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Abstract. Phase retrieval, i.e., the problem of recovering a function from the squared
magnitude of its Fourier transform, arises in many applications such as X-ray crystallog-
raphy, diffraction imaging, optics, quantum mechanics, and astronomy. This problem has
confounded engineers, physicists, and mathematicians for many decades. Recently, phase re-
trieval has seen a resurgence in research activity, ignited by new imaging modalities and novel
mathematical concepts. As our scientific experiments produce larger and larger datasets
and we aim for faster and faster throughput, it becomes increasingly important to study
the involved numerical algorithms in a systematic and principled manner. Indeed, the last
decade has witnessed a surge in the systematic study of computational algorithms for phase
retrieval. In this paper we will review these recent advances from a numerical viewpoint.
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1. Introduction

When algorithms fail to produce correct results in real world applications, we would like
to know why they failed. Is it because of some mistakes in the experimental setup, corrupted
measurements, calibration errors, incorrect modeling assumptions, or is it due to a deficiency
of the algorithm itself? If it is the latter, can it be fixed by a better initialization, a more
careful tuning of the parameters, or by choosing a different algorithm? Or is a more funda-
mental modification required, such as developing a different model, including additional prior
information, taking more measurements, or a better compensation of calibration errors? As
our scientific experiments produce larger and larger datasets and we aim for faster and faster
throughput, it becomes increasingly important to address the aforementioned challenges in
a systematic and principled manner. Thus, a rigorous and thorough study of computational
algorithms both from a theoretical and numerical viewpoint is not a luxury, but emerges as
an imperative ingredient towards effective data-driven discovery.

The last decade has witnessed a surge in the systematic study of numerical algorithms for
the famous phase retrieval problem, i.e., the problem of recovering a signal or image from the
intensity measurements of its Fourier transform [99, 112]. In many applications one would
like to acquire information about an object but it is impossible or impractical to measure
the phase of a signal. We are then faced with the difficult task of reconstructing the object
of interest from these magnitude measurements. Problems of this kind fall in the realm of
phase retrieval problems, and are notoriously difficult to solve numerically. In this paper we
will review recent advances in the area of phase retrieval with a strong focus on numerical
algorithms.
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Historically, one of the first important applications of phase retrieval is X-ray crystallog-
raphy [154, 90], and today this is still one of the most important applications. In 1912, Max
von Laue discovered the diffraction of X-rays by crystals. In 1913, W.H Bragg and his son
W.L. Bragg realized that one could determine crystal structure from X-ray diffraction pat-
terns. Max von Laue received the Nobel Prize in 1914 and the Braggs in 1915, marking the
beginning of many more Nobel Prizes to be awarded for discoveries in the area of x-ray crys-
tallography. Later, the Shake-and-Bake algorithm become of most successful direct methods
for phasing single-crystal diffraction data and opened a new era in research in mapping the
chemical structures of small molecules [91].

The phase retrieval problem permeates many other areas of imaging science. For example,
in 1980, David Sayre suggested to extend the approach of x-ray crystallography to non-
crystalline specimens. This approach is today known under the name of Coherent Diffraction
Imaging (CDI) [151]. See [187] for a detailed discussion of the benefits and challenges of CDI.
Phase retrieval also arises in optics [203], fiber optic communications [117], astronomical
imaging [42], microscopy [150], speckle interferometry [42], quantum physics [172, 41], and
even in differential geometry [19].

In particular, X-ray tomography has become an invaluable tool in biomedical imaging to
generate quantitative 3D density maps of extended specimens at nanoscale [46]. We refer
to [99, 137] for various instances of the phase problem and additional references. A review
of phase retrieval in optical imaging can be found in [187].

Uniqueness and stability properties from a mathematical viewpoint are reviewed in [81].
We just note here that the very first mathematical findings regarding uniqueness related
to the phase retrieval problem are Norbert Wiener’s seminal results on spectral factoriza-
tion [207].

Phase retrieval has seen a significant resurgence in activity in recent years. This resur-
gence is fueled by: (i) the desire to image individual molecules and other nano-particles;
(ii) new imaging capabilities such as ptychography, single-molecule diffraction and serial
nanocrystallography, as well as the availability of X-ray free-electron lasers (XFELs) and
new X-ray synchrotron sources that provide extraordinary X-ray fluxes, see for example
[30, 161, 155, 179, 20, 150, 46, 196]; and (iii) the influx of novel mathematical concepts
and ideas, spearheaded by [26, 24] as well as deeper understanding of non-convex optimiza-
tion methods such as Alternating Projections [71] and Fienup’s Hybrid-Input-Output (HIO)
algorithm [63]. These mathematical concepts include advanced methods from convex and
non-convex optimization, techniques from random matrix theory, and insights from algebraic
geometry.

Let x be a (possibly multidimensional) signal, then in its most basic form, the phase
retrieval problem can be expressed as

(1) Recover x, given |x̂(ω)|2 =

∣∣∣∣∫
T

x(t)e−2πit·ω dt

∣∣∣∣2 , ω ∈ Ω,

where T and Ω are the domain of the signal x and its Fourier transform x̂, respectively (and
the Fourier transform in (1) should be understood as possibly multidimensional transform).

When we measure |x̂(ω)|2 instead of x̂(ω), we lose information about the phase of x. If we
could somehow retrieve the phase of x, then it would be trivial to recover x—hence the term
phase retrieval. Its origin comes from the fact that detectors can often times only record
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the squared modulus of the Fresnel or Fraunhofer diffraction pattern of the radiation that is
scattered from an object. In such settings, one cannot measure the phase of the optical wave
reaching the detector and, therefore, much information about the scattered object or the
optical field is lost since, as is well known, the phase encodes a lot of the structural content
of the image we wish to form.

Clearly, there are infinitely many signals that have the same Fourier magnitude. This
includes simple modifications such as translations or reflections of a signal. While in practice
such trivial ambiguities are likely acceptable, there are infinitely many other signals sharing
the same Fourier magnitude which do not arise from a simple transform of the original signal.
Thus, to make the problem even theoretically solvable (ignoring for a moment the existence
of efficient and stable numerical algorithms) additional information about the signal must
be harnessed. To achieve this we can either assume prior knowledge on the structure of the
underlying signal or we can somehow take additional (yet, still phaseless) measurements of
x, or we pursue a combination of both approaches.

Phase retrieval problems are usually ill-posed and notoriously difficult to solve. Theoretical
conditions that guarantee uniqueness of the solution for generic signals exist for certain
cases. However, as mentioned in [137] and [55], these uniqueness results do not translate
into numerical computability of the signal from its intensity measurements, or about the
robustness and stability of commonly used reconstruction algorithms. Indeed, many of the
existing numerical methods for phase retrieval rely on all kinds of a priori information about
the signal, and none of these methods is proven to actually recover the signal.

This is the main difference between inverse and optimization problems: the latter focuses
on minimizing the loss function while the former emphasizes minimization of reconstruction
error of the unknown object. The bridge between the loss function and the reconstruction
error depends precisely on the measurement schemes which are domain-dependent.

Practitioners, not surprisingly, care less about theoretical guarantees of phase retrieval
algorithms as long as they perform reasonably well in practice. Yet, it is a fact that algorithms
do not always succeed. And then we want to know what went wrong. Was it a fundamental
misconception in the experimental setup? After all, Nature does not alway cooperate. Was
is due to underestimating measurement noise or unaccounted-for calibration errors? How
robust is the algorithm in presence of corrupted measurements or perturbations cause by
lack of calibration? How much parameter tuning is acceptable when we deal with large
throughput of data? All these questions require a systematic empirical study of algorithms
combined with a careful theoretical numerical analysis. This paper provides a snapshot from
an algorithmic viewpoint of recent activities in the applied mathematics community in this
field. In addition to traditional convergence analysis, we give equal attention to the sampling
schemes and the data structures.

1.1. Overview. In Section 2 we introduce the main setup, some mathematical notation,
and introduce various measurement techniques arising in phase retrieval, such as coded
diffraction illumination and ptychography. Section 3 is devoted to questions of uniqueness
and feasibility. We also analyze various noise models. Nonconvex optimization methods
are covered in Section 4. We first review and analyze iterative projection methods, such as
alternating projections, averaged alternating reflections, and the Douglas-Rachford splitting.
We also review issues of convergence. We then analyze gradient descent methods and the
Alternating Direction Method of Multipliers in detail. We discuss convergence rates, fixed
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points, and robustness of these algorithms. The question of the right initialization method is
the contents of Section 5, as initialization plays a key role for the performance of many algo-
rithms. In Section 6 we introduce various convex optimization methods for phase retrieval,
such as PhaseLift and convex methods without “lifting”. We also discuss applications in
quantum tomography and how to take advantage of signal sparsity. Section 7 focuses on
blind ptychography. We describe connections to time-frequency analysis, discuss in detail
ambiguities arising in blind ptychography and describe a range of blind reconstruction al-
gorithms. Holographic coded diffraction imaging is the topic of Section 8. We conclude in
Section 9.

2. Phase retrieval and ptychography: basic setup

2.1. Mathematical formulation. There are many ways in which one can pose the phase-
retrieval problem, for instance depending upon whether one assumes a continuous or discrete-
space model for the signal. In this paper, we consider discrete length signals (one-dimensional
or multi-dimensional) for simplicity, and because numerical algorithms ultimately operate
with digital data. Moreover, for the same reason we will often focus on finite-length signals.
We refer to [81] and the many references therein regarding the similarities and delicate
differences arising between the discrete and the continuous setting.

To fix ideas, suppose our object of interest is represented by a discrete signal x(n),n =
(n1, n2, · · · , nd) ∈ Zd. Define the Fourier transform of x∗ as∑

n

x∗(n)e−2πin·w, w ∈ Ω.

We denote the Fourier transform operator by F and F−1 is its inverse Fourier transform1.
The phase retrieval problem consists in finding x from the magnitude coefficients |(Fx)[ω]|,
ω ∈ Ω. Without further information about the unknown signal x, this problem is in general
ill-posed since there are many different signals whose Fourier transforms have the same
magnitude. Clearly, if x is a solution to the phase retrieval problem, then (i) cx for any
scalar c ∈ C obeying |c| = 1 is also solution, (ii) the “mirror function” or time-reversed
signal x̄(−t) is also solution, and (iii) the shifted signal x(t − s) is also a solution. From a
physical viewpoint these “trivial associates” of x are usually acceptable ambiguities. But in
general infinitely many solutions can be obtained from {|x̂(ω)| : ω ∈ Ω} beyond these trivial
associates [178].

Most phase retrieval problems are formulated in 2-D, often with the ultimate goal to
reconstruct–via tomography–a 3-D structure. But phase retrieval problems also arise in 1-D
(e.g. fiber optic communications) and potentially even 4-D (e.g. mapping the dynamics of
biological structures).

Thus, we formulate the phase retrieval problem in a more general way as follows: Let
x ∈ Cn and ak ∈ Cn:

(2) Recover x, given yk = |〈x, ak〉|2, k = 1, . . . , N.

Here, x and the ak can represent multi-dimensional signals. Here, we assume intensity
measurements but obviously the problem is equivalent from a theoretical viewpoint if we

1Here, F may correspond to a one- or multi-dimensional Fourier transform, and operate in the continuous,
discrete, or finite domain. The setup will become clear from the context.
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assume magnitude measurements

bk = |〈x, ak〉|, k = 1, . . . , N.

To ease the burden of notation, when x represents an image and the two-dimensionality of x
is essential for the presentation, we often will denote its dimension as x ∈ Cn×n (instead of
the more cumbersome notation x ∈ C

√
n×
√
n), in which case the total number of unknowns

is n2. In other cases, when the dimensionality of x is less relevant to the analysis, we will
simply consider x ∈ Cn, where x may be one- or multi-dimensional. The dimensionality will
be clear from the context.

Also, the measurement vectors ak can represent different measurement schemes (e.g. coded
diffraction imaging, ptychography,...) with specific structural properties, that we will de-
scribe in more detail later.

We note that if x is a solution to the phase retrieval problem, then cx for any scalar c ∈ C
obeying |c| = 1 is also a solution. Thus, without further information about x, all we can
hope for is to recover x up to a global phase. Thus, when we talk in this paper about exact
recovery of x, we always mean recovery up to this global phase factor.

As mentioned before, the phase retrieval problem is notoriously ill-posed in its most clas-
sical form, where one tries to recover x from intensities of its Fourier transform, |x̂|2. We
will discuss questions about uniqueness in Section 3, see also the reviews [81, 103, 17]. To
combat his ill-posedness, we have the options to include additional prior information about
x or acquire additional measurements about x, or a combination of both. We will briefly the
most common strategies below.

2.2. Prior information. A natural way to attack the ill-posedness of phase retrieval is to
reduce the number of unknown parameters. The most common assumption is to invoke
support constraints on the signal [63, 32]. This is often justified since the object of interest
may have clearly defined boundaries, outside of which one can assume that the signal is
zero. The effectiveness of this constraint often hinges on the accuracy on the estimated
support boundaries. Positivity and real-valuedness are other frequent assumptions suitable
in many settings, while atomicity is more limited to specific scenarios [62, 63, 143, 32].
Another assumption that has gained popularity in recent years is sparsity [187]. Under the
sparsity assumption, the signal of interest has only relatively few non-zero coefficients in
some (known) basis, but we do not know a priori the indices of these coefficients, thus we
do not know the location of the support. This can be seen as a generalization of the usual
support constraint.

Oversampling in the Fourier domain has been proposed as a means to mitigate the non-
uniqueness of the phase retrieval problem in connection with prior signal information [102].
While oversampling offers no benefit for most one-dimensional signals, the situation is more
favorable for multidimensional signals, where it has been shown that twofold oversampling in
each dimension almost always yields uniqueness for finitely supported, real-valued and non-
negative signals [21, 92, 178], see also [81]. As pointed out in [137], these uniqueness results
do not say anything about how a signal can be recovered from its intensity measurements,
or about the robustness and stability of commonly used reconstruction algorithms. We will
discuss throughout the paper how to incorporate various kinds of prior information in the
algorithm design.
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2.3. Measurement techniques. The setup of classical X-ray crystallography (aside of
oversampling) corresponds to the most basic measurement setup where the measurement
vectors ak are the columns of the associated 2-D DFT matrix. This means if x is an n × n
image, we obtain n2 Fourier-intensity samples, which is obviously not enough to recover
x. Thus, besides oversampling, different strategies have been devised to obtain additional
measurements about x. We briefly review these strategies and discuss many of them in more
detail throughout the paper.

Coded diffraction imaging. The combination of X-ray diffraction, oversampling and phase
retrieval has launched the field of Coherent Diffraction Imaging or CDI [151, 143]. A detailed
description of CDI and phase retrieval can be found in [187]. As pointed out in [187], the
lensless nature of CDI is actually an advantage when dealing with extremely intense and
destructive pulses, where one can only carry out a single pulse measurement with each
object (say, a molecule) before the object disintegrates. Lensless imaging is mainly used in
short wavelength spectral regions such as extreme ultraviolet (EUV) and X-ray, where high
precision imaging optics are difficult to manufacture, expensive and experience high losses.
We discuss CDI in more detail in Section 2.4, as well as throughout the paper.

Multiple structured illuminations. A by now very popular approach to increase the number
of measurements is to collect several diffraction patterns providing “different views” of the
sample or specimen, as illustrated in Figure 1. The concept of using multiple measurements
as an attempt to resolve the phase ambiguity for diffraction imaging is of course not new,
and was suggested in [156]. Since then, a variety of methods have been proposed to carry
out these multiple measurements; depending on the particular application, these may include
the use of various gratings and/or of masks, the rotation of the axial position of the sample,
and the use of defocusing implemented in a spatial light modulator, see [52] for details and
references.

Inspired by work from compressive sensing and coded diffraction imaging, theoretical
analysis clearly revealed the potential of combining randomness with multiple illumina-
tions [26, 55]. Despite the sometimes expressed skepticism towards the feasibility of ran-
dom illuminations [136], this concept has a long history in optics and X-ray imaging, and
great progress continues to be made [140], [95],[164], [184], [211], [145], thereby exemplifying
the exciting advanced that can be achieved by an efficient feedback loop between theory
and practice. To quote from the source [145]: “The ability to arbitrarily shape coherent
x-ray wavefronts at new synchrotron and x-ray free electron facilities with these new optics
will lead to advances in measurement capabilities and techniques that have been difficult to
implement in the x-ray regime.”

We can create multiple illuminations in many ways. One possibility is to modify the
phase front after the sample by inserting a mask or a phase plate, see [129] for example. A
schematic layout is shown in Figure 1. Another standard approach would be to change the
profile or modulate the illuminating beam, which can easily be accomplished by the use of
optical gratings [130]. A simplified representation would look similar to the scheme depicted
in Figure 1, with a grating instead of the mask (the grating could be placed before or after
the sample).

Ptychography can be seen as an example of multiple illuminations. But due to its specific
structure, ptychography deserves to be treated separately. In ptychography, one records
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Figure 1. A typical setup for structured illuminations in diffraction imaging
using a phase mask.

several diffraction patterns from overlapping areas of the sample, see [174, 194] and references
therein. We discuss ptychography in more detail in Section 2.7 and Section 2.5. In [106], the
sample is scanned by shifting the phase plate as in ptychography; the difference is that one
scans the known phase plate rather than the object being imaged. Oblique illuminations are
another possibility to create multiple illuminations. Here one can use illuminating beams
hitting the sample at user specified angle [59].

In mathematical terms, the phase retrieval problem when using multiple structured illu-
minations in the measurement process, can be expressed as follows.

Find x

subject to yk,` = |(FD`x)k|2, k = 1, . . . , n; ` = 1, . . . , L,

where D` is a diagonal matrix representing the `-th mask out of a total of L different masks,
and the total number of measurements is given by N = nL.

Holography. Holographic techniques, going back to the seminal work of Dennis Gabor [70],
are among the more popular methods that have been proposed to measure the phase of
the optical wave. The basic idea of holography is to include a reference in the illumination
process. This prior information can be utilized to recover the phase of the signal. While holo-
graphic techniques have been successfully applied in certain areas of optical imaging, they
can be generally difficult to implement in practice [52]. In recent years we have seen signifi-
cant progress in this area [176, 120]. We postpone a more detailed discussion of holographic
methods to Section 8.

2.4. Measurement of coded diffraction patterns. Due to the importance of coded
diffraction patterns for phase retrieval, we describe this scheme in more detail. Let Z2

n =
J0, n−1K2 be the object domain containing the support of the discrete object x∗ where Jk, lK
denotes the integers between, and including, k ≤ l ∈ Z.
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For any vector u, define its modulus vector |u| as |u|(j) = |u(j)| and its phase vector
sgn(u) as

sgn(u)(j) =

{
eiα if u(j) = 0

u(j)/|u(j)| else.

where j is the index for the vector component. The choice of α ∈ R is arbitrary when u(j)
vanishes. However, for numerical implementation, α can be conveniently set to 0.

