q in (6.8) is positive semidefinite. By definition, the

matrix E(a,b) is equal to 1
2

(
1
na

+ 1
nb

)
Jna×nb and PT⊥(IN ) = IN −X. Adding the first two

formulas in (6.14) blockwisely over all (a, b) gives

z(IN −X) +M −B − z(E −X) = z(IN −E) +M −B︸ ︷︷ ︸
Q

� 0

where we have used the following facts: X(a,a) = E(a,a), X(a,b) = 0 when a 6= b, M
(a,a)
T = 0

which follows from (6.10), and B
(a,a)
T = 0 due to B(a,a) = 0. This shows Q � 0.

According to (6.14), B
(a,b)
T is determined by M (a,b) and z. So the only free variables are z

and B
(a,b)

T⊥
for a 6= b. To determine z, we replace zPT⊥(IN ) +MT⊥ −BT⊥ � 0 by a stronger

condition z ≥ ‖MT⊥ −BT⊥‖ which clearly implies the former one. To choose B
(a,b)

T⊥
for any

a 6= b, notice that

B(a,b) > 0⇐⇒ B
(a,b)

T⊥
+B

(a,b)
T > 0⇐⇒ B

(a,b)

T⊥
>
z(na + nb)

2nanb
Jna×nb −M

(a,b)
T ,
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where we have used a substitution for B
(a,b)
T . To sum up, we have derived a replacement

sufficient condition which guarantees X as the unique global minimum of (6.1):

z ≥ ‖MT⊥ −BT⊥‖,
B = B>,

B(a,a) = 0, ∀ 1 ≤ a ≤ k,
B

(a,b)
T = M

(a,b)
T − z(na+nb)

2nanb
Jna×nb , ∀ a 6= b,

B
(a,b)

T⊥
> z(na+nb)

2nanb
Jna×nb −M

(a,b)
T , ∀ a 6= b.

(6.16)

6.4 Proof of Theorem 3.1

Now we are ready to prove the main theorem, which follows directly from the proposition below.

Proposition 6.8. Assume the proximity condition (1.2) holds for the partition {Γa}ka=1. We
can choose z and B such that

z = ‖MT⊥ −BT⊥‖, B
(a,b)

T⊥
= 4ua,bu

>
b,a, ∀ a 6= b,

and the sufficient condition in (6.16) is satisfied. Therefore, whenever the proximity condition
holds, X =

∑k
a=1

1
|Γa|1Γa1

>
Γa

is the unique minimizer of the Peng-Wei relaxation of K-means.

Lemma 6.9. For any 1 ≤ a, b ≤ k, M
(a,b)

T⊥
= D

(a,b)

T⊥
= −2XaX

>
b .

Proof: Let xa,i and xb,j be the i-th and j-th points in the a-th and b-th clusters, respectively.
Then,

‖xa,i − xb,j‖2 = ‖xa,i‖2 − 2〈xa,i,xb,j〉+ ‖xb,j‖2.
Denote by φa ∈ Rna and φb ∈ Rnb the column vectors consisted of ‖xa,i‖2 and ‖xb,j‖2, respec-
tively. Then,

D(a,b) = φa1
>
nb
− 2XaX

>
b + 1naφ

>
b .

D
(a,b)

T⊥
= (Ina −

1

na
Jna×na)D(a,b)(Inb −

1

n b
Jnb×nb)

= −2(Ina −
1

na
Jna×na)XaX

>
b (Inb −

1

n b
Jnb×nb)

= −2XaX
>
b .

The matrix M is defined in (6.9), and it is easy to check that M
(a,b)

T⊥
= D

(a,b)

T⊥
.

Lemma 6.10. The operator norm of MT⊥ −BT⊥ is bounded by 2
∑k

l=1 ‖X l‖2, i.e.,

z = ‖MT⊥ −BT⊥‖ ≤ 2
k∑
l=1

‖X l‖2.

Proof: Note that ua,b = Xawa,b and by Lemma 6.9, M
(a,b)

T⊥
= −2XaX

>
b . Hence, BT⊥ −

MT⊥ = 2X̂WX̂>, where X̂ ∈ RN×mk is defined as

X̂(a,b) = 0, X̂(a,a) = Xa, ∀a 6= b,

and W ∈ Rmk×mk is given by

W (a,b) = Im − 2wa,bw
>
a,b, W (a,a) = Im, ∀a 6= b.
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Note that each W (a,b) is an orthogonal matrix and thus ‖W (a,b)‖ = 1. Let y be a vector of
length N , and denote by ya the a-th block of y, 1 ≤ a ≤ k. There holds,∣∣∣y>(MT⊥ −BT⊥)y

∣∣∣ ≤ 2

k∑
a=1

k∑
b=1

∣∣∣y>aXaW
(a,b)Xby

>
b

∣∣∣
≤ 2

k∑
a=1

k∑
b=1

‖Xa‖‖ya‖‖Xb‖‖yb‖

≤ 2

(
k∑
l=1

‖X l‖‖yl‖
)2

≤ 2

(
k∑
l=1

‖X l‖2
)(

k∑
l=1

‖yl‖2
)
.

Therefore, the operator norm of MT⊥ −BT⊥ is bounded by 2
∑k

l=1 ‖X l‖2.

It only remains to check whether (1.1) implies the second inequality in (6.16):

B
(a,b)

T⊥
= 4ua,bu

>
b,a >

z(na + nb)

2nanb
Jna×nb −M

(a,b)
T , ∀ a 6= b. (6.17)

To show this, we first derive an explicit expression for M
(a,b)
T .

Lemma 6.11. For any a 6= b, there holds

1

nb
D(a,b)1nb −

1

na
D(a,a)1na =

(
h2
a,b +

1

nb
‖Xb‖2F −

1

na
‖Xa‖2F

)
1na − 2ha,bua,b.

Proof: The i-th entry of the left hand side is

(LHS)i =
1

nb

nb∑
l=1

‖xa,i − xb,l‖2 −
1

na

na∑
l=1

‖xa,i − xa,l‖2

=‖ca − cb‖2 − 2〈xa,i − ca, cb − ca〉+
1

nb

nb∑
l=1

‖xb,l − cb‖2 −
1

na

na∑
l=1

‖xa,l − ca‖2

=h2
a,b − 2ha,b(Xawb,a)i +

1

nb
‖Xb‖2F −

1

na
‖Xa‖2F

=(RHS)i.

Lemma 6.12. For any a 6= b, there holds

M
(a,b)
T = h2

a,bJna×nb − 2ha,bua,b1
>
nb
− 2ha,b1nau

>
b,a.

Proof: By the definition of M (a,b) in (6.9),

M
(a,b)
T = D

(a,b)
T − 1

na
D(a,a)Jna×nb −

1

nb
Jna×nbD

(b,b)

+
1

2

(
1

n2
a

〈D(a,a),Jna×na〉+
1

n2
b

〈D(b,b),Jnb×nb〉
)
Jna×nb

=
1

nb
D(a,b)Jnb×nb −

1

na
D(a,a)Jna×nb︸ ︷︷ ︸

Π1

+
1

na
Jna×naD

(a,b) − 1

nb
Jna×nbD

(b,b)︸ ︷︷ ︸
Π2

+

(
1

2n2
a

〈D(a,a),Jna×na〉+
1

2n2
b

〈D(b,b),Jnb×nb〉 −
1

nanb
〈D(a,b),Jna×nb〉

)
Jna×na︸ ︷︷ ︸

Π3

,
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where we have used

D
(a,b)
T =

1

na
Jna×naD

(a,b) +
1

nb
D(a,b)Jnb×nb −

1

nanb
〈D(a,b),Jna×nb〉Jna×nb .

By Lemma 6.11, we have

Π1 =

(
1

nb
D(a,b)1nb −

1

na
D(a,a)1na

)
1>nb

=

(
h2
a,b +

1

nb
‖Xb‖2F −

1

na
‖Xa‖2F

)
Jna×nb − 2ha,bua,b1

>
nb
.

Similarly,

Π2 = 1na

(
1

na
D(b,a)1na −

1

nb
D(b,b)1nb

)>
=

(
h2
a,b +

1

na
‖Xa‖2F −

1

nb
‖Xb‖2F

)
Jna×nb − 2ha,b1nau

>
b,a.

Moreover, the (i, j)-entry of Π3 is

(Π3)i,j =
1

2n2
a

na∑
i=1

na∑
j=1

‖xa,i − xa,j‖2 +
1

2n2
b

nb∑
i=1

nb∑
j=1

‖xb,i − xb,j‖2 −
1

nanb

na∑
i=1

nb∑
j=1

‖xa,i − xb,j‖2

=
1

na

na∑
i=1

‖xa,i − ca‖2 +
1

nb

nb∑
i=1

‖xb,i − cb‖2 −
1

na

na∑
i=1

‖xa,i − ca‖2

− 1

nb

nb∑
j=1

‖xb,j − cb‖2 − ‖ca − cb‖2 = −h2
a,b.

Adding up (Π1)i,j , (Π2)i,j and (Π3)i,j leads to the desired identity.

Proof of Proposition 6.8. Combined with the explicit expression of M
(a,b)
T , (6.17) is equiv-

alent to

−4ua,bu
>
b,a +

(
z(na + nb)

2nanb
− h2

a,b

)
Jna×nb + 2h(a,b)(ua,b1

>
nb

+ 1nau
>
b,a) < 0. (6.18)

By definition of τa,b, we have

τa,b ≥ max(ua,b), τa,b ≥ max(ub,a).

Define

f(x, y) := −4xy − 2h(a,b)(x+ y) +
z(na + nb)

2nanb
− h2

(a,b).

Let ua,b,i and ub,a,j be the i-th and j-th entry of ua,b and ub,a respectively. One can easily
see that f(−ua,b,i,−ub,a,j) is equal to the (i, j)-th entry of the matrix on the left hand side
of (6.18). Therefore, in order to prove (6.18), it suffices to show that f(x, y) < 0 for all
x, y ≥ −τa,b. Note that if the proximity condition (1.1) holds, then 2τa,b ≤ ‖ca−cb‖. Therefore,
x, y ≥ −τa,b ≥ −1

2ha,b.
We claim that the maximum of f(x, y) over {(x, y) ∈ R2 : x ≥ −τa,b, y ≥ −τa,b} is attained

at x = y = −τa,b due to bilinearity of f(x, y). More precisely, this follows from 2τa,b ≤ ha,b and

∂f

∂x
= −4y − 2h(a,b) ≤ 4τa,b − 2ha,b ≤ 0,

∂f

∂y
= −4x− 2h(a,b) ≤ 4τa,b − 2ha,b ≤ 0
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over {(x, y) ∈ R2 : x ≥ −τa,b, y ≥ −τa,b}. Therefore, (6.18) holds if

max
{x,y≥−τa,b}

f(x, y) = −4τ2
a,b + 4ha,bτa,b − h2

a,b +
z(na + nb)

2nanb
< 0.

Since 2τa,b ≤ ha,b, the inequality above is equivalent to

ha,b − 2τa,b >

√
z(na + nb)

2nanb
.

Meanwhile, the proximity condition implies

h(a,b) − 2τa,b >

√∑k
l=1 ‖X l‖2(na + nb)

nanb
≥
√
z(na + nb)

2nanb
.