In the noiseless case phase retrieval problem is to solve

b = |u| with u = Ax∗(3)

for unknown object x∗ with given data b and some measurement matrix A.
Let x∗(n),n = (n1, n2, · · · , nd) ∈ Zd, be a discrete object function supported in

M = {0 ≤ m1 ≤M1, 0 ≤ m2 ≤M2, · · · , 0 ≤ md ≤Md}.

Define the d-dimensional discrete-space Fourier transform of x∗ as∑
n∈M

x∗(n)e−2πin·w, w = (w1, · · · , wd) ∈ [0, 1]d.

However, only the intensities of the Fourier transform, called the diffraction pattern, are
measured

M∑
n=−M

∑
m∈M

x∗(m + n)x∗(m)e−i2πn·w, M = (M1, · · · ,Md)

which is the Fourier transform of the autocorrelation

R(n) =
∑
m∈M

x∗(m + n)x∗(m).

Here and below the over-line means complex conjugacy.
Note that R is defined on the enlarged grid

M̃ = {(m1, · · · ,md) ∈ Zd : −M1 ≤ m1 ≤M1, · · · ,−Md ≤ md ≤Md}

whose cardinality is roughly 2d times that ofM. Hence by sampling the diffraction pattern
on the grid

L =
{

(w1, · · · , wd) | wj = 0,
1

2Mj + 1
,

2

2Mj + 1
, · · · , 2Mj

2Mj + 1

}
we can recover the autocorrelation function by the inverse Fourier transform. This is the
standard oversampling with which the diffraction pattern and the autocorrelation function
become equivalent via the Fourier transform.

A coded diffraction pattern is measured with a mask whose effect is multiplicative and
results in a masked object x∗(n)µ(n) where µ(n) is an array of random variables representing
the mask. In other words, a coded diffraction pattern is just the plain diffraction pattern of
a masked object.

We will focus on the effect of random phases φ(n) in the mask function µ(n) = |µ|(n)eiφ(n)

where φ(n) are independent, continuous real-valued random variables and |µ|(n) 6= 0,∀n ∈
M (i.e. the mask is transparent). The mask function by assumption is a finite set of
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continuous random variables and so is y∗ = Ax∗. Therefore y∗ vanishes nowhere almost
surely, i.e.

bmin = min
j
bj > 0.

For simplicity we assume |µ|(n) = 1,∀n which gives rise to a phase mask and an isometric
propagation matrix

(1-mask ) A = cΦ diag{µ},(4)

i.e. A∗A = I (with a proper choice of the normalizing constant c), where Φ is the oversampled

d-dimensional discrete Fourier transform (DFT). Specifically Φ ∈ C|M̃|×|M| is the sub-column
matrix of the standard DFT on the extended grid M̃ where |M| is the cardinality of M.

If the non-vanishing mask µ does not have a uniform transparency, i.e. |µ|(n) 6= 1,∀n,
then we can define a new object vector |µ| � x∗ and a new isometric propagation matrix

A = cΦ diag

{
µ

|µ|

}
with which to recover the new object first.

When two phase masks µ1, µ2 are deployed, the propagation matrix A∗ is the stacked
coded DFTs, i.e.

(2-mask case) A = c

[
Φ diag{µ1}
Φ diag{µ2}

]
.(5)

With proper normalization, A is isometric.
All of the results with coded diffraction patterns present in this work apply to d ≥ 2.

But the most relevant case is d = 2 which is assumed hereafter. We can vectorize the
object/masks by converting the n × n square grid into an ordered set of index. Let N the

total number of measured data. In other words, A ∈ CN×n2
where N is about 4 × n2 and

and 8× n2, respectively, in the case of (4) and (5).

2.5. Ptychography. Ptychography is a special case of coherent diffractive imaging that uses
multiple micro-diffraction patterns obtained through scanning across the unknown specimen
with a mask, making a measurement for each location via a localized illumination on the
specimen [94, 174]. This provides a much larger set of measurements, but at the cost of a
longer, more involved experiment. As such ptychography is a synthetic aperture technique
and, along with advances in detection and computation techniques, has enabled microscopies
with enhanced resolution and robustness without the need for lenses. Ptychography offers
numerous benefits and thus attracted significant attention. See [46, 194, 174, 168, 166, 97]
for a small sample of different activities in this field.

A schematic drawing of a ptychography experiment in which a probe scans through a
2D object in an overlapping fashion and produces a sequence of diffraction patterns of the
scanned regions is depicted in Figure 2. Each image frame represents the magnitude of the
Fourier transform of µ(s)x(s + t), where µ(s) is a localized illumination (window) function
or a mask, x(s) is the unknown object of interest, and t is a translational vector. Thus the
measurements taken in ptychography can be expressed as

(6) |F (µ(s)x(s + t)|2.
10
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Figure 2. A schematic drawing of a ptychography experiment in which a
probe scans through a 2D object in an overlapping fashion and produces a
sequence of diffraction patterns of the scanned regions. Image courtesy of [168].

Due to its specific underlying mathematical structure, ptychography deserves its own analy-
sis. A detailed discussion of various reconstruction algorithms for ptychography can be found
in [168]. For a convex approach using the PhaseLift idea see for instance [96]. An intriguing
algorithm that combines ideas from PhaseLift with the local nature of the measurements
can be found in [101].

2.6. Ptychography and time-frequency analysis. An inspection of the basic measure-
ment mechanism of ptychography in (6) shows an interesting connection to time-frequency
analysis [80]. To see this, we recall the definition of the short-time Fourier transform (STFT)
and the Gabor transform. For s, ω ∈ Rd we define the translation operator Ts and the mod-
ulation operator Mω by

Tsx(t) = x(t− s), Mωx(t) = e2πiω·tx(t),

where x ∈ L2(Rd). Let µ ∈ S(Rd), where S denotes the Schwartz space. The STFT of x
with respect to the window µ is defined by

Vµx(s,ω) =

∫
Rd

x(t)µ(s− t)e−2πiω·tdt = 〈x,MωTsµ〉, (s,ω) ∈ R2d.

A Gabor system consists of functions of the form

e2πibltµ(t− ak) = MblTakµ, (k, l) ∈ Zd × Zd

where a, b > 0 are the time- and frequency-shift parameters [80]. The associated Gabor
transform G : L2(R) 7→ `2(Z× Z) is defined as

Gx = {〈x,MblTakµ〉}(k,l)∈Zd×Zd .

G is clearly just an STFT that has been sampled at the time-frequency lattice aZ× bZ. It
is clear that the definitions of the STFT and Gabor transform above can be adapted in an
obvious way for discrete or finite-dimensional functions.
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Since ptychographic measurements take the form {|〈x,MωTsµ〉|2} where (s,ω) are indices
of some time-frequency lattice, it is now evident that these measurements simply correspond
to squared magnitudes of the STFT or (depending on the chosen time-frequency shift pa-
rameters) of the Gabor transform of the signal x with respect to the mask µ. Thus, methods
developed for the reconstruction of a function from magnitudes of its (sampled) STFT—see
e.g. [53, 165, 81]—become also relevant for ptychography.

Beyond ptychography, phase retrieval from the STFT magnitude has been used in in
speech and audio processing [159, 8]. It has also have found extensive applications in optics.
As described in [103], one example arises in frequency resolved optical gating (FROG) or
XFROG, which is used for characterizing ultra-short laser pulses by optically producing the
STFT magnitude of the measured pulse.

2.7. 2D Ptychography. While the mathematical framework of ptychography can be for-
mulated in any dimension, the two-dimensional case is the most relevant in practice. In
the ptychographic measurement, the m×m mask has a smaller size than the n× n object,
i.e. m < n, and is shifted around to various positions for measurement of coded diffraction
patterns so as to cover the entire object.

LetM0 := Z2
m,m < n, be the initial mask area, i.e. the support of the mask µ0 describing

the illumination field. Let T be the set of all shifts (i.e. the scan pattern), including (0, 0),
involved in the ptychographic measurement. Denote by µt the t-shifted mask for all t ∈ T
andMt the domain of µt. Let xt∗ the object restricted toMt. We refer to each xt∗ as a part
of x∗ and write x∗ = ∨txt∗ where ∨ is the “union” of functions consistent over their common
support set. In ptychography, the original object is broken up into a set of overlapping
object parts, each of which produces a µt-coded diffraction pattern. The totality of the
coded diffraction patterns is called the ptychographic measurement data. For convenience
of analysis, we assume the value zero for µt, xt∗ outside of Mt and the periodic boundary
condition on Z2

n when µt crosses over the boundary of Z2
n.

A basic scanning pattern is the 2D lattice with the basis {v1,v2}
T = {tkl ≡ kv1 + lv2 : k, l ∈ Z}, v1,v2 ∈ Z2

acting on the object domain Z2
n. Instead of v1 and v2 we can also take u1 = `11v1 + `12v2

and u2 = `21v1 + `22v2 for integers `ij with `11`22 − `12`21 = ±1. This ensures that v1

and v2 themselves are integer linear combinations of u1,u2. Every lattice basis defines a
fundamental parallelogram, which determines the lattice. There are five 2D lattice types,
called period lattices, as given by the crystallographic restriction theorem. In contrast, there
are 14 lattice types in 3D, called Bravais lattices.

Under the periodic boundary condition the raster scan with the step size τ = n/q, q ∈ N,
T consists of tkl = τ(k, l), with k, l ∈ {0, 1, · · · , q−1} (Figure 3(a)). The periodic boundary
condition means that for k = q− 1 or l = q− 1 the shifted mask is wrapped around into the
other end of the object domain.

A basic requirement is the strong connectivity property of the object with respect to the
measurement scheme. It is useful to think of connectivity in graph-theoretical terms: Let
the ptychographic experiment be represented by a complete graph G whose notes correspond
to {xt∗ : t ∈ T } (see Figure 3(b)).

An edge between two nodes corresponding to xt∗ and xt
′
∗ is s-connective if

|Mt ∩Mt′ ∩ supp(x∗)| ≥ s ≥ 2(7)
12



(a) raster scan (b) (c)

Figure 3. A complete undirected graph (a) representing four connected ob-
ject parts (b) where the grey level indicates the number of coverages by the
mask in four scan positions.

where | · | denotes the cardinality. In the case of full support (i.e. supp(x∗) = M), (7)
becomes |Mt ∩Mt′ | ≥ s. An s-connective sub-graph Gs of G consists of all the nodes of
G but only the s-connective edges. Two nodes are adjacent (and neighbors) in Gs iff they
are s-connected. A chain in Gs is a sequence of nodes such that two successive nodes are
adjacent. In a simple chain all the nodes are distinct. Then the object parts {xt∗ : t ∈ T }
are s-connected if and only if Gs is a connected graph, i.e. every two nodes is connected by
a chain of s-connective edges. Loosely speaking, an object is strongly connected w.r.t. the
ptychographic scheme if s � 1. We say that {xt∗ : t ∈ T } are s-connected if there is an
s-connected chain between any two elements.

Let us consider the simplest raster scan corresponding to the square lattice with v1 =
(τ, 0),v2 = (0, τ) of step size τ > 0, i.e.

tkl = τ(k, l), k, l = 0, . . . , q − 1.(8)

For even coverage of the object, we assume that τ = n/q = m/p for some p < q ∈ N.
Denote the tkl-shifted masks and blocks by µkl and Mkl, respectively. Likewise, denote

by xkl∗ the object restricted to the shifted domain Mkl.
Let F(ν, x) be the bilinear transformation representing the totality of the Fourier (magni-

tude and phase) data for any mask ν and object x. From F(ν0, x) we can define two measure-

ment matrices. First, for a given ν0 ∈ Cm2
, let Aν be defined via the relation Aνx := F(ν0, x)

for all x ∈ Cn2
; second, for a given x ∈ Cn2

, let Bx be defined via Bxν = F(ν0, x) for all

ν0 ∈ Cm2
.

More specifically, let Φ denote the over-sampled Fourier matrix. The measurement matrix
Aν is a concatenation of {Φ diag(νt) : t ∈ T } (Figure (4)(a)). Likewise, Bx is {Φ diag(xt) :
t ∈ T } stacked on top of each other (Figure (4)(b)). Since Φ has orthogonal columns, both
Aν and Bx have orthogonal columns. Both matrices will be relevant when we discuss blind
ptychography which does not assume the prior knowledge of the mask in Section 7.

3. Uniqueness, ambiguities, noise

In this section we discuss various questions of uniqueness and feasibility related the phase
retrieval problem. Since a detailed and thorough current review of uniqueness and feasibility
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(a) Matrix Aν (b) Matrix Bx

Figure 4. (a) Aν is a concatenation of shifted blocks {Φ diag(νt) : t ∈ T };
(b) Bx is a concatenation of unshifted blocks {Φ diag(xt) : t ∈ T }. In both
cases, each block gives rise to a coded diffraction pattern |Φ(νt � xt)|.

can be found in [81], we mainly focus on aspects not covered in that review. We will also
discuss various noise models.

3.1. Uniqueness and ambiguities with coded diffraction patterns. Line object: x∗
is a line object if the original object support is part of a line segment. Otherwise, x∗ is said
to be a nonlinear object.

Phase retrieval solution is unique only up to a constant of modulus one no matter how
many coded diffraction patterns are measured. Thus the proper error metric for an estimate
x of the true solution x∗ is given by

min
θ∈R
‖e−iθx∗ − x‖ = min

θ∈R
‖eiθx− x∗‖

where the optimal phase adjustment θ∗ is given by

θ∗ = ](x∗x∗).

Now we recall the uniqueness theorem of phase retrieval with coded diffraction patterns.

Theorem 3.1. [55] Let x∗ ∈ Cn2
be a nonlinear object and x a solution of of the phase

retrieval problem. Suppose that the phase of the random mask(s) is independent continuous
random variables on (−π, π].
(i) One-pattern case. Suppose, in addition, that ]x∗(j) ∈ [−απ, βπ], ∀j with α+β ∈ (0, 2)
and that the density function for φ(n) is a constant (i.e. (2π)−1) for every n.

Then x = eiθx∗ for some constant θ ∈ (−π, π] with a high probability which has a simple,
lower bound

1− n2

∣∣∣∣β + α

2

∣∣∣∣TS/2U

(9)

where S is the number of nonzero components in x∗ and TS/2U the greatest integer less than
or equal to S/2.
(ii) Two-pattern case. Then x = eiθx∗ for some constant θ ∈ (−π, π] with probability one.

14



(a) Original object (b) AP (c) AAR

Figure 5. (b) AP and (c) AAR reconstruction of the nonnegative real-valued
phantom with a plain uniform mask.

The proof of Theorem 3.1 is given in [55] where more general uniqueness theorems can be
found. It is noteworthy that the probability bound for uniqueness (9) improves exponentially
with higher sparsity of the object.

We have the analogous uniqueness theorem for ptychography.

Theorem 3.2. [57] Let x∗ ∈ Cn2
be a nonlinear object and x a solution of of the phase

retrieval problem. Suppose that the phase of the random mask(s) is independent continuous
random variables on (−π, π].

If the connectivity condition (7) holds, then x∗ is the unique ptychogaphic solution up to
a constant phase factor.

3.2. Ambiguities with one diffraction pattern. By the methods in [55], it can be shown
that an object estimate x produces the same coded diffraction pattern as x∗ if and only if

x(n) =

{
eiθx∗(n + m)µ(n + m)/µ(n)

eiθx∗(N− n + m)µ(N− n + m)/µ(n),
(10)

for some m ∈ Z2, θ ∈ R almost surely. The “if” part of the above statement is straightforward
to check. The “only if” part is a useful result of using a random mask in measurement.
Therefore, in addition to the trivial phase factor, there are translational (related to m),
conjugate-inversion (related to x∗(N−·)) as well as modulation ambiguity (related to µ(n+
m)/µ(n) or µ(N + m − n)/µ(n)). Among these, the conjugate-inversion (a.k.a. the twin
image) is more prevalent as it can not be eliminated by a tight support constraint.

If, however, we have the prior knowledge that x∗ is real-valued, then none of the ambiguities
in (10) can happen since the right hand side of (10) has a nonzero imaginary part almost
surely for any θ,m.

On the other hand, if the mask is uniform (i.e. µ = constant), then (10) becomes

x(n) =

{
eiθx∗(n + m)

eiθx∗(N− n + m),
(11)

for some m ∈ Z2, θ ∈ R. So even with the real-valued prior, all the ambiguities in (11) are
present, including translation, conjugate-inversion and constant phase factor. In addition,
there may be other ambiguities not listed in (11).
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Figure 6. Relative error (RE) and relative residual (RR) on the semi-log
scale versus the parameter f of the Fresnel mask for the test object RPP.

These ambiguities result in poor reconstruction as shown in Figure 5 for the nonnegative
real-valued phantom in Figure 5(a) with a plain, uniform mask by two widely used algo-
rithms, Alternating Projections (AP) and Averaged Alternating Reflections (AAR), both of
which are discussed in Section 3.3.

The phantom and its complex-valued variant, randomly phased phantom (RPP) used in
Figure 6 have the distinguished feature that their support is not the whole n × n grid but
surrounded by an extensive area of dark pixels, thus making the translation ambiguity in
(11) show up. This is particularly apparent in Figure 5(c). In general, when the unknown
object has the full n × n support, phase retrieval becomes somewhat easier because the
translation ambiguity is absent regardless of the mask used.

Twin-like ambiguity with a Fresnel mask. The next example shows that a commonly used
mask can harbor a twin-like image as ambiguity and the significance of using “random” mask
for phase retrieval.

Consider the Fresnel mask function which up to a shift has the form

µ0(k1, k2) := exp
{

iπf(k2
1 + k2

2)/m
}
, k1, k2 = 1, · · · ,m(12)

where f ∈ R are adjustable parameters (see Figure 7(c) for the phase pattern of (12)).
We construct a twin-like ambiguity for the Fresnel mask with f ∈ Z and q = 2. Similar

twin-like ambiguities can be constructed for general q.
For constructing the twin-like ambiguity we shall write the object vector x∗ as n × n

matrix. Let ξ̌ be the conjugate inversion of any ξ ∈ Cn×n, i.e.

ξ̌ij = ξn+1−i,n+1−j.

Proposition 3.3. [33] Let f ∈ Z and µ ∈ Cm×m be the Fresnel mask (12). For an even
integer n, the matrix

µ̌� µ := h =

(
h1 h2

h3 h4

)
, hj ∈ Cm/2×m/2, j = 1, 2, 3, 4,

satisfies the symmetry

h1 = h4 = σh2 = σh3, σ = (−1)f(1+m/2).

Moreover, for q = 2 (hence m = n and τ = m/2), then x = x̌∗ � h and x∗ produce the same
ptychographic data set with the Fresnel mask µ.
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To demonstrate the danger of using a “regularly” structured mask, we plot the relative
error (RE) and relative residual (RR) of reconstruction (200 AAR iterations followed by
100 AP iterations) in Figure 6. The test object is randomly phased phantom (RPP) whose
modulus is exactly the nonnegative phantom (Figure 5(a)) but whose phase is randomly and
uniformly distributed in [−π, π]. The scan scheme is the raster scan with τ = m/2, i.e. 50%
overlap ratio between adjacent masks. Both RE and RR spike at integer-valued f and the
spill-over effect gets worse as q increases.