Hence, we have −4τ2
a,b + 4ha,bτa,b − h2

a,b + z(na+nb)
2nanb

< 0 and (6.18) holds.

6.5 Proof of Theorem 3.3

This subsection is devoted to proving Theorem 3.3, the necessary lower bound of 1
2ha,b − τa,b

for X =
∑k

a=1
1
|Γa|1Γa1

>
Γa

to be a global minimum of the Peng-Wei relaxation of K-means. We
will use the necessary condition established in Proposition 6.5 for the proof which states that, if
X is global minimizer, then there exist a number z and a matrix B obeying B ≥ 0, B(a,a) = 0
for all 1 ≤ a ≤ k, and Q = z(IN −E) +M −B � 0.

Proof of Theorem 3.3. The proof is partitioned into three steps:

Step One: We first show that for any a 6= b, there holds

h2
a,b1na − 2ha,bua,b =

z(na + nb)

2nanb
1na +

1

nb
B(a,b)1nb . (6.19)

Note that 〈D(a,a),Jna×na〉 = 2na‖Xa‖2F . By Lemma 6.11 and the definition of M (a,b) in (6.9),
we have

M (a,b)1nb = nb

(
1

nb
D(a,b)1nb −

1

na
D(a,a)1na

)
+
nb
2

(
1

n2
a

〈D(a,a),Jna×na〉 −
1

n2
b

〈D(b,b),Jnb×nb〉
)

1na

= nb(h
2
a,b1nb − 2ha,bua,b)

=
nbz

2

(
1

na
+

1

nb

)
1na +B(a,b)1nb ,

where the last equation follows from (6.15).

Step Two: Next we establish a lower bound for z and show that z ≥ 2 max ‖Xa‖2. Combining
Q = z(IN −E) +M −B � 0 with B(a,a) = 0 results in

Q(a,a) = z

(
Ina −

1

na
Jna×na

)
+M (a,a) � 0

for all 1 ≤ a ≤ k. Also, Lemma 6.9 implies M (a,a) = −2XaX
>
a . Therefore, z cannot be

negative and

zIna � z
(
Ina −

1

na
Jna×na

)
� −M (a,a) = 2XaX

>
a ,

which gives z ≥ 2 max1≤a≤k ‖Xa‖2.
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Step Three: By applying B ≥ 0 and z ≥ 2 max1≤a≤k ‖Xa‖2 to (6.19), we get

h2
a,b1na − 2ha,bua,b ≥

z(na + nb)

2nanb
1na ≥

max ‖Xa‖2(na + nb)

nanb
1na .

Similarly, we have

h2
a,b1nb − 2ha,bub,a ≥

max ‖Xa‖2(na + nb)

nanb
1nb .

Together they imply

h2
a,b − 2ha,bτa,b ≥

max ‖Xa‖2(na + nb)

nanb
,

where τa,b = max{max(ua,b),max(ub,a)}.

6.6 Proof of Proposition 1.2

Proof of Proposition 1.2. It suffices to prove min1≤i≤na
〈
xa,i − ca+cb

2 ,wb,a

〉
= 1

2ha,b − τa,b.
For any 1 ≤ i ≤ na, there holds〈

xa,i −
ca + cb

2
,wb,a

〉
=

〈
xa,i − ca +

ca − cb
2

,wb,a

〉
= 〈xa,i − ca,wb,a〉+

1

2
‖ca − cb‖

= (Xawb,a)i +
1

2
‖ca − cb‖

= −(ua,b)i +
1

2
‖ca − cb‖.

Similarly, for any 1 ≤ j ≤ nb, we have,〈
xb,j −

ca + cb
2

,wb,a

〉
= −(ub,a)j +

1

2
‖ca − cb‖.

Combining those two identities gives

min
a6=b

{
1

2
ha,b − τa,b

}
= min

a6=b
min

1≤i≤na

〈
xa,i −

ca + cb
2

,wb,a

〉
,

which completes the proof.

7 Proof for Section 3.2

In this section, we provide a concise proof of Theorem 3.5. The proof for the balanced case
is parallel to the general case to a large extent. To avoid redundancy, we skip proofs and
calculations that are basically the same as those in Section 6. Also, we adopt similar notation
as in Section 6 to emphasize the close relation between these two SDP relaxations of K-means.

Amini and Levina’s relaxation is equivalent to the following optimization problem:

min 〈Z,D〉

s.t. Z � 0, Z ≥ 0,
1

2
(Z +Z>)1N = 1N , diag(Z) =

1

n
1N .

(7.1)

In the standard form of a conic program, the optimization takes the form

min 〈Z,D〉, s.t. A(Z) =

[
1
n1N
1N

]
, Z ∈ K, (7.2)

where K = SN+ ∩ RN×N+ and the linear operator A is given by

A(Z) : Z →
[

diag(Z)
1
2(Z +Z>)1N

]
.
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Thus, it is effortless to derive the dual problem of Amini and Levina’s relaxation using the
duality theory of conic programming. The dual program reads

max −〈 1
n
z +α,1N 〉, s.t. D +A∗ (λ) ∈ K∗, (7.3)

where λ =

[
z
α

]
∈ R2N is the dual variable with respect to the affine constraints, K∗ = SN+ +

RN×N+ is the dual cone and

A∗(λ) :=
1

2
(α1>N + 1Nα

>) + diag(z) (7.4)

is the adjoint operator of A under the canonical inner product over RN×N , where diag(z) is the
diagonal matrix whose diagonal is given by z.

We proceed to find the sufficient condition forX =
∑k

a=1
1
n1Γa1

>
Γa

to be the global minimum.
Thanks to the conic duality theorem (Theorem 6.1), we can prove the following lemma using
the same construction as in Lemma 6.2

Lemma 7.1. (X,λ) is a pair of primal/dual optima if and only if the complementary slackness
holds: 〈D +A∗(λ),X〉 = 0 where D +A∗(λ) ∈ K∗.

Proof: It is easy to verify that Z̃ = 1−λ
N 1N1>N + λIN is strictly feasible for (7.2), where

λ = k−1
N−1 > 0 for k ≥ 2. As for the dual problem, we take α = 0 and z = z1N where z is a

sufficiently large positive number, thenD +A∗(λ) = JN×N + (D + zIN − JN×N ) is inside the
interior of K∗.

The task is to find z and α such that the complementary slackness 〈D +A∗(λ),X〉 = 0 is
true. By definition, D +A∗ (λ) = B +Q, where B ≥ 0 and Q � 0. We choose z such that

za = za1n, ∀1 ≤ a ≤ k,

where z1, . . . , zk are variables to be determined. In a similar fashion to Lemma 6.4, the com-
plementary slackness gives

αa = − 2

n
D(a,a)1n +

1

n2
〈D(a,a),Jn×n〉1n −

za
n

1n.

As a result, matrix B must satisfy

B(a,b) > 0, B(a,a) = 0 ∀a 6= b.

The matrix Q is rewritten as

Q = F +M −B, (7.5)

where M is defined the same as before:

M (a,b) = D(a,b) − 1

n

[
D(a,a)Jn×n + Jn×nD

(b,b)
]

+
1

2n2
〈D(a,a) +D(b,b),Jn×n〉Jn×n.

and the matrix F is given by:

F (a,b) = −za + zb
2n

Jn×n? F (a,a) = za

(
In −

za
n
Jn×n

)
∀a 6= b.

Just the same as Proposition 6.5, the following optimality condition is not enough to guarantee
that X is a unique global minimum of (7.1): Q � 0 and B ≥ 0 where Q has the form of
(7.5) and B(a,a) = 0 for all 1 ≤ a ≤ k. However, by following exactly the logic of the proof of
Proposition 6.6, one can show its counterpart for the balanced case is still true:
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Proposition 7.2 (A sufficient condition for the uniqueness of global minimum). Any
feasible pair of Q � 0 and B ≥ 0, where Q has the form of (7.5), B(a,a) = 0 for all 1 ≤ a ≤ k,
and B(a,b) > 0 for all a 6= b, certifies X to be a unique global minimum of (6.1).

By following the argument of Proposition 6.7, we can transform the condition for the unique-
ness of global minimum into a more useful form.

Proposition 7.3. The optimality condition with uniqueness in Proposition 7.2 is equivalent to
FT⊥ +MT⊥ −BT⊥ � 0,

M
(a,b)
T −B(a,b)

T − za+zb
2n Jn = 0, ∀a 6= b,

B(a,b) = (B(b,a))>, B(a,a) = 0, B(a,b) > 0, ∀a 6= b.

(7.6)

Here, T and T⊥ are subspaces of RN×N defined in Section 6.3. The only free variables

remained in (7.6) are za and B
(a,b)

T⊥
. We choose them as

za = 2k‖Xa‖2, B
(a,b)

T⊥
= 4ua,bu

>
b,a, ∀a 6= b. (7.7)

Now we show that with such a construction leads to Theorem 3.5. In fact, Theorem 3.5 follows
immediately from the proposition below as an implication of Proposition 7.2.

Proposition 7.4. Assume the proximity condition for balanced clusters (3.4) holds for the
partition {Γa}ka=1. We can choose za and B such that both the sufficient condition (7.6) and
(7.7) are satisfied.

Proof: It remains to prove B(a,b) > 0 for all a 6= b and FT⊥ +MT⊥ −BT⊥ � 0. Notice that
for all a 6= b {

B
(a,b)
T = − za+zb

2n Jn×n +M
(a,b)
T ,

B
(a,b)

T⊥
= 4ua,bu

>
b,a,

where M
(a,b)
T is given by Lemma 6.12. Then

B(a,b) = 4ua,bu
>
b,a +

(
−za + zb

2n
+ h2

a,b

)
Jn×n − 2ha,b(ua,b1

>
n + 1nu

>
b,a).

As with the proof of (6.18) in Section 6.4, it suffices to require

ha,b − 2τa,b >

√
za + zb

2n
=

√
k

n

(
‖Xa‖2 + ‖Xb‖2

)
,

which is equivalent to the proximity condition for balanced clusters thanks to Proposition 1.2.

Next we show FT⊥ � BT⊥ −MT⊥ . Based on the proof of Lemma 6.10, we have M
(a,b)

T⊥
=

−2XaX
>
b . Hence, BT⊥ −MT⊥ = 2X̂WX̂>, where X̂ ∈ RN×mk and W ∈ Rmk×mk are given

by {
X̂(a,b) = 0, X̂(a,a) = Xa, ∀a 6= b,

W (a,b) = Im − 2wa,bw
>
a,b, W (a,a) = Im, ∀a 6= b.

Note that each W (a,b) is an orthogonal matrix and thus ‖W (a,b)‖ = 1. Let y ∈ RN be a unit
vector, and denote by ya = {yi}i∈Γa , 1 ≤ a ≤ k. There holds,

y>Wy ≤
k∑
a=1

k∑
b=1

y>aW
(a,b)y>b ≤

(
k∑
l=1

‖yl‖
)2

≤ k
(

k∑
l=1

‖yl‖2
)

= k.

This implies W � kImk, which further implies

BT⊥ −MT⊥ � 2kX̂X̂> � G, (7.8)
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where G stands for
G(a,b) = 0, G(a,a) = zaIn, ∀a 6= b.