3.3. Phase retrieval as feasibility. For two dimensional, complex-valued objects, let Cn2

be the object space where n is the number of pixels in each dimension. Sometimes, it may
be more convenient to think of the object space as Cn×n. Let N be the total number of data.
The data manifold

Y := {u ∈ CN : |u| = b}

is an N -dimensional real torus. For phase retrieval it is necessary that N > 2n2 [9]. Without
loss of generality we assume that A has a full rank.

Due to the rectangular nature (more rows than columns) of the measurement matrix A,

it is more convenient to work with the transform domain CN . Let X := ACn2
, i.e. the range

of A.
The problem of phase retrieval and ptychography can be formulated as the feasibility

problem

Find u ∈ X ∩ Y,

in the transform domain instead of the object domain. Let PX and PY be the projection
onto X and Y , respectively.

Let us clarify the meaning of solution in the transform domain since A is overdetermining.
Let � denotes the component-wise (Hadamard) product and we can write

PXu = AA+u, PY u = b� sgn(u)

where the pseudo-inverse

A+ = (A∗A)−1A∗

becomes A∗ if A isometric which we assume henceforth.
We refer to u = eiαAx∗, α ∈ R, as the true solution (in the transform domain), up to a

constant phase factor eiα. We say that u is a generalized solution (in the transform domain)
if

|ũ| = b, ũ := PXu.

In other words, u is said to be a generalized solution if A+u is a phase retrieval solution.
Typically a generalized solution u is neither a feasible solution (since |u| may not equal b)
nor unique (since A is overdetermining) and u+ z is also a generalized solution if PXz = 0.

We call u a regular solution if u is a generalized solution and PXu = u. Let ũ = PXu
for a generalized solution u. Since PX ũ = ũ and |ũ| = b, ũ is a regular solution. Moreover,
since PXRXu = PXu and RXRXu = u, u is a generalized solution if and only if RXu is a
generalized solution.

The goal of the inverse problem (3) is the unique determination of x∗, up to a constant
phase factor, from the given data b. In other words, uniqueness holds if, and only if, all
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regular solutions ũ in the transform domain have the form

ũ = eiαAx∗

or equivalently, any generalized solution u is an element of the (2N − 2n2) real-dimensional
vector space

{eiαAx∗ + z : PXz = 0, z ∈ CN , α ∈ R}.(13)

In the transform domain, the uniqueness is characterized by the uniqueness of the regular so-
lution, up to a constant phase factor. Geometrically, uniqueness means that the intersection
X ∩ Y is a circle (parametrized eiα times Ax∗).

3.4. Noise models and log-likelihood functions. In the noisy case, it is more convenient
to work with the optimization framework instead of the feasibility framework. When the
noise statistics is known, it is natural to consider the maximum likelihood estimation (MLE)
framework. In MLE, the negative log-likelihood function is the natural choice for the loss
function.

Poisson noise. For the Poisson noise, the negative log-likelihood function is [195],[18]

L(u) =
∑
i

|u(i)|2 − b2(i) ln |u(i)|2.(14)

A disadvantage of working with the Poisson loss function (14) is the occurrence of divergent
derivative where u(i) vanishes but b(i) does not. This roughness can be softened as follows.

At the high signal-to-noise (SNR) limit, the Poisson distribution

P (n) =
λne−λ

n!

has the asymptotic limit

P (n) ∼ e−(n−λ)2/(2λ)

√
2πλ

.(15)

Namely in the low noise limit the Poisson noise is equivalent to the Gaussian noise of the
mean |Ax∗|2 and the variance equal to the intensity of the diffraction pattern. The overall
SNR can be tuned by varying the signal energy ‖Ax∗‖2.

The negative log-likelihood function for the right hand side of (15) is∑
j

ln |u(j)|+ 1

2

∣∣∣∣ b2(j)

|u(j)|
− |u(j)|

∣∣∣∣2(16)

which is even rougher than (14) where u(i) vanishes but b(i) does not. To rid of the divergent
derivatives at u(j) = 0 we make the substitution

b(j)

|u(j)|
→ 1, ln |u(j)| → ln b(j) = const.,

in (16) and obtain

L(u) =
1

2
‖|u| − b‖2(17)
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after dropping irrelevant constant terms. Expanding the loss function (17)

L(u) =
1

2
‖u‖2 −

∑
j

b(j)|u(j)|+ 1

2
‖b‖2(18)

we see that (18) has a bounded sub-differential where u(j) vanishes but b(j) does not.
There are various tricks to smooth out (17) e.g. by introducing an additional regularization
parameter as

L(u) =
1

2
‖
√
|u|2 + ε−

√
b2 + ε‖2, ε > 0

(see [29]).

Complex Gaussian noise. Another type of noise due to interference from multiple scatter-
ing can be modeled as complex circularly-symmetric Gaussian noise (aka Rayleigh fading
channel), resulting in

b = |Ax∗ + η|(19)

where η is a complex circularly-symmetric Gaussian noise. Squaring the expression, we
obtain

b2 = |Ax∗|2 + |η|2 + 2<(η � Ax∗)

Suppose |η| � |Ax∗| so that |η|2 � 2<(η � Ax∗). Then

b2 ≈ |Ax∗|2 + 2<(η � Ax∗).(20)

Eq. (20) says that at the photon counting level, the noise appears additive and Gaussian
but with variance proportional to |Ax∗|2, resembling the distribution (15). Therefore the
loss function (17) is suitable for Rayleigh fading interference noise at low level.

Thermal noise. On the other hand, if the measurement noise is thermal (i.e. incoherent
background noise) as in

|b|2 = |Ax∗|2 + η,

where η is real-valued Gaussian vector of covariance σ2IN , then the suitable loss function is

L(u) =
1

2
‖|u|2 − b2‖2(21)

which is smooth everywhere. See [76], [213],[113] for more choices of loss functions.
In general the amplitude-based Gaussian loss function (17) outperforms the intensity-based

loss function (21) [208].
Finally, we note that the ambiguities discussed in Section 3.2 are global minimizers of

the loss functions (14), (17) and (21) along with eiθAx∗ in the noiseless case. Therefore, to
remove the undesirable global minimizers, we need sufficient number of measurement data
as well as proper measurement schemes.

19



3.5. Spectral gap and local convexity. For sake of convenience, we shall assume that A
is an isometry which can always be realized by rescaling the columns of the measurement
matrix.

In local convexity of the loss functions as well as geometric convergence of iterative algo-
rithms, the following matrix plays a central role:

B = diag
[
sgn(Ax)

]
A(22)

which is an isometry and varies with x.
With the notation

∇f(x) :=
1

2

(
∂f(x)

∂<(x)
+ i

∂f(x)

∂=(x)

)
, x ∈ Cn2

(23)

we can write the sub-gradient of the loss function (17) as

2<[ζ∗∇L(Ax)] = <(x∗ζ)− b><(Bζ), ∀ζ ∈ Cn2

.

In other words, x is a stationary point if and only if

x = B∗b = A∗(sgn(Ax)� b)
or equivalently

B∗ [|Ax| − b] = 0.(24)

Clearly, with noiseless data, |Ax∗| = b and hence x∗ is a stationary point. In addition, there
likely are other stationary points since B∗ has many more columns than rows.

On the other hand, with noisy data there is no regular solution to |Ax| = b with high
probability (since A has many more rows than columns) and the true solution x∗ is unlikely
to be a stationary point (since (24) imposes extra constraints on noise).

Let Hess(x) be the Hessian of L(Ax). If Ax has no vanishing components, Hess(x) can be
given explicitly as

<[ζ∗Hess(x)ζ] = ‖ζ‖2 −=(Bζ)T diag

[
b

|Ax|

]
=(Bζ), ∀ζ ∈ Cn2

.

Theorem 3.4. [36], [34], [33] Suppose x∗ is not a line object. For A given by (4), (5)
or the ptychography scheme under the connectivity condition (7) with independently and
continuously distributed mask phases, the second largest singular value λ2 of the real-valued
matrix

B =
[
−<(B) =(B)

]
(25)

is strictly less than 1 with probability one.
Therefore, the Hessian of (17) at Ax∗ (which is nonvanishing almost surely) is positive

semi-definite and has one-dimensional eigenspace spanned by ix∗ associated with eigenvalue
zero.

4. Nonconvex optimization

4.1. Alternating Projections (AP). The earliest phase retrieval algorithm for a non-
periodic object (such as a single molecule) is the Gerchberg-Saxton algorithm [71] and its
variant, Error Reduction [63]. The basic idea is Alternating Projections (AP), going all the
way back to the works of von Neumann, Kaczmarz and Cimmino in the 1930s [39], [109],
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[201]. And these further trace the history back to Schwarz [182] who in 1870 used AP to
solve the Dirichlet problem on a region given as a union of regions each having a simple to
solve Dirichlet problem.

AP is defined by

xk+1 = A∗[b� sgn(Axk)].(26)

In the case with real-valued objects, (26) is exactly Fienup’s Error Reduction algorithm [63].
The AP fixed points satisfy

x = A∗[b� sgn(Ax)] or B∗[|Ax| − b] = 0

which is exactly the stationarity equation (24) for L in (17). The existence of non-solutional
fixed points (i.e. |Ax| 6= b), and hence local minima of L in (17), can not be proved presently
but manifests in numerical stagnation of AP iteration.

Indeed, AP can be formulated as a gradient descent for the loss function (17). The function
(17) has the sub-gradient

2∇L(Ax) = x− A∗[b� sgn(Ax)]

and hence we can write the AP map as

T (x) = x− 2∇L(Ax)

implying a constant step size 1. In [36], local geometric convergence to x∗ is proved for AP.
In other words, AP is both noise-agnostic in the sense that it projects onto the data set as
well as noise-aware in the sense that it is the sub-gradient descent of the loss function (17).

The following result identifies any limit point of the AP iterates with a fixed point of AP
with a norm criterion for distinguishing the phase retrieval solutions from the non-solutions
among many coexisting fixed points.

Proposition 4.1. [36] Under the conditions of Theorem 3.1 or (3.2), the AP sequence
xk = T k−1(x1), with any starting point x1, is bounded and every limit point is a fixed point.

Furthermore, if a fixed point x satisfies ‖Ax‖ = ‖b‖, then |Ax| = b almost surely. On the
other hand, if |Ax| 6= b, then ‖Ax‖ < ‖b‖.

4.2. Averaged Alternating Reflections (AAR). AAR is based on the following charac-
terization of convex feasibility problems.

Let

RX = 2PX − I, RY = 2PY − I.

Then we can characterize the feasibility condition as

u ∈ X ∩ Y if and only if u = RYRXu

in the case of convex constraint sets X and Y [73]. This motivates the Peaceman-Rachford
(PR) method: For k = 0, 1, 2, · · ·

uk+1 = RYRXyk.

AAR is the averaged version of PR: For k = 0, 1, 2, · · ·

uk+1 =
1

2
uk +

1

2
RYRXuk,(27)
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hence the name Averaged Alternating Reflections (AAR). With a different variable vk :=
RXuk, we see that AAR (27) is equivalent to

vk+1 =
1

2
vk +

1

2
RXRY vk.(28)

In other words, the order of applying Rx and RY does not matter.
A standard result for AAR in the convex case is this.

Proposition 4.2. [13] Suppose X and Y are closed and convex sets of a finite-dimensional
vector space E. Let {uk} be an AAR-iterated sequence for any u1 ∈ E. Then one of the
following alternatives holds:
(i) X ∩ Y 6= ∅ and (uk) converges to a point u such that PXu ∈ X ∩ Y ;
(ii) X ∩ Y = ∅ and ‖uk‖ → ∞.

In alternative (i), the limit point u is a fixed point of the AAR map (27), which is necessar-
ily in X ∩ Y ; in alternative (ii) the feasibility problem is inconsistent, resulting in divergent
AAR iterated sequences, a major drawback of AAR since the inconsistent case is prevalent
with noisy data because of the higher dimension of data compared to the object.

Accordingly, the alternative (i) in Proposition 4.2 means that if a convex feasibility problem
is consistent then every AAR iterated sequence converges to a generalized solution and hence
every fixed point is a generalized solution.

We begin with showing that AAR can be viewed as an ADMM method with the indicator
function IY of the set Y = {z ∈ CN : |z| = b} as the loss function.

AAR for phase retrieval can be viewed as relaxation of the linear constraint of X by
alternately minimizing the augmented Lagrangian function

L(z, x, λ) = IY (z) + λ∗(z − Ax) +
1

2
‖z − Ax‖2(29)

in the order

zk+1 = arg min
z
L(z, xk, λk) = PY [Axk − λk](30)

xk+1 = arg min
ν
L(zk+1, x, λk) = A+(zk+1 + λk)(31)

λk+1 = λk + zk+1 − Axk+1.(32)

Let uk := zk + λk−1 and we have from (32)

λk = uk − Axk
= uk − PXuk

and hence

uk+1 = PY (Axk − λk) + λk

= PY (PXuk − λk) + λk

= PYRXuk + uk − PXuk
=

1

2
uk +

1

2
RYRXuk

which is AAR (27).
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As proved in [34], when uniqueness holds, the fixed point set of the AAR map (27) is
exactly the continuum set

{u = eiαAx∗ − z : PXz = 0, sgn(u) = α + sgn(Ax∗), z ∈ CN , α ∈ R}.(33)

In (33), the phase relation sgn(u) = α+sgn(Ax∗) implies that z = η�sgn(u), η ∈ RN , b+η ≥
0. So the set (33) can be written as

{eiα(b− η)� sgn(Ax∗) : PX(η � sgn(Ax∗)) = 0, b+ η ≥ 0, η ∈ RN , α ∈ R},(34)

which is an (N−2n2) real-dimensional set, a much larger set than the circle {eiαAx∗ : α ∈ R}
for a given f . On the other hand, the fixed point set (34) is N -dimension lower than
the set (13) of generalized solutions and projected (by PX) onto the circle of true solution
{eiαAx∗ : α ∈ R}.

A more intuitive characterization of the fixed points can be obtained by applying RX to
the set (34). Since

RX [eiα(b− η)� sgn(Ax∗)] = eiα(b+ η)� sgn(Ax∗)

amounting to the sign change in front of η, the set (34) under the map RX is mapped to

{eiα(b+ η)� sgn(Ax∗) : PX(η � sgn(Ax∗)) = 0, b+ η ≥ 0, η ∈ RN , α ∈ R}.(35)

The set (35) is the fixed point set of the alternative form of AAR:

vk+1 =
1

2
xk +

1

2
RXRY vk(36)

in terms of vk := RXuk. The expression (35) says that the fixed points of (36) are generalized
solutions with the “correct” Fourier phase.

However, the boundary points of the fixed point set (35) are degenerate in the sense that
they have vanishing components, i.e. |v|(j) = (b + η)(j) = 0 for some j and can slow down
convergence [64]. Such points are points of discontinuity of the AAR map (36) because they
are points of discontinuity of PY = b� sgn(·). Indeed, even though AAR converges linearly
in the vicinity of the true solution, numerical evidence suggests that globally (starting with a
random initial guess) AAR converges sub-linearly. Due to the non-uniformity of convergence,
the additional step of applying PX (Proposition 4.2(i)) at the “right timing” of the iterated
process can jumpstart the geometric convergence regime [34].

As noted in Section 3.2, with a uniform mask, noiseless data and the real-valued prior, all
the ambiguities in (11) are global minima of L in (17) and fixed points of both AP and AAR.
Figure 5 demonstrates how detrimental these ambiguities are to numerical reconstruction.

4.3. Douglas-Rachford Splitting (DRS). AAR (27) is often written in the following
form

uk+1 = uk + PYRXuk − PXuk(37)

which is equivalent to the 3-step iteration

vk = PXuk;(38)

wk = PY (2vk − uk) = PYRXuk(39)

uk+1 = uk + wk − vk(40)
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Figure 7. RE on the semi-log scale for the 128 × 128 RPP of phase range
[0, 2π] vs 100 AP iterations after initialization given by 300 AAR iterations
with various q.

AAR can be modified in various ways by the powerful method of Douglas-Rachford split-
ting (DRS) which is simply an application of the 3-step procedure (38)-(40) to proximal
maps.

Proximal maps are generalization of projections. The proximal map relative to a function
f is defined by

proxf (u) := argmin
x

f(x) +
1

2
‖x− u‖2.

Projections PX and PY are proximal maps relative to IX and IY , the indicator functions of
X and Y , respectively.

By choosing other proxy functions than IX and IY , we may obtain different DRS methods
that have more desirable properties than AAR.

4.4. Convergence rate. Next we recall the local geometric convergence property of AP
and AAR with convergence rate expressed in terms of λ2, the second largest singular value
of B.

The Jacobians of the AP and AAR maps are given, respectively, by

∂T (ξ) = iB∗=(Bξ), ξ ∈ Cn2

and

∂Γ(ζ) = (I −BB∗)ζ + i(2BB∗ − I) diag

[
b

|ζ|

]
=(ζ), ζ ∈ CN .

Note that ∂Γ is a real, but not complex, linear map since ∂Γ(cζ) 6= c∂Γ(ζ), c ∈ C in general.

Theorem 4.3. [34], [33],[36] The local geometric convergence rate of AAR and AP is λ2

and λ2
2, respectively, where λ2 is the second largest singular value of B in (25).

As pointed out above, AAR has the true solution as the unique fixed point in the object
domain while AP has a better convergence rate than DR (since λ2

2 < λ2). A reasonable way
to combine their strengths is to use AAR as the initialization method for AP.

With a carefully chosen parameter f (= 6/(5π)), the performance of a Fresnel mask
(Figure 7(b)) is only slightly inferior to that of a random mask (Figure 7(a)). Figure 7 also
demonstrates different convergence rates of AP with various q.
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4.5. Fourier versus object domain formulation. It is important to note that due to the
rectangular nature (more rows than columns) of the measurement matrix A, the following
object domain version is a different algorithm from AAR discussed above:

xk+1 = xk + A+RY (Axk)− A+PY (Axk)(41)

which resembles (37) but operates on the object domain instead of the transform domain.
Indeed, as demonstrated in [34], the object domain version (41) significantly underperforms
the Fourier domain AAR.

As remarked earlier, this problem can be rectified by zero-padding and embedding the
original object vector into CN and explicitly accounting for this additional support constraint.
Let PS denote the projection from CN onto the zero-padded subspace and let Ã be an
invertible extension of A to CN . Then it is not hard to see that the ODR map

G(x) = x+ PSÃ
−1RY Ãx− Ã−1PY Ãx

satisfies

ÃGÃ−1(y) = y + ÃPSÃ
−1RY y − PY y

which is equivalent to (37) once we recognize that PX = ÃPSÃ
−1.

In terms of the enlarged object space CN , Fienup’s well-known Hybrid-Input-Output
(HIO) algorithm can be expressed as

xk+1 =
1

2
Ã−1 [RX (RY + (β − 1)PY ) + I + (1− β)PY ] Ãxk

[63]. With vk = Ãxk, we can also express HIO in the Fourier domain

vk+1 =
1

2
[RX (RY + (β − 1)PY ) + I + (1− β)PY ] vk.(42)

For β = 1, HIO (42) is exactly AAR (28).