By the definition of F , it is easy to verify that FT⊥ = GT⊥ . Applying PT⊥ to both sides of
(7.8) yields

BT⊥ −MT⊥ � FT⊥ .

8 Proofs for Section 4

In this section, we apply the deterministic guarantee to two typical random models and prove
Corollaries 4.1 and 4.4. Each of the two models inherits a partition structure from how the data
are sampled, which gives a ground truth of the underlying clusters. We will discuss the sufficient
condition for the exact recovery of the Peng-Wei relaxation based on the minimal separation
between cluster centers.

8.1 Key lemmas

The main mathematical tools for the analysis are various concentration inequalities of random
matrices as discussed in [25] and [22].

Theorem 8.1 (Matrix Bernstein inequality, Theorem 1.6 in [22]). Let {Zi}ni=1 be a
sequence of real d1 × d2 random matrices. Assume that

EZi = 0, ‖Zi‖ ≤ R, ∀ 1 ≤ i ≤ n.

Consider the sum S =
∑n

i=1Zi, and denote

σ2(S) = max

{∥∥∥∥∥
n∑
i=1

E[ZiZ
>
i ]

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

E[Z>i Zi]

∥∥∥∥∥
}
.

Then for all t ≥ 0,

P (‖S‖ ≥ t) ≤ (d1 + d2) · exp

( −t2
2σ2(S) + 2Rt/3

)
.

Lemma 8.2 (Generalized stochastic ball model). Let {ai}ni=1 be a sequence of i.i.d. ran-
dom vectors in Rm and assume each ai is a zero mean vector supported on the unit ball in Rm

with the covariance matrix given by Σ.

1. Denote a = 1
n

∑n
i=1 ai. We have

P(‖a‖ ≥ t) ≤ (m+ 1) · exp

(
− nt2

2 + 2t/3

)
. (8.1)

2. Let A be an n×m matrix whose i-th row is a>i . Then

P(‖A‖ ≥
√
n(‖Σ‖+ t)) ≤ 2m exp

(
− nt2

2 + 4t/3

)
. (8.2)

Proof: Note that the distribution of each ai is supported on the unit ball with the covariance
matrix given by Σ. Thus,

σ2

(
n∑
i=1

ai

)
= nmax{‖Σ‖,Tr(Σ)} ≤ n,
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which follows from ‖E(aia
>
i )‖ = ‖Σ‖ and ‖E(a>i ai)‖ = Tr(Σ) ≤ 1. Moreover, there holds

‖ai‖ ≤ 1 and thus R = max1≤i≤n ‖ai‖ = 1. Therefore, applying Theorem 8.1 immediately
results in

P(‖a‖ ≥ t) ≤ (m+ 1) · exp

(
− nt2

2 + 2t/3

)
.

For the second part, first note that ‖A‖2 = ‖A>A‖ =
∥∥∑n

i=1 aia
>
i

∥∥. Let Zi = aia
>
i −Σ

be a centered random matrix and its operator norm is controlled by

R = max
1≤i≤n

‖Zi‖ ≤ max
1≤i≤n

‖ai‖2 + ‖Σ‖ ≤ 2.

For the variance of Zi, since E(ZiZ
>
i ) = E(Z>i Zi) = E(‖ai‖2aia>i ) − Σ2, we have −Σ2 �

E(ZiZ
>
i ) � Σ. Therefore,

‖E(ZiZ
>
i )‖ ≤ max{‖Σ‖2, ‖Σ‖} = ‖Σ‖ ≤ 1

and σ2(
∑n

i=1Zi) ≤ n. Applying Theorem 8.1 again gives

P

(∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥ ≥ nt
)
≤ 2m · exp

(
− n2t2

2σ2(S) + 2Rnt/3

)
≤ 2m · exp

(
− nt2

2 + 4t/3

)
.

Therefore, since ‖A‖2 ≤ ‖∑n
i=1Zi‖+ n‖Σ‖, we have

‖A‖ ≤
√
n(‖Σ‖+ t)

with probability at least 1− 2m exp
(
− nt2

2+4t/3

)
.

Lemma 8.3 (Gaussian mixture model). Let {ai}ni=1 be a sequence of i.i.d. random vectors
in Rm sampled from multivariate Gaussian distribution N (0,Σ).

1. Denote a = 1
n

∑n
i=1 ai. There holds

P

(
‖a‖ ≥

√
m(1 + t)‖Σ‖

n

)
≤ max{e−mt/8, e−mt2/8}, ∀t ≥ 0. (8.3)

2. Let A be n×m matrix whose i-th row is a>i , then for any t ≥ 0

P(‖A‖ ≥
√
‖Σ‖(√n+

√
m+ t)) ≤ 2e−t

2/2. (8.4)

3. Let σmin be the smallest singular value of Σ, then for any t ≥ 0

P((‖A‖ ≤ σmin(
√
n−√m− t)) ≤ 2e−t

2/2, (8.5)

Proof: Obviously, the sample mean a is a random vector satisfying N (0, 1
nΣ). Due to the

rotational invariance, it can be rewritten as a = 1√
n
Σ1/2w where w ∼ N (0, Im). Note that

‖w‖2 is a χ2
m random variable with E(‖w‖2) = m and

P(‖w‖2 −m ≥ t) ≤ exp

(
− t2

8m

)
∨ exp

(
− t

8

)
.

It is easy to see that ‖a‖ ≤
√

m(1+t)‖Σ‖
n holds with probability at least 1−max{e−mt/8, e−mt2/8}.