It is worth pointing out again that the lifting from Cn2
to CN is a key to the success of

HIO over AP (26), which is an object-domain scheme. In the optics literature, however, the
measurement matrix is usually constructed as a square matrix by zero-padding the object
vector with sufficiently large dimensions (see e.g. [153] [152]). Zero-padding, of course,
results in an additional support constraint that must be accounted for explicitly.

4.6. Wirtinger Flow. We already mentioned that the AP map (26) is a gradient descent
for the loss function (17). In a nutshell, Wirtinger Flow is a gradient descent algorithm with
the loss function (21) proposed by [25] which establishes a basin of attraction at x∗ of radius
O(n−1/2) for a sufficiently small step size.

Unlike many other non-convex methods, Wirtinger Flow (and many of its modifications)
comes with a rigorous theoretical framework that provides explicit performance guarantees
in terms of required number of measurements, rate of convergence to the true solution, and
robustness bounds. The Wirtinger Flow approach consists of two components:

(i) a carefully constructed initialization based on a spectral method related to the
PhaseLift framework;

(ii) starting from this initial guess, applying iteratively a gradient descent type update.
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The resulting algorithm is computationally efficient and, remarkably, provides rigorous guar-
antees under which it will recover the true solution. We describe the Wirtinger Flow approach
in more detail. We consider the non-convex problem

min
z

L(z) :=
1

2N

N∑
k=1

(
|〈ak, z〉|2 − yk

)2
, z ∈ Cn.

The gradient of L(z) is calculated via the Wirtinger gradient (23)

∇L(zj) =
1

N

N∑
k=1

(|〈ak, z〉|2 − yk)〈ak, z〉ak.

Starting from some initial guess z0, we compute

(43) zj+1 = zj −
τj
‖z0‖2

2

∇L(zj),

where τj > 0 is a stepsize (learning rate). Note that the Wirtinger flow, like AP (26), is an
object-domain scheme.

The initialization of z0 is computed via spectral initialization discussed in more detail in
Section 5.1. We set

λ := n

∑
j nj∑

k ‖ak‖2
2

,

and let z0 be the principal eigenvector of the matrix

Y =
1

N

N∑
k=1

ykaka
∗
k,

where z0 is normalized such that ‖z0‖2
2 = λ.

Definition 4.4. Let x ∈ Cn be any solution to (2). For each z ∈ Cn, define

dist(z, x) = min
φ∈[0,2π)

‖z − eiφx‖2.

Theorem 4.5. [25] Assume that the measurement vectors ak ∈ Cn satisfy ak
i.i.d.∼ N (0, I/2)+

iN (0, I/2). Let x∗ ∈ Cn and y = {〈ak, x∗〉|2}Nk=1 with N ≥ c0n log n, where c0 is a sufficiently
large constant. Then the Wirtinger Fow initial estimate z0 normalized such that ‖z0‖2 =
m−1

∑
k yk, obeys

(44) dist(z0, x∗) ≤
1

8
‖x∗‖2,

with probability at least 1 − 10e−γn − 8/n2, where γ is a fixed constant. Further, choose a
constant stepsize τj = τ for all j = 1, 2, . . . , and assume τ ≤ c1/n for some fixed constant
c1. Then with high probability starting from any initial solution z0 obeying (44), we have

dist(zj, x∗) ≤
1

8

(
1− τ

4

)j/2
‖x∗‖2.

A modification of this approach, called Truncated Wirtinger Flow [37], proposes a more
adaptive gradient flow, both at the initialization step and during iterations. This modifica-
tion seeks to reduce the variability of the iterations by introducing three additional control
parameters [37].
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Various other modifications of Wirtinger Flow have been derived, see e.g. [204, 199, 22].
While it is possible to obtain global convergence for such gradient descent schemes with
random initialization [38], the price is a larger number of measurements. See Section 5 for a
detailed discussion and comparison of various initializers combined with Wirtinger Flow.

The general idea behind the Wirtinger Flow of solving a non-convex method provably by
a careful initialization followed by a properly chosen gradient descent algorithm has inspired
research in other areas, where rigorous global convergence results for gradient descent type
algorithms have been established (often for the first time). This includes blind deconvolu-
tion [123, 139], blind demixing [128, 108], and matrix completion [192].

4.7. Alternating Direction Method of Multipliers (ADMM). Alternating Direction
Method of Multipliers (ADMM) is a powerful method for solving the joint optimization
problem:

(45) min
u
K(u) + L(u)

where the loss functions L and K represent the data constraint Y and the object constraint
X, respectively.

Douglas-Rachford splitting (DRS) is another effective method for the joint optimization
problem (45) with a linear constraint. For convex optimization, DR splitting applied to
the primal problem is equivalent to ADMM applied to the Fenchel dual problem [65]. For
nonconvex optimization such as (45) there is no clear relation between the two in general.

However, for phase retrieval, DRS and ADMM are essentially equivalent to each other
[58]. So our subsequent presentation will mostly focus on ADMM.

ADMM seeks to minimize the augmented Lagrangian function

L(y, z) = K(y) + L(z) + λ∗(z − y) +
ρ

2
‖z − y‖2(46)

alternatively as

yk+1 = arg min
x
L(y, zk, λk)(47)

zk+1 = arg min
z
L(yk+1, z, λk)(48)

or

zk+1 = arg min
x
L(yk, z, λk)(49)

yk+1 = arg min
z
L(y, zk+1, λk)(50)

and then update the multiplier by the gradient ascent

λk+1 = λk + ρ(zk+1 − yk+1).

4.8. Noise-aware ADMM. We apply ADMM to the augmented Lagrangian L (46) with
K = IX (the indicator function of the set X) and L given by the Poisson (14) or Gaussian
(17) loss function.

Consider (49)-(50) and let

uk := zk + λk−1/ρ.
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Then we have

zk+1 = proxL/ρ(yk − λk/ρ)(51)

yk+1 = proxK/ρ(zk+1 + λk/ρ) = AA∗(zk+1 + λk/ρ)(52)

λk+1 = λk + ρ(zk+1 − yk+1).(53)

We have from (53) that

uk+1 = yk+1 + λk+1/ρ.

By (52), we also have
yk+1 = PX(zk+1 + λk/ρ) = PXuk+1

and

yk − λk/ρ = 2yk − uk = RXuk.

So (51) becomes

zk+1 = proxL/ρ(RXuk).

Note also that by (53)

uk − PXuk = λk/ρ

and hence

uk+1 = zk+1 + λk/ρ = uk − PXuk + proxL/ρ(RXuk).

For the Gaussian loss function (17), the proximal map proxL/ρ can be calculated exactly

proxL/ρ(u) =
1

ρ+ 1
b� sgn(u) +

ρ

ρ+ 1
u

=
1

ρ+ 1
(b+ ρ|u|)� sgn(u).

The resulting iterative scheme is given by

uk+1 =
1

ρ+ 1
uk +

ρ− 1

ρ+ 1
PXuk +

1

ρ+ 1
b� sgn

(
RXuk

)
:= Γ(uk).(54)

Like AAR, (54) can also be derived by the DRS method

vl = proxK/ρ(ul) = AA∗(ul);

wl = proxL/ρ(2vl − ul)
ul+1 = ul + wl − vl

instead of (38)-(40). For the Gaussian loss function (17), the proximal map proxL/ρ is

proxL/ρ(u) =
1

ρ+ 1
b� sgn(u) +

ρ

ρ+ 1
u

=
1

ρ+ 1
(b+ ρ|u|)� sgn(u),

an averaged projection with the relaxation parameter ρ. With this, {uk} satisfy eq. (54).
Following [58], we refer to (54) as the Gaussian-DRS map.
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For the Poisson case the DRS map has a more complicated form

uk+1(55)

=
1

2
uk −

1

ρ+ 2
RXuk +

ρ

2(ρ+ 2)

[
|RXuk|2 +

8(2 + ρ)

ρ2
b2

]1/2

� sgn
(
RXuk

)
:= Π(uk)

where b2 is the vector with component b2(j) = (b(j))2 for all j.
Note that Γ(u) and Π(u) are continuous except where RXu vanishes but b does not due

to arbitrariness of the value of the sgn function at zero.

4.9. Fixed points. With the proximal relaxation in (54), we can ascertain desirable prop-
erties that are either false or unproven for AAR.

By definition, all fixed points u satisfy the equation

u = Γ(u)

and hence after some algebra

PXu+ ρP⊥Xu = b� sgn(RXu)

which in terms of v = RXu becomes

PXv − ρP⊥X v = b� sgn(v).(56)

The following demonstrates the advantage of Gaussian-DRS in avoiding the divergence
behavior of AAR (as stated in Proposition 4.2 (ii) for the convex case) when the feasibility
problem is inconsistent and has no (generalized or regular) solution.

Theorem 4.6. [58] Let uk+1 := Γ(uk), k ∈ N. Then, for ρ > 0, {uk} is a bounded sequence
satisfying

lim sup
k→∞

‖uk‖ ≤
‖b‖

min{ρ, 1}
for ρ > 0.

Moreover, if u is a fixed point, then

‖u‖ < ‖b‖ for ρ > 1

and

‖b‖ < ‖u‖ ≤ ‖b‖/ρ for ρ ∈ (0, 1)

unless PXu = u, in which case u is a regular solution. On the other hand, for the particular
value ρ = 1, ‖u‖ = ‖b‖ for any fixed point u.

The next result says that all attracting points are regular solutions and hence one need
not worry about numerical stagnation.

Theorem 4.7. [58] Let ρ ≥ 1. Let u be a fixed point such that RXu has no vanishing
components. Suppose that the Jacobian J of Gaussian-DRS satisfies

‖J(η)‖ ≤ ‖η‖, ∀η ∈ CN .

Then

u = PXu = b� sgn(RXu),

implying u is a regular solution.
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The indirect implication of Theorem 4.7 is noteworthy: In the inconsistent case (such as
with noisy measurements prohibiting the existence of a regular solution), convergence is im-
possible since all fixed points are locally repelling in some directions. The outlook, however,
need not be pessimistic: A good iterative scheme need not converge in the traditional sense
as long as it produces a good outcome when properly terminated, i.e. its iterates stay in
the true solution’s vicinity of size comparable to the noise level. In this connection, let us
recall the previous observation that in the inconsistent case the true solution is probably not
a stationary point of the loss function. Hence a convergent iterative scheme to a stationary
point may not a good idea. The fact that Gaussian-DRS performs well in noisy blind pty-
chography (Figure 22(b)) with an error amplification factor of about 1/2 dispels much of the
pessimism.

The next result says that for any ρ ≥ 0, all regular solutions are indeed attracting fixed
points.

Theorem 4.8. [58] Let ρ ≥ 0. Let u be a nonvanishing regular solution. Then the Jacobian
J of Gaussian-DRS is nonexpansive:

‖J(η)‖ ≤ ‖η‖, ∀η ∈ CN .

Finally we are able to pinpoint the parameter corresponding to the optimal rate of con-
vergence.

Theorem 4.9. [58] The leading singular value of the Jacobian of Gaussian-DRS is 1 and
the second largest singular value is strictly less than 1. Moreover the second largest singular
value as a function of the parameter ρ is increasing over [ρ∗,∞) and decreasing over [0, ρ∗]
achieving the global minimum

λ2√
1 + ρ∗

at ρ∗ = 2λ2

√
1− λ2

2 ∈ [0, 1](57)

where λ2 is the second largest singular value of B in (25).
Moreover, for ρ = 1, the local convergence rate is λ2

2 the same as AP.

By arithmetic-geometric-mean inequality,

ρ∗ ≤ 2× 1

2

√
λ2

2 + 1− λ2
2 = 1

where the equality holds only when λ2
2 = 1/2.

As λ2
2 tends to 1, ρ∗ tends to 0 and as λ2

2 tends to 1
2
, ρ∗ tends to 1. Recall that λ2

2+λ2
2n2−1 =

1 and hence [1/2, 1] is the proper range of λ2
2.

4.10. Perturbation analysis for Poisson-DRS. The full analysis of the Poisson-DRS
(55) is more challenging. Instead, we give a perturbative derivation of analogous result to
Theorem 4.6 for the Poisson-DRS with small positive ρ.

For small ρ, by keeping only the terms up to O(ρ) we obtain the perturbed DRS:

uk+1 =
1

2
uk −

1

2
(1− ρ

2
)RXuk + PYRXuk.

Writing

I = PX + P⊥X and RX = PX − P⊥X ,
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we then have the estimates

‖uk+1‖ ≤ ‖ρ
4
PXuk + (1− ρ

4
)P⊥Xuk‖+ ‖PYRXuk‖

≤ (1− ρ

4
)‖uk‖+ ‖b‖

since ρ is small. Iterating this bound, we obtain

‖uk+1‖ ≤ (1− ρ

4
)k‖u1‖+ ‖b‖

k−1∑
j=0

(1− ρ

4
)j

and hence

lim sup
k→∞

‖uk‖ ≤
4

ρ
‖b‖.(58)

Note that the small ρ limit and the Poisson-to-Gaussian limit do not commune, resulting in
a different constant in (58) from Theorem 4.6.

4.11. Noise-agnostic method. In addition to AAR, the Relaxed Averaged Alternating
Reflections (RAAR) is another noise-agnostic method which is formulated as the non-convex
optimization problem

min ‖P⊥X z‖2, subject to |z| = b(59)

or equivalently (45) with the loss functions

K(y) =
1

2
‖P⊥X y‖2, L(z) = Ib(z)(60)

where the hard constraint represented by the indicator function Ib of the set {z ∈ CN : |z| =
b} is oblivious to the measurement noise while the choice of K represents a relaxation of the
object domain constraint.

If the noisy phase retrieval problem is consistent, then the minimum value of (59) is zero
and the minimizer is a regular solution (corresponding to the noisy data b). If the noisy
problem is inconsistent, then the minimum value of (59) is unknown and the minimizer z∗
is the generalized solution with the least inconsistent component. In this case we can use
PXz∗ as the reconstruction.

Let us apply ADMM to the augmented Lagrangian function

Lγ(y, z, λ) := K(y) + L(z) + λ∗(z − y) +
γ

2
‖z − y‖2

with K and L given in (60) in the order

yk+1 = arg min
y
Lγ(y, zk, λk)(61)

zk+1 = arg min
|z|=b
Lγ(yk+1, z, λk)(62)

λk+1 = λk + γ(zk+1 − yk+1).(63)

Solving (61) we have

yk+1 =
(
I + P⊥X/γ

)−1
(zk + λk/γ) =

(
I − βP⊥X

)
(zk + λk/γ)(64)
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where

β :=
1

1 + γ
< 1.(65)

Likewise, solving (62) we obtain

zk+1 = PY uk+1, uk+1 := yk+1 − λk/γ
and hence by (63), (64)

uk+1 = (I − βP⊥X )(PY uk + λk/γ)− λk/γ.
On the other hand, we can rewrite (63) as

λk/γ = zk − uk = PY uk − uk
and hence

uk+1 = (I − βP⊥X )PY uk − βP⊥Xλk/γ
= (I − βP⊥X )PY uk + βP⊥X (I − PY )uk

which after reorganization becomes

uk+1 = Tβ(uk) := β

(
1

2
I +

1

2
RXRY

)
uk + (1− β)PY uk.(66)

The scheme (66) resembles the RAAR method first proposed in [134], [135] and formulated
in the object domain from a different perspective. RAAR becomes AAR for β = 1 (obviously)
and AP for β = 1

2
(after some algebra).

Let us demonstrate again that properly formulated DRS method can also lead to RAAR.
Let us apply (38)-(40) to (45) in the order

zk+1 = proxL/γ(uk) = PY uk(67)

yk+1 = proxK/γ(2zk+1 − uk) = (I − βP⊥X )(2PY uk − uk)(68)

uk+1 = uk + yk+1 − zk+1.(69)

Substituting (67) and (68) into (69) we obtain after straightforward algebra the RAAR map
(66).

With the splitting I and RX as

I = PX + P⊥X and RX = PX − P⊥X ,
the fixed point equation u = Tβ(u) becomes

PXu+ P⊥Xu = βP⊥Xu+
[
PX + (1− 2β)P⊥X

]
PY u

from which it follows that

PXu = PXPY u, P⊥Xu =

(
1− 2β

1− β

)
P⊥XPY u.

and hence

PXu−
(

1− β
2β − 1

)
P⊥Xu = PXPY u+ P⊥XPY u = PY u.(70)

If the fixed point satisfies P⊥Xu = 0, then (70) implies

u = PXu = PY u = b� sgn(u)
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i.e. u is a regular solution.
Notably (70) is exactly the RAAR fixed point equation (56) with the corresponding pa-

rameter

ρ =
1− β
2β − 1

∈ [0,∞)(71)

which tends to 0 and ∞ as β tends to 1 and 1
2
, respectively.

Local geometric convergence of RAAR has been proved in [122]. Moreover, like Theorem
4.6 RAAR possesses the desirable property that every RAAR sequence is explicitly bounded
in terms of β as follows.

Theorem 4.10. Let {uk} be an RAAR-iterated sequence. Then

lim sup
k→∞

‖uk‖ ≤
‖b‖

1− β
.(72)

Let u be an RAAR fixed point. Then

‖u‖ ≤ ‖b‖ ×
{

2β−1
1−β for β ∈ [2/3, 1)

1 for β ∈ [1/2, 2/3]
(73)

Proof. For β ∈ [1
2
, 1), 2β − 1 ∈ [0, 1) and hence we have

‖uk+1‖ ≤ β‖uk‖+ ‖PY uk‖
= β‖uk‖+ ‖b‖.

Iterating the above equation, we obtain

‖uk+1‖ ≤ βk‖u1‖+ ‖b‖
k−1∑
j=0

βj

and conclude (72).
From (70) it follows that

‖u‖ ≤ max

(
2β − 1

1− β
, 1

)
‖PY u‖

≤ max

(
2β − 1

1− β
, 1

)
‖b‖

and hence (73). �

4.12. Optimal parameter. We briefly explore the optimal parameter for Gaussian-DRS
(54) in view of the optimal convergence rate (57).

Our test image is 256-by-256 Cameraman+ i Barbara (CiB).
We use three baseline algorithms as benchmark. The first two are AAR and RAAR. The

third is Gaussian-DRS with ρ = 1:

Γ1(u) =
1

2
u+

1

2
PYRXu(74)

given the basic guarantee that for ρ ≥ 0 the regular solutions are attracting (Theorem
4.8), that for the range ρ ≥ 1 no fixed points other than the regular solution(s) are locally
attracting (Theorem 4.7) and that Gaussian-DRS with ρ = 1 produces the best convergence
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(a) (b)

Figure 8. (a) The real part and (b) the imaginary part of the test image
256× 256 CiB.

(a) ρ = 1.1, β = 0.9 (b) ρ = 0.5, β = 0.9

(c) ρ = 0.3, β = 0.9 (d) ρ = 0.1, β = 0.9

Figure 9. Reconstruction (relative) error vs. iteration by various methods
indicated in the legend with random initialization. The straight-line feature
(in all but AAR) in the semi-log plot indicates geometric convergence.

rate for any ρ ≥ 1 (Corollary (4.9)). The contrast between (74) and AAR (27) is noteworthy.
The simplicity of the form (74) suggests the name Averaged Projection Reflection (APR)
algorithm.
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According to [122] the optimal β is usually between 0.8 and 0.9, corresponding to ρ = 0.125
and 0.333 according to (71). We set β = 0.9 in Figure 9.

In the experiments, we consider the setting of non-ptychographic phase retrieval with two
coded diffraction patterns, one is the plane wave (µ = 1) and the other is µ = exp(iθ) where
θ is independent and uniformly distributed over [0, 2π). Theory of uniqueness of solution,
up to a constant phase factor, is given in [55].

Figure 9 shows the relative error (modulo a constant phase factor) versus iteration of
RAAR (β = 0.9 round-bullet solid line), APR (blue-triangle dotted line), AAR (black-star
dashed line) and Gaussian-DRS with (a) ρ = 1.1, (b) ρ = 0.5, (c) ρ = 0.3 and (d) ρ = 0.1.
Note that the AAR, APR and RAAR lines vary slightly across different plots because of
random initialization.

The straight-line feature (in all but AAR) in the semi-log plot indicates global geometric
convergence. The case with AAR is less clear in Figure 9. But it has been shown that
the AAR sequence converges geometrically near the true object (after applying A+) but
converges in power-law (∼ k−α with α ∈ [1, 2]) from random initialization [34].

Figure 9 shows that APR outperforms AAR but underperforms RAAR. By decreasing ρ
to either 0.5 or 0.1, the performance of Gaussian-DRS closely matches that of RAAR. The
optimal parameter appears to lie between 0.1 and 0.5. For example, with ρ = 0.3, Gaussian-
DRS significantly outperforms RAAR. The oscillatory behavior of Gaussian-DRS in (d) is
due to the dominant complex eigenvalue of J .

5. Initialization strategies

Initialization is an important part of non-convex optimization to avoid local minima. Good
initialization can also help to reduce the number of iterations of iterative solvers for convex
optimization problems. A simple idea for effective initialization is to first capture basic
features of the original object. There are three tasks we want a good initializer to fulfill: (i)
it should ensure that the algorithm converges to the correct solution; (ii) it should reduce
the number of iterations; and (iii) it should be inexpensive to compute. Naturally, there will
be a trade-off between achieving the first two tasks and task (iii).

5.1. Spectral initialization. Spectral initialization [25] has become a popular means in
phase retrieval, bilinear compressive sensing, matrix completion, and related areas. In a
nutshell, one chooses the leading eigenvector of the positive semidefinite Hermitian matrix

(75) Y :=
∑
k

ykaka
∗
k = A∗ diag(y)A

as initializer. The leading eigenvector of Y can be computed efficiently via the power method
by repeatedly applying A, entrywise multiplication by y and A∗.

To give an intuitive explanation for this choice, consider the case in which the measurement
vectors ak are i.i.d. N (0, In). Let x be a solution to eqrefeq:data so that yk = |〈x, ak〉|2 for
k = 1, . . . , N . In the Gaussian model, a simple moment calculation gives

E

[
1

N

m∑
k=1

ykaka
∗
k

]
= In + 2xx∗.

By the strong law of large numbers, the matrix Y =
∑

k ykaka
∗
k converges to the right-hand

side as the number of samples goes to infinity. Since any leading eigenvector of In + 2xx∗
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is of the form λx for some λ ∈ R, it follows that if we had infinitely many samples, this
spectral initialization would recover x exactly (up to a usual global phase factor). Moreover,
the ratio between the top two eigenvalues of In + 2xx∗ is 1 + 2‖x‖2

2, which means these
eigenvalues are well separated unless ‖x‖2 is very small. This in turn implies that the power
method would converge fast. For a finite amount of measurements, the leading eigenvector
of Y will of course not recover x exactly, but with the power of concentration of measure on
our side, we can hope that the resulting (properly normalized) eigenvector will serve as good
initial guess to the true solution. This is made precise in connection with Wirtinger Flow in
Theorem 4.5.

There is a nice connection between the spectral initialization and the PhaseLift approach,
which will become evident in Section 6.

5.2. Null initialization. Another approach to construct an effective initializer proceeds
by choosing a threshold for separating the “weak” signals from the “strong” signals. The
classification of signals into the class of weak signals and the class of strong signals is a basic
feature of the data.

Let I ⊂ {1, · · · , N} be the support set of the weak signals and Ic its complement such
that b(i) ≤ b(j) for all i ∈ I, j ∈ Ic. In other words, {b(i) : i ∈ Ic} are the strong signals.
Denote the sub-row matrices consisting of {ai}i∈I and {aj}j∈Ic by AI and AIc , respectively.
Let bI = |AIx∗| and bIc = |AIcx∗|. We always assume |I| ≥ n so that AI has a trivial null
space and hence preserves the information of x∗.

The significance of the weak signal support I lies in the fact that I contains the best loci
to “linearize” the problem since A∗Ix∗ is small. We then initialize the object estimate by the
ground state of the sub-row matrix AI , i.e. the following variational principle

xnull ∈ arg min
{
‖AIx‖2 : x ∈ Cn, ‖x‖ = ‖b‖

}
(76)

which by the isometric property of A is equivalent to

xnull ∈ arg max
{
‖AIcx‖2 : x ∈ Cn, ‖x‖ = ‖b‖

}
.(77)

Note that (77) can be solved by the power method for finding the leading singular value.
The resulting initial estimate xnull is called the null vector [35], [36] (see [204] for the similar
idea for real-valued Gaussian matrices).

In the case of non-blind ptychography, for each diffraction pattern k, the “weak signals”
are those less than some chosen threshold τk and we collect the corresponding indices in the
set Ik. Let I = ∪kIk. We then initialize the object estimate by the variational principle (76)
or (77).

A key question then is how to choose the threshold for separating weak from strong signals?
The following performance guarantee provides a guideline for choosing the threshold.

Theorem 5.1. [35] Let A be an N × n i.i.d. complex Gaussian matrix and let

ξnull ∈ arg min
{
‖AIx‖2 : x ∈ Cn, ‖x‖ = ‖x∗‖

}
.(78)

Let ε := |I|/N < 1, |I| > n. Then for any x∗ ∈ Cn the error bound

‖x∗x∗∗ − ξnullξ
∗
null‖F/‖x∗‖2 ≤ c0

√
ε(79)

holds with probability at least 1 − 5 exp (−c1|I|2/N) − 4 exp(−c2n). Here ‖ · ‖F denotes the
Frobenius norm.
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By Theorem 5.1, we have that, for N = Cn lnn and |I| = Cn,C > 1,

‖x∗‖−2‖x∗x∗∗ − ξnullξ
∗
null‖F ≤

c√
lnn

with probability exponentially (in n) close to one, implying crude reconstruction from one-bit
intensity measurement is easy. Theorem 5.1 also gives a simple guideline

n < |I| � N � |I|2

for the choice of |I| (and hence the intensity threshold) to achieve a small ε with high
probability. In particular, the choice

|I| = dn1−αNαe = dnδαe, α ∈ [0.5, 1)(80)

yields the (relative) error bound O(δ(α−1)/2), with probability exponentially (in n) close to
1, achieving the asymptotic minimum at α = 1/2 (the geometric mean rule). The geometric
mean rule will be used in the numerical experiments below.

Given the wide range of effective thresholds, the null vector is robust because the noise
tends to mess up primarily the indices near the threshold and can be compensated by choos-
ing a smaller I, unspoiled by noise and thus satisfying the error bound (79).

For null vector initialization with a non-isometric matrix such as the Gaussian random ma-
trix in Theorem 5.1, it is better to first perform QR factorization of A, instead of computing
(78), as follows.

For a full rank A ∈ CN×n, let A = QR be the QR-decomposition of A where Q is
isometric and R is an invertible upper-triangular square matrix. Let QI and QIc be the sub-
row matrices of Q corresponding to the index sets I and Ic, respectively. Clearly, AI = QIR
and AIc = QIcR.

Let z0 = Rx∗. Since bI = |QIz0| is small, the rows of QI are nearly orthogonal to z0. A
first approximation can be obtained from xnull = R−1znull where

znull ∈ arg min
{
‖QIz‖2 : z ∈ Cn, ‖z‖ = ‖b‖

}
.

In view of the isometry property

‖z‖2 = ‖QIz‖2 + ‖QIcz‖2 = ‖b‖2

minimizing ‖QIz‖2 is equivalent to maximizing ‖QIcz‖2 over {z : ‖z‖ = ‖b‖}. This leads to
the alternative variational principle

xnull ∈ arg max
{
‖AIcx‖2 : x ∈ Cn, ‖Rx‖ = ‖b‖

}
(81)

solvable by the power method.
The initial estimate ξnull in (78) is close to xnull in (81) when the oversampling ratio

δ = N/n of the i.i.d. Gaussian matrix is large or when the measurement matrix is isometric
(R = I) as for the coded Fourier matrix. Numerical experiments show that ξnull is close to
xnull for δ ≥ 8. But for δ = 4, xnull is a significantly better approximation than ξnull. Note
that δ = 4 is near the threshold of having an injective intensity map: x −→ |Ax|2 for a
generic (i.e. random) A [9].
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5.3. Optimal pre-processing. In both null and spectral initializations, the estimate x is
given by the principal eigenvector of a suitable positive-definite matrix constructed from A
and b. In the case of spectral initialization, an asymptotically exact recovery is guaran-
teed; in the case of null initialization, a non-asymptotic error bound exists and guarantees
asymptotically exact recovery.

Contrary to these, the weak recovery problem of finding an estimate x that has a positive
correlation with x∗:

lim inf
N→∞

E
{
|x∗x∗|
‖x∗‖‖x‖

}
> ε for some ε > 0,(82)

is analyzed in [157],[133, 138]. The fundamental interest with the weak recovery problem
lies in the phase transition phenomenon stated below.

Theorem 5.2. Let x∗ be uniformly distributed on the n-dimensional complex sphere with
radius

√
n and let the rows of A ∈ CN×n be i.i.d. complex circularly symmetric Gaussian

vectors of covariance In/n. Let

ỹ = |Ax∗|2 + η(83)

where η is real-valued Gaussian vector of covariance σ2IN and let N, n → ∞ with N/n →
δ ∈ (0,∞).

• For δ < 1, no algorithm can provide non-trivial estimates on x∗;
• For δ > 1, there exists σ0(δ) > 0 and a spectral algorithm that returns an estimate x

satisfying (82) for any σ ∈ [0, σ0(δ)].

Like spectral initialization, weak recovery theory considers spectral algorithm of computing
the principal eigenvalue of A∗TA where T is a pre-processing diagonal matrix. An important
discovery of [157] is that by removing the positivity assumption T > 0 and allowing negative
values, an explicit recipe for T is given and shown to be optimal in the sense that it provides
the smallest possible threshold δu for the signal model (83). Specifically, with vanishing noise
σ → 0, the threshold δu tends to 1 as

δu(σ
2) = 1 + σ2 + o(σ2)

and the optimal function is given by

Top(ỹ, δ) =
ỹ+ − 1

ỹ+ +
√
δ − 1

, ỹ+ = max(0, ỹ)(84)

which has a large negative part for small ỹ [157]. This counterintuitive feature tends to slow
down convergence of the power method as the principal eigenvalue of A∗TA may not have
the largest modulus, see [157] for more details.

5.4. Random initialization. While the aforementioned initializations are computationally
quite efficient, one may wonder if such carefully designed initialization is even necessary for
achieving convergence for non-convex algorithms or to reduce the number of iterations for
iterative solvers of convex approaches. In particular, random initialization has been proposed
as a cheap alternative to the more costly initialization strategies described above. In this
case we simply construct a random signal in Cn, for instance with i.i.d. entries chosen from
N (0, In), and use it as initialization.
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Figure 3. Top two rows are the results of null vector method and optimal
weight method under 4 random masks without zero padding, � = 4. Bottom
two rows are the results of null vector method and optimal weight method
under 2 random masks with oversampling ratio 2 in each direction, i.e.,
� = 8. Left to right columns show the corresponding initial vectors in the
case with 0% noise to 20% noise.

In the null vector method, the parameter � = N/M = 4 (if 4 random masks) and � =
N/M = 8( if 2 random masks with zero padding). The parameter � in the optimal function
T is 4 if 4 random masks and 8 if 2 random masks. The table lists the corresponding relative
error. The eigenvectors are shown in the Figure.

4 masks, � = 4 0% 10% 20%
Null 0.7374 0.7761 0.8991

Optimal 0.6269 0.6437 0.6888

2 masks � = 8 0% 10% 20%
Null 0.6531 0.6943 0.8146

Optimal 1.3636 1.3952 1.3889

Figure 10. Initialization for RPP with 2 OCDPs at NSR 0% (left), 10%
(middle) and 20% (right). Each panel shows |<[x � sgn(x∗)]| (left half) and
|=[x� sgn(x∗)]| (right half) where x = xnull (top row), or xop (bottom row).

For non-convex solvers, we clearly cannot expect in general that starting the iterations
at an arbitrary point will work, since we may get stuck in a saddle point or some local
minimum. But if the optimization landscape is benign enough, it may be that there are no
undesirable local extrema or that they can be easily avoided. A very thorough study of the
optimization landscape of phase retrieval has been conducted in [191, 38, 157].

For instance, it has been shown in [38] that for Gaussian measurements, gradient descent
combined with random initialization will converge to the true solution and at a favorable
rate of convergence, assuming that the number of measurements satisfies N & n polylogN .
This result may suggest that random initialization is just fine and there is no need for more
advanced initializations. The precise theoretical condition for N is N & n log13N . This
large exponent in the log-factor becomes negligible if n is in the order of at least, say, 1025,
which makes this result somewhat less compelling from a theoretical viewpoint. However,
it is likely that this large exponent can be attributed to technical challenges in the proof
and in truth it is actually much smaller. This is also suggested by the numerical simulations
conducted in Section 5.5.

5.5. Comparison of initializations. We conduct an empirical study by comparing the
effectiveness of different initializations.

First we present experiments comparing the performance of the null initialization and the
optimal pre-processing methods for noiseless as well as noisy data, see Figure 10 and 11.
While the optimal pre-processing function has no adjustable parameter, we use the default
threshold |I| =

√
Nn for the null initialization (α = 1

2
in (80)).

In the noisy case, we consider the complex Gaussian noise model (19) which sits between
the Poisson noise and the thermal noise in some sense. The nature of noise is unimportant
for the comparison but the level of noise is. We consider three different levels of noise (0%,
10% and 20%) as measured by the noise-to-signal ratio (NSR) defined as

NSR =
‖b− |Ax∗|‖
‖Ax∗‖

.(85)

Because the noise dimension N is larger than that of the object dimension, the feasibility
problem is inconsistent with high probability.
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Figure 10 shows the results with 2 oversampled randomly coded diffraction patterns
(OCDPs). Hence δ = 8 for the optimal pre-processing function (84) and the outcome is
denoted by xop. We see that xnull significantly outperforms xop, consistent with the relative
errors shown in the following table:

2 OCDPs @ NSR 0% 10% 20%
xnull 0.6531 0.6943 0.8146
xop 1.3636 1.3952 1.3889

Here the optimal pre-processing method returns an essentially random output all noise levels.
This is somewhat surprising since the null vector uses only 1-bit information (the threshold)
compared to the optimal pre-processing function (84) which uses the full information of the
signals.4

Figure 3. Top two rows are the results of null vector method and optimal
weight method under 4 random masks without zero padding, � = 4. Bottom
two rows are the results of null vector method and optimal weight method
under 2 random masks with oversampling ratio 2 in each direction, i.e.,
� = 8. Left to right columns show the corresponding initial vectors in the
case with 0% noise to 20% noise.

In the null vector method, the parameter � = N/M = 4 (if 4 random masks) and � =
N/M = 8( if 2 random masks with zero padding). The parameter � in the optimal function
T is 4 if 4 random masks and 8 if 2 random masks. The table lists the corresponding relative
error. The eigenvectors are shown in the Figure.

4 masks, � = 4 0% 10% 20%
Null 0.7374 0.7761 0.8991

Optimal 0.6269 0.6437 0.6888

2 masks � = 8 0% 10% 20%
Null 0.6531 0.6943 0.8146

Optimal 1.3636 1.3952 1.3889

Figure 11. Initialization for RPP with 4 CDPs at NSR 0% (left), 10%
(middle) and 20% (right). Each panel shows |<[x � sgn(x∗)]| (left half) and
|=[x� sgn(x∗)]| (right half) where x = xnull (top row), or xop (bottom row).

On the other hand, with 4 randomly coded diffraction patterns (CDPs) that are not
oversampled (δ = 4 for (84)), xop outperforms xnull especially at large NSR, see Figure 11
for the visual effect and the following table for relative errors of initialization:

4 CDPs @ NSR 0% 10% 20%
xnull 0.7374 0.7761 0.8991
xop 0.6269 0.6437 0.6888

The important lesson here is that the null vector and the optimal pre-processing function
make use of differently sampled CDPs in different ways: the oversampled CDPs favor the
former while the standard CDPs favor the latter. In particular, the optimal spectral
method (84) is optimized for independent measurements and does not perform well with
highly correlated data in oversampled CDPs (Figure 10). As pointed out by [157], the
performance of (84) can often be improved by manually setting δ very close to 1.

What follows are more simulations with higher number of CDPs that are not oversam-
pled, for various initialization methods. We analyze their performance with respect to three
different aspects: (i) number of measurements; (ii) number if iterations, (iii) overall runtime.
The initializers under comparison are the standard spectral initializer, the truncated spectral
initializer introduced in [37], the optimal spectral initializer, the null initializer (sometimes
also referred to as “orthogonality-promoting” initializer), and random initialization. The
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(a) (b)

Figure 12. The initializers under comparison are the standard-, the
truncated-, and the optimal spectral initializer, the “orthonality-promoting”
initializer, and random initalization. We run Wirtinger Flow with different
initializations and compare (a) the number of iterations, (b) the total com-
putation time needed for Wirtinger Flow to achieve a residual error less than
10−4.

computational complexity of constructing each of the first four initializers is roughly similar;
they all require the computation of the leading eigenvector of a self-adjoint matrix associated
with the measurement vectors ak, which can be done efficiently with the power method (the
matrix itself does not have be constructed explicitly).

We choose a complex-valued Gaussian random signal of length n = 128 as ground truth
and obtain phaseless measurements with k diffraction illuminations, where k = 3, . . . , 12.
Thus the number N of phaseless measurements ranges from 3n to 12n. The signal has no
structural properties that we can take advantage of, e.g. we cannot exploit any support
constraints. We use the PhasePack toolbox [28] with its default settings for this simulation,

except for the threshold for the null initialization we use |I| = d
√
nNe, as suggested by

Theorem 5.1.
We run Wirtinger Flow with different initializations until the residual error is smaller

than 10−4. For each k = 3, . . . , 12 and each fixed choice of signal and illuminations we
repeat the experiment 100 times, and do so for 100 different random choices of signal and
illuminations. For each k the results are then averaged over these 10000 runs. For each
number of illuminations, we compare the number of iterations as well as the overall runtime
of the algorithm needed to achieve the desired residual error. We also compare the rate of
successful recovery, where success is (generously) defined as the case when the algorithm
returns a solution with an relative `2 error less than 0.1. A success rate of 1 means that the
algorithm succeeded in all simulations for a fixed number of illuminations.