For the second and the third part, we use similar techniques by first rewriting A as A =
WΣ1/2 where W is an n×m standard Gaussian random matrix. Corollary 5.35 in [25] implies
that

√
n−√m− t ≤ ‖W ‖ ≤ √n+

√
m+ t holds with probability at least 1− e−t2/2. Therefore,

σmin(
√
n−√m− t) ≤ ‖A‖ ≤

√
‖Σ‖(√n+

√
m+ t)

holds with probability at least 1− 2e−t
2/2.
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Lemma 8.4. For two independent standard Gaussian random vectors x and y in Rm, there
holds

P(x>µ ≥ t‖µ‖) ≤ e−t2/2, ∀t ≥ 0, (8.6)

for a fixed deterministic vector µ. Also, we have

P(x>Ψy ≥ m
√
t(1 + t)‖Ψ‖) ≤ 2 max{e−mt/8, e−mt2/8}, ∀t ≥ 0, (8.7)

for a fixed matrix Ψ and t ≥ 1. Moreover,

P(x>Σx− Tr(Σ) ≥ t) ≤ exp

(
− t2

8‖Σ‖2F

)
∨ exp

(
− t

8‖Σ‖

)
, ∀t ≥ 0, (8.8)

for a fixed positive semidefinite matrix Σ.

Proof: Note that x>µ/‖µ‖ is a standard Gaussian random variable. For a standard Gaussian
random variable g, we have P(g ≥ t) ≤ 1

2e
−t2/2, which can be easily verified as follows:

P(g ≥ t) =
1√
2π

ˆ ∞
t

e−x
2/2dx

= e−t
2/2 1√

2π

ˆ ∞
t

e−
(x+t)(x−t)

2 dx

≤ e−t2/2 1√
2π

ˆ ∞
t

e−
(x−t)2

2 dx =
1

2
e−t

2/2.

For (8.7), first note that ‖y‖2 is a chi-squared variable with m degree of freedom, hence

‖Ψy‖ ≤ ‖Ψ‖‖y‖ ≤
√
m(1 + t)‖Ψ‖

holds with probability at least 1 −max{e−mt/8, e−mt2/8}. Conditioned on the event {‖Ψy‖ ≤√
m(1 + t)‖Ψ‖}, x>Ψy is a Gaussian random variable with variance at most m(1 + t)‖Ψ‖2.

As a result,
P(x>Ψy ≥ m

√
t(1 + t)‖Ψ‖) ≤ e−mt/2

and x>Ψy ≥ m
√
t(1 + t) holds with probability at least 1− 2 max{e−mt/8, e−mt2/8}.

For (8.8), we use the rotational invariance as well as the eigen-decomposition of Σ, i.e.,
Σ = U> diag(λ1, · · · , λm)U with λi ≥ 0 for 1 ≤ i ≤ m. Therefore, x>Σx is the sum of
weighted χ2

1 random variables where

x>Σx =
m∑
i=1

λiξ
2
i , ξi = (Ux)i, E(x>Σx) = Tr(Σ).

After applying Bernstein inequality, we get the desired result where maxi λi = ‖Σ‖ and∑m
i=1 λ

2
i = ‖Σ‖2F .

8.2 Stochastic ball model

In this subsection, we prove Corollary 4.1 for the generalized stochastic ball model. It extends
the results in [12, 13, 5] where the probability distributions are assumed to the same and isotropic
for all the clusters. The question is how large the minimal separation ∆ = mina6=b ‖µa −
µb‖ should be in order to to ensure the exact recovery of the Peng-Wei relaxation with high
probability. An outline of the proof of Corollary 4.3 is also given at the end of the subsection.

Proof of Corollary 4.1. It suffices to estimate ‖Xa‖, ha,b and τa,b for all a 6= b. We will
bound those quantities on the premise that (8.1) and (8.2), i.e.,

‖Xa − 1naµ
>
a ‖ ≤

√
na(‖Σa‖+ t) and ‖ca − µa‖ ≤ t, (8.9)

hold for all 1 ≤ a ≤ k with probability for all 1 ≤ a ≤ k, at least 1− 4km exp(−Nwmint
2

2+4t/3 ).
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Estimation of ‖Xa‖: By the triangle inequality, the operator norm of Xa can be bounded
from above as

‖Xa‖ = ‖Xa − 1nac
>
a ‖

≤ ‖Xa − 1naµ
>
a ‖+

√
na‖ca − µa‖

≤
√
na(‖Σa‖+ t) + t

√
na

for all 1 ≤ a ≤ k with probability at least 1− 4km exp
(
−Nwmint

2

2+4t/3

)
.

Estimation of τa,b and ha,b: Recall that τa,b = max{max{Xawa,b},max{Xbwb,a}}. For each
entry of Xawa,b, we have

(Xawa,b)i ≤ ‖xa,i − µa‖+ ‖ca − µa‖ ≤ 1 + t

which follows from ‖xa,i − µa‖ ≤ 1 and (8.9). A similar bound holds for Xbwb,a and thus
under the event where (8.9) holds, τa,b ≤ 1 + t holds for all a 6= b with probability at least

1− 4km exp(−Nwmint
2

2+4t/3 ).
For ha,b, it has a simple lower bound:

ha,b = ‖ca − cb‖ ≥ ‖µa − µb‖ − ‖ca − µa‖ − ‖cb − µb‖ ≥ ∆− 2t.

Therefore, a lower bound of 1
2ha,b − τa,b is

1

2
ha,b − τa,b ≥

1

2
∆− t− (1 + t) =

1

2
∆− 2t− 1,

which holds uniformly over all (a, b) with probability at least 1− 4km exp(−Nwmint
2

2+4t/3 ).