The most relevant and important case from a practical viewpoint is when the required
number of illuminations is as small as possible, as this reduced the experimental burden.
The clear winner in this case is the optimal spectral initializer. When we use only three illu-
minations, it significantly outperforms all the other initializers. In general, for the recovery
of a complex-valued signal of length n from phaseless measurements, we cannot expect that
any method can succeed at a perfect rate when we use only N = 3n measurements,

The exact number of measurements necessary to make recovery of a signal x ∈ Rn from
phaseless measurements at least theoretically possible (setting aside the existence of a feasible
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Figure 13. Same setup as in Figure 12. We compare the success rate for
Wirtinger Flow with different initializations. For this experiment, a “successful
recovery” means that the algorithm returns a solution with a relative `2 error
less than 0.1. A success rate of 1 means that the algorithm succeeded in all
simulations. The optimal spectral initialization clearly outperforms all other
initializations when the number of measurements is small.

algorithm and issues of numerical stability) is n ≥ 2n − 1. For complex-valued signals
the precise lower bound is still open. The asymptotic estimate N = (4 + o(1))n follows
from [93, 7], see also [10]. For dimensions n = 2k = 1 it has been shown in [40] that
N = 4n− 4 is necessary2. In general, for the recovery of a complex-valued signal of length n
from phaseless measurements is 4n− 4, we cannot expect that any method can succeed at a
perfect rate when we use only N = 3n measurements,

As the number of illuminations increases, the difference becomes less pronounced which
is in line with theoretical predictions. For a moderate number of illuminations the random
initializer performs as well as the others, at a lower computational cost. As expected the
theory for random initialization (which involves the term log13N) is overly pessimistic. Nev-
ertheless, in practice there can be a substantial difference in the experimental effort if we
need to carry, say, six illuminations instead of just three illuminations. Hence, we conclude
that “there is no free lunch with random initialization!”

6. Convex optimization

While phase retrieval is a non-convex optimization problem, it has become very popular
in recent years to pursue convex relaxations of this problem. A major breakthrough in
this context was the PhaseLift approach [26, 24] which demonstrated that under fairly mild
conditions the solution of a properly constructed semidefinite program coincides with the
true solution of the original non-convex problem. This discovery has ignited a renewed
interest in the phase retrieval problem. We will describe the key idea of PhaseLift below.

6.1. PhaseLift: Phase retrieval via matrix completion. As is well known, quadratic
measurements can be lifted up and interpreted as linear measurements about the rank-one
matrix X = xx∗. Indeed,

(86) |〈ak, x〉|2 = Tr(x∗aka
∗
kx) = Tr(aka

∗
kxx

∗).

2However, this is not true for all n. In [200] Vinzant gave an example of a frame with 4n−5 = 11 elements
in C4 which enables phase retrieval.
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We write Hn for the Hilbert space of all n×n Hermitian matrices equipped with the Hilbert-
Schmidt inner product 〈X, Y 〉HS := Tr(Y ∗X) Now, letting A be the linear transformation

(87)
Hn → RN

X 7→ {aka∗kX}1≤i≤N

which maps Hermitian matrices into real-valued vectors, one can express the data collection
bk = |〈x, ak〉|2 as

y = A(xx∗).

For reference, the adjoint operator A∗ maps real-valued inputs into Hermitian matrices, and
is given by

RN → Hn×n

z 7→
∑

i zi aka
∗
k.

Moreover, we define Tx to be the set of symmetric matrices of the form

Tx = {X = xz∗ + zx∗ : z ∈ Cn}

and denote T ⊥x by its orthogonal complement. Note that X ∈ T ⊥x if and only if both the
column and row spaces of X are perpendicular to x.

Hence, the phase retrieval problem can be cast as the matrix recovery problem [26, 24]

minimize rank(X)
subject to A(X) = y

X � 0.

Indeed, we know that a rank-one solution exists so the optimal X has rank at most one. We
then factorize the solution as xx∗ in order to obtain solutions to the phase-retrieval problem.
This gives x up to multiplication by a unit-normed scalar.

Rank minimization is in general NP hard, and we propose, instead, solving a trace-norm
relaxation. Although this is a fairly standard relaxation in control [14, 146], the idea of
casting the phase retrieval problem as a trace-minimization problem over an affine slice of
the positive semidefinite cone is more recent3. Formally, we suggest solving

(88)
minimize Tr(X)
subject to A(X) = y

X � 0.

If the solution has rank one, we factorize it as above to recover our signal. This method which
lifts up the problem of vector recovery from quadratic constraints into that of recovering a
rank-one matrix from affine constraints via semidefinite programming is known under the
name of PhaseLift [26, 24].

A sufficient (and nearly necessary) condition for xx∗ to be the unique solution to (88) is
given by the following lemma.

Lemma 6.1. If for a given vector x ∈ Cn the measurement mapping A satisfies the following
two conditions

(i) the restriction of A to T is injective (X ∈ T and A(X) = 0⇒ X = 0),

3This idea was first proposed by one of the authors at a workshop “Frames for the finite world: Sampling,
coding and quantization” at the American Institute of Mathematics in August 2008.
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(ii) and there exists a dual certificate Z in the range of A∗ obeying4

ZT = xx∗ and ZT ⊥ ≺ IT ⊥ .

then X = xx∗ is the only matrix in the feasible set of (88), i.e. X is the unique solution
of (88).

The proof of Lemma 6.1 follows from standard duality arguments in semidefinite program-
ming.

Proof. Let X̃ = X +H be a matrix in the feasible set of (88). We want to show that H = 0.
By assumption H ∈ Hn and H ∈ (A), hence we can express H as H = HT + H⊥T . Since

X̃ ≺ 0, it follows for all z ∈ Cn with 〈z, x〉 = 0 that

z∗X̃z = z∗(xx∗ +HT +H⊥T )z = z∗H⊥T y ≥ 0.

Because the range spaces of H⊥T and of H∗T ⊥ are contained in orthogonal complement of
span{x} this shows that H⊥T ≺ 0. Since Z ∈ R(A) = (A)⊥ it holds that 〈H,Z〉 = 0 and
because ZT = 0, it follows that 〈H,Z〉 = 〈H⊥T , Z⊥T 〉 = 0. But since Z⊥T ≺ 0, this shows that
H⊥T = 0. By injectivity of A on T we also have HT = 0, such that H = 0 and therefore

X̃ = X. �

Asserting that the conditions of Lemma 6.1 hold under reasonable conditions on the num-
ber of measurements is the real challenge here. A careful strengthening of the injectivity
property in Lemma 6.1 allows one to relax the properties of the dual certificate, as in the
approach pioneered in [82] for matrix completion. This observation is at the core of the
proof of Theorem 6.2 below. In a nutshell, the theorem states that under mild conditions
PhaseLift can recover x exactly (up to a global phase factor) with high probability, provided
that the number of measurements is on the order of n log n.

Theorem 6.2. [26] Consider an arbitrary signal x in Rn or Cn. Let the measurement vectors
ak be sampled independently and uniformly at random on the unit sphere, and suppose that
the number of measurements obeys N ≥ c0 n log n, where c0 is a sufficiently large constant.
Then the solution to the trace-minimization program is exact with high probability in the
sense that (88) has a unique solution obeying

X̂ = xx∗.

This holds with probability at least 1− 3e−γ
m
n , where γ is a positive absolute constant.

Theorem 6.2 can be extended to noisy measurements, see [26, 87], demonstrating that
PhaseLift is robust visavis noise. In [27], the condition m = O(n log n) was further improved
to m = O(n). As noted in [27, 44] under the conditions of Lemma 6.1 the feasible set
of (88) reduces to the single point X = xx∗. Thus, from a purely theoretical viewpoint, the
trace minimization in (88) is actually not necessary, while from a numerical viewpoint, in
particular in the case of noisy data, using the program (88) still seems beneficial.

We also note that the spectral initialization of Section 5.1 has a natural interpretation in
the PhaseLift framework. Comparing equation (75) with the definition of A in (87), it is
evident that the spectral initializer is simply given by the solution extracted from computing
A∗y.

4The notation A ≺ B means that B −A is positive definite.
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Although PhaseLift favors low-rank solutions, in particular in the case of noisy data it is
not guaranteed to find a rank-one solution. Therefore, if our optimal solution X̂ does not
have exactly rank one, we extract the rank-one approximation x̂x̂∗ where x̂ is an eigenvector
associated with the largest eigenvalue of X̂. In that case one can further improve the accuracy
of the solution x̂ by “debiasing” it. We replace x̂ by its rescaled version sx̂ where s =√∑n

k=1 λ̂k/‖x̂‖2. This corrects for the energy leakage occurring when X̂ is not exactly a

rank-1 solution, which could cause the norm of x̂ to be smaller than that of the actual
solution. Other corrections are of course possible.

Remark 6.3. For the numerical solution of (88) it is not necessary to actually set up
the matrix X explicitly. Indeed, this fact is already described in detail in [24]. Yet, the
misconception that the full matrix X needs to be computed and stored can sometimes be
found in the non-mathematical literature [54].

Theorem 6.2 serves as a benchmark result, but using Gaussian vectors as measurement
vectors ak is not very realistic. For practical purposes, we prefer sets of measurement vectors
that obey e.g. the coded diffraction structure illustrated in Figure 1. The extension of
PhaseLift to such more realistic conditions was first shown in [25], where a result similar
to Theorem 6.2 was proven to also holds for Fourier type measurements when O(log4 n)
different specifically designed random masks are employed. Thus, compared to Theorem 6.2,
the total number of measurements increases to N = O(n log4 n). This result was improved
in [84], where the number of measurements was reduced to O(n log2 n). Since the coded
diffraction approach is both mathematically appealing and relevant in practice, we describe
a typical setup that is also the basis of [25, 84] in more detail below.

We assume that we collect the magnitudes of the discrete Fourier transform of a random
modulation of the unknown signal x. Each such modulation pattern represents one mask
and is modeled by a random diagonal matrix. Let {e1, . . . , en} denothe the standard basis
of Cn. We define the `-th (coded diffraction) mask via

D` =
n∑
i=1

ε`,ieie
∗
i ,

where the ε`,i are independent copies of a real-valued random variable ε which obeys

E[ε] = E[ε3] = 0

|ε| ≤ b almost surely for some b > 0,(89)

E[ε4] = 2E[ε2]2.

Denote

fk =
n∑
j=1

e2πijk/nej.

Then the measurements captured via this coded diffraction approach can be written as

(90) yk,` = |〈fk, D`x〉|2, k = 1, . . . , n, ` = 1, . . . , L.

As shown in [84], condition (89) ensures that the measurement ensemble forms a spherical
2-design, a concept that has been proposed in connection with phase retrieval in [6, 83]. As
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a particular choice in (89) we may select each modulation to correspond to a Rademacher
vector with random erasures, i.e.,

ε ∼


√

2 with prob. 1/4,

0 with prob. 1/2,

−
√

2 with prob. 1/4,

as suggested in [25].
In the case of such coded diffraction measurements the following theorem, proved in [84],

guarantees the success of PhaseLift with high probability (see also [25]).

Theorem 6.4. Let x ∈ Cn with ‖x‖2 = 1 and let n ≥ 3 be an odd number. Suppose that
N = nL Fourier measurements using L independent random diffraction patterns (as defined
in (89) and (90)) are gathered. Then, with probability at least 1 − e−ω, PhaseLift endowed
with the additional constraint Tr(X) = 1 recovers x up to a global phase, provided that

L ≥ Cω log2 n.

Here, ω ≥ 1 is an arbitrary parameter and C a dimension-independent constant that can be
explicitly bounded.

While the original PhaseLift approach works for multidimensional signals, there exist
specific constructions of masks for the special case of one-dimensional signals that provide
further improvements. For instance, in [167], the authors derive a deterministic, carefully
designed set of 4n− 4 measurement vectors and prove that a semidefinite program will suc-
cessfully recover generic signals from the associated measurements. The authors accomplish
this by showing that the conditions of Lemma 6.1 hold on a dense subspace of Cn. Another
approach that combines the PhaseLift idea with the construction of a few specially designed
one-dimensional masks can be found in [103].

The PhaseCut method, proposed in [202], casts the phase retrieval problem as an equality
constrained quadratic program and then uses the famous MaxCut relaxation for this type of
problem. Interestingly, while the PhaseCut and PhaseLift relaxations are in general different,
there is a striking equivalence between these two approaches, see [202].

Concerning the numerical solution of (88), there exists a wide array of fairly efficient nu-
merical solvers, see e.g. [160, 198, 158]. The numerical algorithm to solve (88) in the example
illustrated in Figure 15 was implemented in Matlab using TFOCS [15]. That implementation
avoids setting up the matrix X explicitly and only keeps an n × r matrix with r � n in
memory. More custom-designed solvers have also been developed, see e.g. [98].

6.2. Convex phase retrieval without lifting. Despite its mathematical elegance, a sig-
nificant drawback of PhaseLift is that its computational complexity is too high (even when
X is not set up explicitly) for large-scale problems. A different route to solve the phase
retrieval problem via convex relaxation was pursued independently in [5, 77]. Starting from
our usual setup, assume we are given phaseless measurements

(91) |〈ak, x〉|2 = yk, k = 1, . . . , N.

We relax each measurement to an inequality

(92) |〈ak, x〉| ≤
√
yk = bk, k = 1, . . . , N.
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Figure 14. The “complex polytope” of feasible solutions intersecting at x∗ =
x∗. Here, the role of the anchor vector u is played by a0. Image courtesy of [5].

This creates a symmetric slab Si of feasible solutions. Collectively, these slabs describe a
“complex polytope” K of feasible solutions. The target signal x is one of the extreme points
of K, as illustrated in Figure 14.

How do we distinguish the desired solution x from all the other extreme points of K? The
idea proposed in [5, 77] is to use a (non-zero) “anchor” vector u that is sufficiently close
to x. Following [5], from a geometrical viewpoint, the idea is to find a hyperplane tangent
to K at x and the anchor vector u acts as the normal for the desired tangent hyperplane
see Figure 14; u is required to have a non-vanishing correlation with x in the sense that

(93)
|〈x, u〉|
‖u‖2‖x‖2

> ε,

for some ε > 0. See also (82) related to the optimal initializiation in Section 5.3. The idea
of [5, 77] is now to recover x by finding the vector that is most aligned with u and satisfies
the relaxed measurement constraints in (92).

This approach can be expressed as the following convex problem, dubbed PhaseMax in [77]:

(94)
max
x

〈x, u〉
subject to bk ≤ |〈ak, x〉|2 + ξk, k = 1, . . . , N.

It is remarkable that this convex relaxation of the phase retrieval problem does not involve
lifting and operates in the original parameter space.

Choosing an appropriate anchor vector u is crucial, since u must be sufficiently close to x.
tIt has been shown in [5] that under the assumptions of Theorem 6.2, the condition (93) holds
with probability at least 1−O(n−2). The authors of [5] then showed that the convex program
in (94) can successfully recover the original signal from measurements of the form (91) under
conditions similar to those in Theorem 6.2 (and under additional technical assumptions),
and moreover that this recovery is robust in the presence of measurement noise. A slightly
stronger result was proven in [89]. There, the authors established the following result:

Theorem 6.5. [89] Fix x ∈ Rn. Let ak be i.i.d N (0, In) for k = 1, . . . , N . Let |〈ak, x〉|2 = yk.
Assume that u ∈ Rn satisfies ‖u − x‖2 ≤ 0.6‖x‖2. If N ≥ cn, then with probability at least
1 − 6e−γN , x is the unique solution of the linear program PhaseMax. Here, γ and c are
universal constants.
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Using for instance the truncated spectral initialization proposed in [37], one can show that
‖u = x‖2 ≤ 0.6‖x‖2 holds with probability at least 1− e−γN , provided that N ≥ c0n.

In [45], it was shown that even better signal recovery guarantees can be achieved by
iteratively applying PhaseMax. The resulting method is called PhaseLamp; the name de-
rives from the fact that the algorithm is based on the idea of successive linearization and
maximization over a polytope.

Denote the n×N matrixA = [a1, . . . , aN ] and theN×N diagonal matrixB = diag(b1, . . . , bN).
Then, as noticed in [77] the following basis pursuit problem

(95)
min
z∈CN

‖z‖1

subject to u = AB−1z.

is dual to the convex program (94). Moreover, as pointed out in [77], as a consequence, if
PhaseMax succeeds, then the phases of the solution vector z to (95) are exactly the phases
that were lost in the measurement process in (91), that is

zk
|zk|

bk = 〈ak, x〉, k = 1, . . . , N.

These observation open up the possibility to utilize algorithms associated with basis pursuit
for phase retrieval.

Yet another convex approach to phase retrieval has been proposed in [47]. There, the
authors propose a sequence of convex relaxations, where the obtained convex problems are
affine in the unknown signal x∗. No lifting is required in this approach. However, no
theoretical conditions are provided (in terms of number of measurements or otherwise) that
would ensure that the computed solution actually coincides with the true solution x∗.

To illustrate the efficacy of the approaches described in this section, we consider a stylized
version of a setup one encounters in X-ray crystallography or diffraction imaging. The test
image, shown in Figure 15(a) (magnitude), is a complex-valued image5 of size 256 × 256,
whose pixel values correspond to the complex transmission coefficients of a collection of
gold balls at nanoscale embedded in a medium (data courtesy of Stefano Marchesini from
Lawrence Berkeley National Laboratory).

We demonstrate the recovery of the image shown in Figure 15(a) from noiseless mea-
surements via PhaseLift, PhaseMax, and PhaseLamp. We use three coded diffraction il-
luminations, where the entries of the diffraction matrices are either +1 or −1 with equal
probability. We use the TFOCS based implementation of PhaseLift from [24] with reweight-
ing. For PhaseMax and PhaseLamp we use the implementations provided by PhasePack
(cf. [28]) with the optimal spectral initializer and the default settings. The reconstructions
by PhaseLift and PhaseLamp, shown in Figure 15(b) and Figure 15(d) are visually indis-
tinguishable from the original. The reconstruction computed by PhaseMax, depicted in
Figure 15(c) is less accurate in this example.

Despite the ability of convex methods to recover signals from a small number of phaseless
observations, these methods have not found practical use yet. While there exist fast imple-
mentations of PhaseLift, in terms of computational efficiency it cannot compete with the

5Since the original image and the reconstruction are complex-valued, we only display the absolute value
of each image.
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(a) Original image (b) Reconstruction via PhaseLift

(c) Reconstruction via PhaseMax (d) Reconstruction via Phase-
Lamp

Figure 15. Original goldballs image and reconstructions via PhaseLift,
PhaseMax, and PhaseLamp, using three coded diffraction illuminiations.

nonconvex methods discussed in Section 4. The biggest impact PhaseLift has had on phase
retrieval is on the one hand it triggered a broad and systematic study of numerical algorithms
for phase retrieval, and on the other hand it ignited a sophisticated design of initializations
for non-convex solvers. Beyond phase retrieval, it ignited research in related areas, such
as in bilinear compressive sensing [126], including blind deconvolution [1, 125, 114] and
blind demixing [127]. Moreover, the techniques behind PhaseLift and sparse recovery have
influenced other areas directly related to phase retrieval, namely low-rank phase retrieval
problems as they appear for instance in quantum tomography, as well as utilizing sparsity
in phase retrieval. We will discuss these topics in Sections 6.3 and 6.4 below.

6.3. Low-rank phase retrieval problems. The phase retrieval problem has a natural
generalization to recovering low-rank positive semidefinite matrices. Consider the problem
of recovering an unknown n × n rank-r matrix � 0 from linear functionals of the form
yk = Tr(A∗kM) for k = 1, . . . , N , where A is hermitian. By representing M in factorized
form, M = XX∗, X ∈ Cn×r, we can express this problem as the attempt to recover X ∈ Cn×r

from the measurements yk = Tr(A∗kXX
∗), which, in light of (86), is a natural generalization

of the phase retrieval problem.
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A particular instance of interest of this problem arises in quantum state tomography, where
one tries to characterize the complete quantum state of a particle or particles through a series
of measurements in different bases [163, 86]. More precisely, we are concerned with the task of
reconstructing a finite-dimensional quantum mechanical system which is fully characterized
by its density operator ρ – an n× n positive semidefinite matrix with trace one. Estimating
the density operator of an actual (finite dimensional) quantum system is an important task in
quantum physics known as quantum state tomography. One is often interested in performing
tomography for quantum systems that have certain structural properties. One important
structural property is purity. A pure quantum state of n ions can be described by its 2n×2n

rank-one density matrix. A quantum state is almost pure if it is well approximated by a
matrix of low rank r with r � n.

Assuming this structural property, quantum state tomography becomes a low-rank matrix
recovery problem [82, 171, 115, 43]. It is obvious that we can recover a general quantum
state ρ ∈ Cn×n from n(n−1) properly chosen measurements. But if ρ is low-rank, how many
measurements are needed such that we can still recover ρ in a numerical efficient manner?
And what properties does measurement system have to satisfy? An additional requirement is
the fact that the measurement process has to be “experimentally realizable” and preferably
in an efficient manner [115]. Moreover, in a real experiment, the measurements are noisy,
and the true state is only approximately low-rank. Thus, any algorithm that aims to recover
quantum states must be robust to these sources of error.

Many of the algorithms discussed in the previous sections can be extended with straight-
forward modifications to the generalized phase retrieval problem. For example in [115] it has
been shown that the PhaseLift results can be extended beyond the rank-one case: For Gauss-
ian measurements the required number of measurements is N ≥ Cnr, which is analogous to
the rank-one case.

Perhaps more interestingly, and similar in spirit to coded diffraction illuminations, there
are certain structured measurement systems that are also realizable from an experimental
viewpoint. For example, using the mathematically intriguing concept of Clifford orbits,
one can reconstruct a rank-r quantum state exactly in the noisefree case and robustly in
the presence of noise if the measurement matrices are chosen independently and uniformly
at random from the Clifford orbit, assuming the number of measurements satisfies N ≥
Crn log n, see [116]. Here, the noise can include additive noise as well as “model noise” due
to the state being not exactly of rank r. It was shown in [116] that a similar result holds
if we replace the measurement system by approximate projective 4-designs (see [115] for a
precise definition). This line of research opens up beautiful connections to group theory,
representation theory, and time-frequency analysis.

We will demonstrate that the famous Zauner conjecture can be expressed as a low-rank
phase retrieval problem. At the core of this conjecture is the problem of finding a family of
n2 unit-length vectors {vi}n

2

i=1 in Cn such that

(96) |〈vi, v′i〉|2 =
1

n+ 1
, ∀i 6= i′,

see [210]. Such a family constitutes an equiangular tight frame of maximal cardinality (since
no more than n2 lines in Cn can be equiangular), also known as Grassmannian frame [189].
Equiangular tight frames play an important role in many applications, ranging from signal
processing and communications to compressive sensing. In quantum physics [2] such a family

50



of vectors is known as symmetric informationally complete positive-operator-valued measure
(SIC-POVM), [183].

Zauner conjectured that for each n = 2, 3, . . . , there exists a fiducial vector v ∈ Cn such
that the Weyl-Heisenberg (or Gabor) frame {TjMkv}nj,k=1 satisfies (96). Moreover, Zauner
conjectured that this fiducial vector v ∈ Cn is an eigenvector of a certain order-3 Clifford
unitary Un. We refrain here from going into details about the Clifford group and refer
instead to [210, 2, 67]. Putative fiducial vectors have been found (to machine precision)
via computational techniques for every dimension n up to 151, and for a handful of higher
dimensions [67]. We also know analytic solutions for a few values of n, see e.g. [3, 67].

Note that 〈TjMkx, Tj′Mk′x〉 = e−2πı(j−j′)k′〈Tj−j′Mk−k′x, x〉. Hence, Zauner’s conjecture
can be expressed as solving the problem

(97) Find x ∈ Un s.t. |〈TjMkx, x〉|2 =

{
1 if k = j = 0,

1
n+1

else.

This is a phase retrieval problem. Unfortunately, the unknown vector x appears on both sides
of the inner product. Hence, while the measurement setup may seem similar to ptychography
at first glance, the problem (97) is actually more challenging.

To arrive at the promised low-rank formulation, first note that the property x ∈ Un can
be expressed as x = Unz, where Un is an n× d matrix and z ∈ Cd with d = dn+1

3
e, see [183].

Hence, for x ∈ Un we obtain

〈TjMkx, x〉 = 〈TjMkUnz, Unz〉 = 〈Vjk, Z〉HS,

where Z = zz∗ and Vjk = U∗nTjMkUn for j, k = 0, . . . , n − 1. Thus, we arrive at our first
low-rank phase retrieval version by rewriting (97) as

(98)

Find Z

subject to |〈Vjk, Z〉HS|2 =

{
1 if k = j = 0,

1
n+1

else,

Z � 0
rank(Z) = 1.

In (98) we have n2 quadratic equations with about (n/3)2 unknowns. It is not difficult
to devise a simple alternating projection algorithm with random initialization to solve (97)
that works quite efficiently for n < 100. However, for larger n the algorithm seems to get
stuck in local minima. Maybe methods from blind ptychography can guide us to solve (97)
numerically for larger n.

We can lift the equations in (98) up using tensors to arrive at our second low-rank scenario.
More precisely, defining the tensors Vjk = Vjk ⊗ Vjk and the rank-one tensor Z = Z ⊗Z, we
can express (97) as the problem

(99)

Find Z

subject to Tr(ZVjk) =

{
1 if k = j = 0,

1
n+1

else,

Z � 0
rank(Z) = 1,
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with an appropriate interpretation of trace, positive-definiteness, and rank for tensors. While
the equations in (99) are now linear, this simplification comes at the cost of substantially
increasing the number of unknowns to (n/3)4. Perhaps modifications of recent algorithms
for low-rank tensor recovery (see e.g. [169]) can be utilized to solve (99) .

6.4. Phase retrieval, sparsity and beyond. Support constraints have been popular in
phase retrieval for a very long time as a means to make the problem well-posed or to make
algorithms converge (faster) to the desired solution. When imposing a support constraint,
one usually one assumes that one knows (an upper bound of) the interval or region in which
the object is non-zero. Such a constraint is easy to enforce numerically and it has been
discussed in detail in previous sections.

A more general form of support constraint is sparsity. In recent years the concept sparsity
has been recognized as an enormously useful assumption in all kinds of inverse problems.
When a signal is sparse, this means that the signal has only relatively few non-zero coefficients
in some (known) basis, but we do not know a priori the indices of these coefficients. For
example, in case of the standard basis, this would mean that we know the signal is sparsely
supported, but we do not know the locations of the non-zero entries. An illustrative example
is depicted in Figure 17. The simplest setting is when the basis in which the signal is
represented sparsely is known in advance. When such a basis or dictionary is not given a
priori, it may have to be learned from the measurements themselves [197].

When we assume sparsity we are no longer dealing with a linear subspace condition as
is the case with ordinary support constraints, but with a non-linear subspace. Due to this
fact, such a “non-linear” sparsity constraint is much harder to enforce than the case when
the support of the signal is known a priori.

Owing to the theory of compressive sensing [23, 48, 66] we now have a thorough and quite
broad theoretical and algorithmic understanding of how to exploit sparsity to either reduce
the number of measurements and/or to improve the quality of the reconstructed signal. We
call a signal x ∈ Cn s-sparse if x has at most s non-zero entries and write ‖x‖0 = s in
this case. The theory of compressive sensing tells us in a nutshell that under appropriate
conditions of the sensing matrix A ∈ CN×n, an s-sparse signal x ∈ Cn can be recovered
from the linear measurements b = Ax via linear programming (with high probability) if
N & s log n, see [66] for precise versions and many variations.

Classical compressive sensing assumes a linear data acquisition mode, where measurements
are of the form 〈ak, x〉. Obviously, this data acquisition mode does fit the phase retrieval
problem. Nevertheless, the tools and insights we have gained from compressive sensing can
be adapted to some extent to the setting of quadratic measurements, i.e., for phase retrieval.

The problem we want to address is: assume x∗ is a sparse signal, how can we utilize
this prior knowledge effectively in the phase retrieval problem? For example, what are
efficient ways to enforce sparsity in the numerical reconstruction, or by how much can we
reduce the number of phaseless measurements and still successfully recover x∗ with theoretical
guarantees, and do so in a numerically robust manner?

There exists a plethora of methods to incorporate sparsity in phase retrieval. This includes
convex approaches [162, 124], thresholding strategies [205, 209], greedy algorithms [186],
algebraic methods [16] and tools from deep learning [88, 111]. In the following we briefly
discuss a few selected techniques in more detail.
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Following the paradigm of compressive sensing, it is natural to consider the following
semidefinite program to recover a sparse signal x∗ from phaseless measurements. We denote
‖X‖1 :=

∑
k,l |Xk,l|, and similar to using the trace-norm of a matrix X as a convex surrogate

of the rank of X, we use ‖X‖1 as a convex surrogate of ‖X‖0. Hence, we are led to the
following semidefinite program (SDP), cf. [162, 124]:

(100)
minimize ‖X‖1 + λTr(X)
subject to A(X) = y

X � 0.

In [124] it is shown that for Gaussian measurement vectors, N = O(s2 log n) measurements
are sufficient to recover an s-sparse input from phaseless measurements using (100). Based
on optimal sparse recovery results from compressive sensing using Gaussian matrices, one
would hope that N = O(s log n) should suffice. However, [124] showed that the SDP in (100)
cannot outperform this suboptimal sample complexity by direct `1-penalization.

It is conceptually easy to enforce some sparsity of the signal to be reconstructed in the
algorithms based on alternating projections or gradient descent, described in Section 4.
One only needs to incorporate an additional greedy step or a thresholding step during each
iteration. For example, for gradient descent we modify the update rule (43) to

zj+1 = Tτ
(
zj −

µj
‖z0‖2

2

∇L(zj)
)
,

where Tτ (z) is a threshold operator that e.g. keeps the τ largest entries of z and sets the
other entries of z to zero; or alternatively, Tτ leaves all values of z above a certain threshold
(indicated by τ) unchanged, and sets all values of z below this threshold to zero. We can
also replace the latter hard thresholding procedure by some soft thresholding rule. Here, it is
assumed that the signal is sparse in the standard basis, otherwise the thresholding procedure
has to be applied in the suitable basis that yields a sparse representation, such as perhaps a
wavelet basis (at the cost of applying additional forward and inverse transforms).

While such modifications are easy to carry numerically, providing theoretical guarantees is
significantly harder. For example, it has been shown that sparse Wirtinger Flow [209] as well
as truncated amplitude flow [205] succeed if the sampling complexity is at least O(s2 log n).
Applying a thresholded Wirtinger flow to a non-convex empirical risk minimization problem
that is derived from the phase retrieval problem, [22] have established optimal convergence
rates for noisy sparse phase retrieval under sub-exponential noise.

Two-stage approaches have been proposed as well, where in the first stage the support of
the signal is identified and in the second state the signal is recovered using the information
from the first stage [100, 104]. For example, Jaganathan et al. propose such a two-sate
scheme for the one-dimensional Fourier phase retrieval problem, consisting of (i) identifying
the locations of the non-zero components, of the signal using a combinatorial algorithm,
(ii) identifying the signal values in the support using a convex algorithm. This algorithm is
shown experimentally to recover s-sparse signals from O(s2) measurements, but the theoret-
ical guarantees require a higher sample complexity.

An alternative approach to model signals with a small number of parameters is proposed
in [88], based on generative models. In this work, the authors suppose that the signal of
interest is in the range of a deep generative neural network G : Rs → Rn, where the generative
model is a d-layer, fully-connected, feed forward neural network with random weights. The

53



authors introduce an empirical risk formulation and prove, assuming a range of technical
conditions holds, that this optimization problem has favorable global geometry for gradient
methods, as soon as the number of measurements satisfies N = O(sd2 log n).

Given the current intense interest in deep learning, it is not surprising that numerous
other deep learning based methods for phase retrieval have been proposed, see e.g. [148, 173,
74, 212]. Many of the deep learning based methods come with little theoretical foundation
and are sometimes difficult to reproduce. Moreover, if one changes the input parameters
just by a small amount, say, by switching to a slightly different image resolution, a complete
retraining of the network is required. As most deep learning applications, there is currently
almost no theory about any kind of reconstruction guarantee, convergence rate, stability
analysis, and other basic questions one might pose to a numerical algorithm. On the other
hand, there is anecdotal evidence that deep learning has the potential to achieve convincing
results in phase retrieval.

Instead of designing an end-to-end deep learning based phase retrieval algorithm (and
thereby ignoring the underlying physical model), a more promising direction seems to be
to utilize all the information available to model the inverse problem and bring to bear the
power of deep learning as a data-driven regularizer. Such an approach has been advocated
for general inverse problems in [121, 4]. It will interesting to adapt these techniques to the
setting of phase retrieval.

In [181] the authors have proposed an Approximate Message Passing (AMP) approach
for phase retrieval of sparse signals. AMP based methods were originally developed for
compressed sensing problems of estimating sparse vectors from underdetermined linear mea-
surements [49]. They have now been extended to a wide range of estimation and learning
problems including matrix completion, dictionary learning, and phase retrieval. The first
AMP algorithm designed for phase retrieval for sparse signals using techniques from com-
pressive sensing can be found in [180]. Various extensions and improvements have been
developed [50, 147, 149].

As pointed out in [149], one downside is that AMP algorithms are heuristic algorithms and
at best offer only asymptotic guarantees. In the case of the phase retrieval problem, most
AMP algorithms offer no guarantees at all. Despite this shortcoming, they often perform
well in practice and a key appealing feature of AMP is its computational scalability. See [149]
for a more detailed discussion of AMP algorithms for phase retrieval.

In another line of research, the randomized Kaczmarz method has been adapted to phase
retrieval, see [206]. Competitive theoretical convergence results can be found in [193, 105],
where it has been shown that the convergence is exponential and comparable to the linear
setting [190].

7. Blind ptychography

An important development in ptychography since the work of [194] is the potential of
simultaneous recovery of the object and the illumination. This is referred to as blind pty-
chography. There are two ambiguities inherent to any blind ptychography.

The first is the affine phase ambiguity. Consider the mask and object estimates

ν0(n) = µ0(n) exp(−ia− iw · n), n ∈M0(101)

x(n) = x∗(n) exp(ib+ iw · n), n ∈ Z2
n(102)
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Figure 16. ν0 satisfies MPC if ν0(n) and µ0(n) form an acute angle for all n.

for any a, b ∈ R and w ∈ R2. For any t, we have the following calculation

νt(n) = ν0(n− t)

= µ0(n− t) exp(−iw · (n− t)) exp(−ia)

= µt(n) exp(−iw · (n− t)) exp(−ia)

and hence for all n ∈Mt, t ∈ T

νt(n)xt(n) = µt(n)xt∗(n) exp(i(b− a)) exp(iw · t).(103)

Clearly, (103) implies that g and ν0 produce the same ptychographic data as f and µ0 since
for each t, νt � xt is a constant phase factor times µt � xt∗ where � is the entry-wise
(Hadamard) product. It is also clear that the above statement holds true regardless of the
set T of shifts and the type of mask.

In addition to the affine phase ambiguity (101)-(102), a scaling factor (x = cx∗, ν
0 =

c−1µ0, c > 0) is inherent to any blind ptychography. Note that when the mask is exactly
known (i.e. ν0 = µ0), neither ambiguity can occur.

Local rigidity. Motivated by (103) we seek sufficient conditions for results such as

νk � xk = eiθkµk � xk∗, k = 0, . . . , Q− 1,(104)

for some constants θk ∈ R. We call (104) the property of local rigidity.
A main assumption needed here is the mask phase constraint (MPC):

The mask estimate ν0 has the property <(ν0 � µ0) > 0 at every pixel (where
� denotes the component-wise product and the bar denotes the complex con-
jugate).

Another ingredient in the measurement scheme is that at least for one block (say Mt) the
corresponding object part f t has a tight support in Mt, i.e.

Box[supp(f t)] =Mt

where Box[E] stands for the box hull, the smallest rectangle containing E with sides parallel
to e1 = (1, 0) or e2 = (0, 1). We call such an object part an anchor. Informally speaking, an
object part f t is an anchor if its support touches four sides of Mt (Figure 17).

In the case supp(x) =M, every object part is an anchor. For an extremely sparse object
such as shown in Figure 17, the anchoring assumption can pose a challenge.

Both the anchoring assumption and MPC are nearly necessary conditions for local rigidity
(104) to hold as demonstrated by counterexamples constructed in [57].
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Figure 17. Sparse objects such as this image of corn grains, where the dark
area represents zero pixel value, can be challenging to ptychographic mea-
surements. The two red-framed blocks are not connected even though they
overlap. The object part in the lower-right block is not an anchor since the
object support does not touch the four sides of the block while the object
part in the upper-left block is an anchor. Indeed, the two corn grains at the
lower-left and upper-right corners alone of the latter block suffice to create a
tight support.

Theorem 7.1. [57] Suppose that {xk∗} has an anchor and is s-connected with respect to the
ptychographic scheme.

Suppose that an object estimate x =
∨
k x

k, where xk are defined on Mk, and a mask
estimate ν0 produce the same ptychographic data as x∗ and µ0. Suppose that the mask
estimate ν0 satisfies MPC. Then local rigidity (104) holds with probability exponentially (in
s) close to 1.