Proximity condition for stochastic ball model: Now we wrap up our discussion and
apply the proximity condition (1.2). For each a, it follows from ‖Xa‖ ≤ (

√
‖Σa‖+ t + t)

√
na

that

k∑
a=1

‖X l‖2 ≤
k∑
a=1

(‖Σa‖+ t+ 2t
√
‖Σa‖+ t+ t2)na

≤ (σ2
max + t+ 2t(σmax +

√
t) + t2)N

≤
[
(σmax + t)2 + t+ 2t3/2

]
N,

where the second line follows from ‖Σa‖ ≤ σ2
max and

√
‖Σa‖+ t ≤

√
‖Σa‖+

√
t.

Therefore, for all pairs of a and b, the proximity condition (1.2) for the generalized stochastic
ball model is guaranteed if

∆ ≥ 2 + 4t+

√
2
(
(σmax + t)2 + t+ 2t3/2

)
wmin

, (8.10)

which holds with probability at least 1−4km exp(−Nwmint
2

2+4t/3 ). Now we choose t =
√

4 log(4kmNγ)
Nwmin

.

We further assume that N ≥ 4
wmin

log(4kmNγ), then t ≤ 1 and (8.10) holds with probability
at least

1− 4km exp

(
−Nwmin · t2

2 + 4t/3

)
≥ 1− 4km exp

(
−1

4
Nwmin · t2

)
≥ 1−N−γ .

Note that wmin ≤ 1
k ≤ 1

2 and t ≤ 1. By enlarging the right hand side of (8.10) as the following,

2 + 4t+

√
2
(
(σmax + t)2 + t+ 2t3/2

)
wmin

≤ 2 +

√
2

wmin
σmax +

√
t

wmin
+ (4 +

√
2

wmin
)t+

√
2t3/2

wmin

≤ 2 +

√
2

wmin
σmax + 7

√
t

wmin
,
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we derive a sufficient condition of (8.10) which guarantees the proximity condition (1.2) for the
stochastic ball models with probability at least 1−N−γ :

∆ ≥ 2 +

√
2

wmin
σmax + 7

√
t

wmin
.

In particular, if na = n for all a and each Da is the uniform distribution over Rm, there
holds σ2

max = ‖Σa‖ = 1
m+2 and (8.10) can be simplified into

∆ ≥ 2 +

√
2k

m+ 2
+ 7
√
tk

which completes the proof.

The necessary lower bound (Theorem 3.3) can also be applied to the generalized stochastic
ball model. For the sake of simplicity, we restrict our discussion to the special case where
distributions are all uniform distributions over the unit balls and clusters are balanced, i.e.,
na = n, ∀1 ≤ a ≤ k.

Outline of proof of Corollary 4.3. For each pair of a and b, τa,b > 1−ε with high probability
for any ε > 0, provided that N is large. As for the operator norms, Theorem 5.41 in [25] implies

that ‖Xa‖ ≥ (1− ε)
√

n
m+2 with high probability. Simple calculations show that the necessary

lower bound (3.1) is equivalent to

ha,b ≥ τa,b +

√
τ2
a,b +

2

n
max ‖Xa‖2, ∀a 6= b. (8.11)

Adding up all these together, we yield the necessary lower bound for the special case as in
Corollary 4.3.

8.3 Gaussian mixture model

In this subsection, we prove Corollary 4.4 for the Gaussian mixture model. We still focus
on the minimal separation condition for the exactness of the Peng-Wei relaxation. Denote
p(t) = max{e−mt/8, e−mt2/8}.

Proof of Corollary 4.4. Let N be the number of points drawn from the Gaussian mixture
model and na be the number of points belonging to N (µa,Σa). To simplify our analysis, we
assume na = waN and xa,i ∼ N (µa,Σa) for all 1 ≤ a ≤ k.

Estimation of ‖Xa‖: Let Xa ∈ Rna×m be the data drawn from N (µa,Σa). Lemma 8.3

states that the sample mean ca = 1
na

∑na
i=1 xa,i satisfies ‖ca−µa‖ ≤

√
m(1+t)‖Σa‖

na
for all a with

probability at least 1− k · p(t). Considering ‖Xa‖, it obeys

‖Xa‖ ≤ ‖Xa − 1naµ
>
a ‖+

√
na‖ca − µa‖

≤
√
‖Σa‖(

√
na +

√
m+

√
mt+

√
m(1 + t))

≤
√
‖Σa‖(

√
na + 2

√
m(1 +

√
t))

for all 1 ≤ a ≤ k with probability at least 1− 2ke−mt/2, where we have used (8.4) in the second
line. It follows that∑k

l=1 ‖Xl‖2(na + nb)

4nanb
≤ 1

2N

(
k∑
l=1

‖Σl‖ (na + 8m(1 + t))

)(
1

wa
+

1

wb

)
≤ σ2

max

Nwmin
(N + 8km(1 + t))

≤ σ2
max

wmin

(
1 +

8km(1 + t)

N

)
,
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where wmin = 1
N min1≤l≤k nl and wmin ≤ 1

k . Therefore, for all a 6= b and all t ≥ 0, the right
hand side of (1.2) is bounded from above by√∑k

l=1 ‖Xl‖2(na + nb)

4nanb
≤
√
σ2

max

wmin

(
1 +

8km(1 + t)

N

)

≤ σmax√
wmin

(
1 +

√
8km(1 + t)

N

)
(8.12)

with probability at least 1− k · p(t)− 2ke−mt/2, which is greater than 1− 3k · p(t).

Estimation of τa,b and ha,b: For ha,b, it follows from Lemma 8.3 that

ha,b = ‖ca − cb‖ ≥ ‖µa − µb‖ − ‖ca − µa‖ − ‖cb − µb‖

≥ ‖µa − µb‖ −
√
m(1 + t)σ2

max

(
1√
na

+
1√
nb

)

≥ ‖µa − µb‖ − 2σmax

√
m(1 + t)

Nwmin
(8.13)

holds with probability at least 1 − 2ke−mt/8 for all pairs of a and b. If we further assume

N ≥ 16σ2
maxm(1+t)
∆2wmin

, then

ha,b ≥
‖µa − µb‖

2
. (8.14)

Note that ua,b is defined as ua,b = Xawa,b and each entry of ua,b is given by (ua,b)i =
1
ha,b

(xa,i−ca)>(ca−cb). To get an upper bound for ua,b, it suffices to bound (xa,i−ca)>(ca−cb),
which can be partitioned into three terms:

(xa,i − ca)>(ca − cb) = (xa,i − µa)>(ca − µa)︸ ︷︷ ︸
J1

+ (xa,i − ca)>(µa − cb)︸ ︷︷ ︸
J2

−‖ca − µa‖2.

1. For J1, note that xa,i − µa and ca − µa are not completely independent from each other.
Thus we further decompose J1 into

(xa,i − µa)>(ca − µa) =
1

na
‖xa,i − µa‖2 +

1

na
(xa,i − µa)>

∑
j 6=i

(xa,j − µa)

 .

For the first term above, (8.8) implies ‖xa,i−µa‖2 ≤ m(1 + t)‖Σa‖ with probability at least
1− e−mt/8. For the second term, we can reformulate it as

1

na
(xa,i − µa)>

∑
j 6=i

(xa,j − µa)

 =

〈
w,

1

na
Σ1/2
a

∑
j 6=i

(xa,j − µa)
〉

where w ∼ N (0, Im) and w is independent of 1
na

∑
j 6=i(xa,j − µa) ∼ N

(
0, na−1

n2
a

Σa

)
. Ap-

plying (8.7) implies

(xa,i − µa)>
∑
j 6=i

(xa,j − µa)

 ≤ m‖Σa‖
√
t(1 + t)

na

with probability at least 1− 2 · p(t). So we can conclude that

J1 ≤ m‖Σa‖

1 + t

na
+

√
t(1 + t)

na


for all a with probability at least 1− 3N · p(t), for all t ≥ 0.

31



2. For J2, we decompose it into two terms:

(xa,i − ca)>(µa − cb) = (xa,i − ca)>(µa − µb) + (xa,i − ca)>(µb − cb).

Since (xa,i − ca)>(µa − µb) ∼ N (0, na−1
na

(µa − µb)>Σa(µa − µb)), (8.6) indicates

(xa,i − ca)>(µa − µb) ≤
√
s(µa − µb)>Σa(µa − µb)

for all (a, b, i) with probability at least 1− kNe−s/2. On the other hand, (8.7) directly gives

(xa,i − ca)>(µb − cb) ≤ m
√
t(1 + t)‖Σa‖‖Σb‖

nb
≤ mσ2

max

√
t(1 + t)

nb

for all (a, b, i) with probability at least 1− 2kN · p(t). Therefore,

J2 ≤
√
s(µa − µb)>Σa(µa − µb) +mσ2

max

√
t(1 + t)

nb

holds with probability at least 1− 2kN · p(t)− kNe−s/2, for all s, t ≥ 0.

Using the estimation of J1 and J2, we can see that, for all (a, b, i),

(xa,i − ca)>(ca − cb) ≤
√
s(µa − µb)>Σa(µa − µb) + 3mσ2

max

1 + t√
min{na, nb}

holds with probability at least 1−kN(4 ·p(t)+e−s/2). Since (ua,b)i = 1
ha,b

(xa,i−ca)>(ca−cb),,
if N ≥ 16σ2

maxm(1+t)
∆2wmin

, then by (8.14) there hold,

τa,b = max{max{ua,b},max{ub,a}} ≤ 2
√
sσmax +

6mσ2
max(1 + t)

∆
√
Nwmin

. (8.15)

Proximity condition for Gaussian mixture model By combing (8.12), (8.13) and (8.15),
we have shown the proximity condition is satisfied with probability at least 1−kN(5·p(t)+e−s/2)
if

∆ ≥ 2σmax√
wmin

+ 4σmax

√
s+ 2σmax(4

√
k + 1)

√
m(1 + t)

Nwmin
+

6mσ2
max(1 + t)

∆
√
Nwmin

,

provided that N ≥ 16σ2
maxm(1+t)
∆2wmin

. These two inequalities are in turn implied by

∆ ≥ 2σmax√
wmin

+ 4σmax

√
s+ 10σmax

√
km(1 + t)

Nwmin
+

6mσmax(1 + t)√
N

(8.16)

Here by choosing t = max
{

8 log(kN1+γ)/m,
√

8 log(kN1+γ)/m
}

and s = 2 log(kN1+γ) where

γ > 0, then the proximity condition holds with probability at least

1− kN(5 · p(t) + e−s/2) ≥ 1− 6N−γ .

To simplify the expression, we assume N = (m2k2 log(k)/wmin)u, where u � 1. Denote
q(N ;m, k,wmin) the sum of the last two terms of (8.16) divided by σmax. We have the fol-
lowing asymptotic analysis:

q(N ;m, k,wmin) ≤
√
O
(

1 + log(km) + log(u)

kmu

)
+O

(
1√
u

+
log(k)

k
√
u

+
log(N)√

N

)
= o(1).

This completes the proof of Corollary 4.4.

32



Acknowledgement

Y. Li, S. Ling, T. Strohmer, and K. Wei acknowledge support from the NSF via grants DMS
1620455 and DMS 1737943.

References

[1] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In
International Conference on Computational Learning Theory, pages 458–469. Springer,
2005.

[2] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-of-
squares clustering. Machine Learning, 75(2):245–248, 2009.

[3] A. A. Amini and E. Levina. On semidefinite relaxations for the block model. arXiv preprint
arXiv:1406.5647, 2014.
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