Raster scan ambiguities. Before describing the global rigidity result, let us review the other
ambiguities associated with the raster scan (8) other than the inherent ambiguities of the
scaling factor and the affine phase ambiguity (101)-(102). These ambiguities include the
arithmetically progressing phase factor inherited from the block phases and the raster grid
pathology which has a τ -periodic structure of τ × τ degrees of freedom.

Let T ′ be any cyclic subgroup of T generated by v, i.e. T ′ := {tj = jv : j = 0, . . . , s−1},
of order s, i.e. sv = 0 mod n. For ease of notation, denote by µk, xk∗, ν

k, xk and Mk for the
respective tk-shifted quantities.

Theorem 7.2. [56] Suppose that

νk � xk = eiθkµk � xk∗, k = 0, . . . , s− 1,
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where µk and νk vanish nowhere in Mk. If, for all k = 0, . . . , s− 1,

Mk ∩Mk+1 ∩ supp(x∗) ∩ (supp(x∗) + v) 6= ∅,(105)

then the sequence {θ0, θ1, . . . , θs−1} is an arithmetic progression where ∆θ = θk − θk−1 is an
integer multiple of 2π/s.

For the full raster scan T , the block phases have the profile

θkl = θ00 + r · (k, l), k, l = 0, . . . , q − 1,(106)

for some θ00 ∈ R and r = (r1, r2) where r1 and r2 are integer multiples of 2π/q.

Note that if x∗ has a full support, i.e. supp(x∗) = Z2
n, then (105) holds for any step size

τ < m (i.e. positive overlap).
The next example shows an ambiguity resulting from the arithmetically progressing block

phases (106) which make positive and negative imprints on the object and phase estimates,
respectively.

Example 7.3. For q = 3, τ = m/2, let

x∗ =

f00 f10 f20

f01 f11 f21

f02 f12 f22


x =

 f00 ei2π/3f10 ei4π/3f20

ei2π/3f01 ei4π/3f11 f21

ei4π/3f02 f12 ei2π/3f22


be the object and its reconstruction, respectively, where fij ∈ Cn/3×n/3. Let

µkl =

[
µkl00 µkl10

µkl01 µkl11

]
, νkl =

[
µkl00 e−i2π/3µkl10

e−i2π/3µkl01 e−i4π/3µkl11

]
,

k, l = 0, 1, 2, be the (k, l)-th shift of the mask and estimate, respectively, where µklij ∈ Cn/3×n/3.

Let xij∗ and xij be the part of the object and estimate illuminated by µij and νij, respectively.
For example, we have

x00
∗ =

[
f00 f10

f01 f11

]
, x10

∗ =

[
f10 f20

f11 f21

]
, x20

∗ =

[
f20 f00

f21 f01

]
and likewise for other xij∗ and xij. It is easily seen that νij � xij = ei(i+j)2π/3µij � xij∗ .

Example 7.3 illustrates the non-periodic ambiguity inherited from the affine block phase
profile. The non-periodic arithmetically progressing ambiguity is different from the affine
phase ambiguity (101)-(102) as they manifest on different scales: the former is constant in
each τ × τ block (indexed by k, l) while the latter varies from pixel to pixel.

The next example illustrates the periodic artifact called raster grid pathology.
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Example 7.4. For q = 3, τ = m/2 and any ψ ∈ Cn
3
×n

3 , let

x∗ =

f00 f10 f20

f01 f11 f21

f02 f12 f22


x =

e−iψ � f00 e−iψ � f10 e−iψ � f20

e−iψ � f01 e−iψ � f11 e−iψ � f21

e−iψ � f02 e−iψ � f12 e−iψ � f22

(107)

be the object and its reconstruction, respectively, where fij ∈ Cn/3×n/3. Let

µkl =

[
µkl00 µkl10

µkl01 µkl11

]
, νkl =

[
eiψ � µkl00 eiψ � µkl10

eiψ � µkl01 eiψ � µkl11

]
,(108)

k, l = 0, 1, 2, be the (k, l)-th shift of the mask and estimate, respectively, where µklij ∈ Cn/3×n/3.

Let xij∗ and xij be the part of the object and estimate illuminated by µij and νij, respectively
(as in Example 7.3). It is verified easily that νij � xij = µij � xij∗ .

Since ψ in Example 7.4 is any complex τ × τ matrix, (107) and (108) represent the
maximum degrees of ambiguity over the respective initial sub-blocks. This ambiguity is
transmitted to other sub-blocks, forming periodic artifacts called the raster grid pathology.

For a complete analysis of ambiguities associated with raster scan, we refer the reader to
[56].

Global rigidity. In view of Theorem 7.1, we make simple observations and transform (104)
into the ambiguity equation that will be a key to subsequent development.

Let

α(n) exp[iφ(n)] = ν0(n)/µ0(n), α(n) > 0, ∀n ∈M0

and

h(n) ≡ lnx(n)− lnx∗(n), ∀n ∈M,

where x∗ and x are assumed to be non-vanishing.
Suppose that

νk � xk = eiθkµk � xk∗, ∀k,
where θk are constants. Then

h(n + tk) = iθk − lnα(n)− iφ(n) mod i2π, ∀n ∈M0,(109)

and for all n ∈Mk ∩Ml

α(n− tl) = α(n− tk)

θk − φ(n− tk) = θl − φ(n− tl) mod 2π.

The ambiguity equation (109) is a manifestation of local uniqueness (104) and has the
immediate consequence

h(n + tk)− h(n + tl) = iθk − iθl mod i2π, ∀n ∈M0, ∀k, l(110)

or equivalently

h(n + tk − tl)− h(n) = iθk − iθl mod i2π, ∀n ∈Ml(111)
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(a) Perturbed scan (113) (b) Perturbed scan (112)

Figure 18. Perturbed raster scan patterns

by shifting the argument in h.
We refer to (110)or (111) as the phase drift equation which determines the ambiguity

(represented by h) at different locations connected by ptychographic shifts.
We seek sufficient conditions for guaranteeing the following global rigidity properties

h(n) = h(0) + in · (r1, r2) mod i2π,

φ(n) = θ0 −=[h(0)]− n · (r1, r2) mod 2π

α = e−<[h(0)]

θt = θ0 + t · (r1, r2) mod 2π, ∀t ∈ T ,
for some r1, r2 ∈ R and all n ∈ Z2

n.
In [57] a class of ptychographically complete schemes are introduced. A ptychographic

scheme is complete if global rigidity holds under the minimum prior constraint MPC defined
in Figure 7.1. A simple example of ptychographically complete schemes is the perturbed
scan (Figure 18(b)

tkl = τ(k, l) + (δ1
kl, δ

2
kl), k, l = 0, . . . , q − 1(112)

where τ = n/q needs only to be slightly greater than m/2 (i.e overlap ratio slightly greater
than 50%) and δ1

kl, δ
2
kl are small integers with some generic, non-degeneracy conditions [57].

In particular, if we set

δ1
kl = δ1

k, δ2
kl = δ2

l , ∀k, l = 0, · · · , q − 1,(113)

then we obtain the scan pattern shown in Figure 18 (a).

Minimum overlap ratio. In this section, we show that 50% overlap is roughly the minimum
overlap ratio required by uniqueness among the perturbed raster scans defined by (112)-
(113).

Let us consider the perturbed scheme (113) with q = 2 and

tkl = (τk, τl), k, l = 0, 1, 2

where τ0 = 0, τ2 = n and

3m/2 < n < m+ τ1.(114)
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Figure 19. A perturbed scan with q = 2. The arcs indicate the extend of
the two blocks M00 and M10. The dotted lines mark the midlines of the two
blocks. The grey area represents the object with the light grey areas being
R00 and R10 and the dark grey areas being the overlap of the two blocks. The
white area inside M10 folds into the other end inside M00 by the periodic
boundary condition.

The condition (114) is to ensure that the overlap ratio (2 − n/m) between two adjacent
blocks is less than (but can be made arbitrarily close to) 50%. To avoid the raster scan
(which has many undesirable ambiguities [56]), we assume that τ1 6= n/2 and hence τ2 6= 2τ1.
Note that the periodic boundary condition implies thatM00 =M20 =M02 =M22. Figure
19 illustrates the relative positions of M00 and M10.

First let us focus on the horizontal shifts {tk0 : k = 0, 1, 2}. As shown in Figure 19, two
subsets of M = Z2

n

R00 = Jm+ τ1 − n, τ1 − 1K× Zm, R10 = Jm,n− 1K× Zm
are covered only once by M00 and M10 respectively due to the (114).

Now consider the intersections

R̃10 := R10 ∩ (t10 +R00) = R10 ∩ Jm+ 2τ1 − n, 2τ1 − 1K× Zm
R̃00 := (R10 − t10) ∩R00 = Jm− τ1, n− τ1 − 1K× Zm ∩R00

which respectively correspond to the same region of the mask inM10 andM00 and let h1 be
any function defined onM such that h1(n) = 0 for any n 6= R̃10∪R̃00 and h1(n+t10) = h1(n)
for any n ∈ R̃00.

Consider the object estimate x(n) = eh1(n)x∗(n) and the mask estimate νk0(n) := e−h1(n)µk0(n),
which is well defined because R̃10 = t10 + R̃00 and both correspond to the same region of the
mask.

By the same token, we can construct a similar ambiguity function h2 for the vertical shifts.
With both horizontal and vertical shifts, we define the ambiguity function h = h1h2 and the
associated pair of mask-object estimate νkl(n) := e−h(n)µkl(n) and x(n) = eh(n)x∗(n).

Clearly, the mask-object pair (ν, x) produces the identical set of diffraction patterns as
(µ, x∗). Therefore this ptychographic scheme has at least (2τ1 − m)2 or (2n − 2τ1 − m)2

degrees of ambiguity dimension depending on whether 2τ1 < n or 2τ1 > n.
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7.1. Algorithms for blind ptychography. Let F(ν, x) be the bilinear transformation
representing the totality of the Fourier (magnitude and phase) data for any mask ν and object

x. From F(ν0, x) we can define two measurement matrices. First, for a given ν0 ∈ Cm2
, let

Aν be defined via the relation Aνx := F(ν0, x) for all x ∈ Cn2
; second, for a given x ∈ Cn2

,

let Bx be defined via Bxν = F(ν0, x) for all ν0 ∈ Cm2
.

More specifically, let Φ denote the over-sampled Fourier matrix. The measurement matrix
Aν is a concatenation of {Φ diag(νt) : t ∈ T } (Figure (4)(a)). Likewise, Bx is {Φ diag(xt) :
t ∈ T } stacked on top of each other (Figure (4)(b)). Since Φ has orthogonal columns, both
Aν and Bx have orthogonal columns. We simplify the notation by setting A = Aµ and
B = Bx∗ .

Let ν0 and x = ∨txt be any pair of the mask and the object estimates producing the same
ptychography data as µ0 and x∗, i.e. the diffraction pattern of νt � xt is identical to that
of µt � xt∗ where νt is the t-shift of ν0 and xt is the restriction of x to Mt. We refer to
the pair (ν0, x) as a blind-ptychographic solution and (µ0, x∗) as the true solution (in the
mask-object domain).

We can write the total measurement data as b = |F(µ0, x∗)| where F is the concatenated
oversampled Fourier transform acting on {µt � xt∗ : t ∈ T } (see Fig. 4), i.e. a bi-linear
transformation in the direct product of the mask space and the object space. By definition,
a blind-ptychographic solution (ν0, x) satisfies |F(ν0, x)| = b.

According to the global rigidity theorem, we use relative error (RE) and relative residual
(RR) as the merit metrics for the recovered image xk and mask µk at the kth epoch:

RE(k) = min
α∈C,r∈R2

√∑
n |x∗(n)− αe−i2πn·r/nxk(n)|2

‖f‖
(115)

RR(k) =
‖b− |Akxk|‖
‖b‖

.(116)

Note that in (115) both the affine phase and the scaling factors are waived.

Initial mask estimate. For non-convex iterative optimization, a good initial guess or some
regularization is usually crucial for convergence [195], [18]. This is even more so for blind
ptychography which is doubly non-convex because, in addition to the phase retrieval step,
extracting the mask and the object from their product is also non-convex.

We say that a mask estimate ν0 satisfies MPC(δ) if

](ν0(n), µ0(n)) < δπ, ∀n

where δ ∈ (0, 1/2] is the uncertainty parameter. The weakest condition necessary for unique-

ness is δ = 0.5, equivalent to <(ν0� µ0) > 0. Non-blind ptychography gives rise to infinites-
imally small δ.

We use MPC(δ) as measure of initial mask estimate for blind ptychographic reconstruction
and randomly choose ν0 from the set MPC(δ). Specifically, we use the following mask
initialization

µ1(n) = µ0(n) exp

[
i2π

k · n
n

]
exp [iφ(n)], n ∈M0

where φ(n) are independently and uniformly distributed on (−πδ, πδ).
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Under MPC, however, the initial mask may be significantly far away from the true mask
in norm. Even if |ν0(n)| = |µ0(n)| = const., the mask guess with uniformly distributed φ in
(−π/2, π/2] has the relative error close to√

1

π

∫ π/2

−π/2
|eiφ − 1|2dφ =

√
2(1− 2

π
) ≈ 0.8525

with high probability.

Ptychographic iterative engine (PIE). The ptychographic iterative engines, PIE [60], [61],
[175], ePIE [142] and rPIE [141], are related to the mini-batch gradient method.

In PIE and ePIE, the exit wave estimate is given by

ψ̃k = Φ∗
[
bk � sgn(Φ(νk � xk))

]
(117)

analogous to AP where the k-th object part xk is updated by a gradient descent

xk − 1

2 maxn |νk(n)|2
∇ν‖νk � xk − ψ̃k‖2.

This choice of step size resembles the Lipschitz constant of the gradient of the loss function
1
2
‖νk�xk−ψ̃k‖2. The process continues in random order until each of the diffraction patterns

has been used to update the object and mask estimates, at which point a single PIE iteration
has been completed. The mask update proceeds in a similar manner.

The update process can be done in parallel as in [196], [194]. First the exit wave estimates
are updated in parallel by the AAR algorithm instead of (117), i.e.

ψ̃j+1 =
1

2
ψ̃j +RYRXψ̃j

where ψ̃j = [ψ̃kj ] is the j-th iterate of the exit wave estimate. Second, the object and the
mask are updated by solving iteratively the Euler-Lagrange equations

xj(n) =

∑
k[µ

k
j � ψ̃kj ](n)∑
k |µkj (n)|2

of the bilinear loss function

1

2

∑
k

‖µkj � xkj − ψ̃kj ‖2 =
1

2

∑
k

‖Φ
[
µkj � xkj

]
− Φψ̃kj ‖2

=
1

2

∑
k

‖F(µkj , x
k
j )− Φψ̃kj ‖2

for given ψ̃j (recall the isometric property of Φ).

Noise-aware method. As a first step of the noise-aware ADMM method for blind ptychogra-
phy, we may consider the augmented Lagrangian

L(ν, x, z, λ) =
1

2
‖b− |z|‖2 + λ∗(z −F(ν, x)) +

β

2
‖z −F(ν, x)‖2
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and the scheme

µk+1 = arg minL(ν, xk, zk, λk)

xk+1 = arg minL(µk+1, x, zk, λk)

zk+1 = arg minL(µk+1, xk+1, z, λk)

λk+1 = λk + β(zk+1 −F(µk+1, xk+1)).

In [29], more elaborate version of the above scheme is employed to enhance convergence.

Extended Gaussian-DRS. As extension of the Gaussian-DRS (54), consider the augmented
Lagrangian

L(y, z, x, ν, λ) =
1

2
‖|z| − b‖2 + λ∗(z − y) +

ρ

2
‖z − y‖2 + IF(y)(118)

where IF is the indicator function of the set

{y ∈ CN : y = F(ν, x) for some ν, x}.

Define the ADMM scheme for (118) as

(zk+1, µk+1) = arg min
z
L(yk, z, xk, ν, λk)

(yk+1, xk+1) = arg min
y
L(y, zk+1, x, µk+1, λk)

λk+1 = λk + ρ(zk+1 − yk+1)

which is carried out explicitly by

zk+1 =
1

ρ+ 1
PY (yk − λk/ρ) +

ρ

ρ+ 1
(yk − λk/ρ)(119)

µk+1 = B+
k yk(120)

yk+1 = Ak+1A
+
k+1(zk+1 + λk/ρ)(121)

xk+1 = A+
k+1yk+1(122)

λk+1/ρ = λk/ρ+ zk+1 − yk+1.(123)

We can further simplify the above scheme in terms of the new variable

uk = zk + λk−1/ρ.

Rewrite eq. (121) as

yk+1 = Ak+1A
+
k+1uk+1(124)

and hence (123) as

λk+1/ρ = uk+1 − yk+1(125)

= uk+1 − Ak+1A
+
k+1uk+1.

Combining (124) and (125) we obtain

zk+1 =
( 1

ρ+ 1
PY +

ρ

ρ+ 1

)
(2AkA

+
k − I)uk
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Figure 22: eDRS on CiB with ⇢ = 1/3.
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(a) 50% overlap; δ = 9/20
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Figure 22: eDRS on CiB with ⇢ = 1/3.
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(b) 66% overlap; δ = 2/5
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Figure 22: eDRS on CiB with ⇢ = 1/3.
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(c) 75% overlap; δ = 1/2

Figure 20. Relative errors versus iteration of blind ptychography by
eGaussian-DRS with ρ = 1/3 for the original object CiB. Scheme (113) with
different overlap ratios and initializations are used as indicated in each plot.

On the other hand,

uk+1(126)

=
1

ρ+ 1
PY (2AkA

+
k uk − uk) +

ρ

ρ+ 1
(2AkA

+
k uk − uk) + uk − AkA+

k uk

=
uk
ρ+ 1

+
ρ− 1

ρ+ 1
AkA

+
k uk +

1

ρ+ 1
PY (2AkA

+
k uk − uk)

with the mask and object updated by

µk+1 = B+
k AkA

+
k uk(127)

xk+1 = A+
k+1uk+1.(128)

Eq. (126)-(128) constitute the extended version of Gaussian-DRS (eGaussian-DRS) for blind
ptychography.

Figure 20 shows the relative errors (for object and mask) and residual of eGaussian-DRS
with ρ = 1/3 and various overlap ratios in the perturbed scan and different initial mask phase
uncertainty δ. Clearly increasing the overlap ratio and/or decreasing the initial mask phase
uncertainty speed up convergence. The straight line feature of the semi-log plots indicates
geometric convergence and vice versa.

Noise-agnostic methods. As an extension of the augmented Lagrangian (29), consider

L(z, ν, x, λ) = IY (z) + λ∗(z −F(ν, x)) +
1

2
‖z −F(ν, x)‖2

and the following ADMM scheme

zk+1 = arg min
z
L(z, µk, xk, λk) = PY [F(µk, xk)− λk](129)

(µk+1, xk+1) = arg min
ν
L(zk+1, ν, x, λk)(130)

λk+1 = λk + zk+1 −F(µk+1, xk+1).(131)
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If instead of the bilinear optimization step (130), we simplify it by one-step alternating
minimization

µk+1 = arg min
ν
L(zk+1, ν, xk, λk) = B+

k (zk+1 + λk)

xk+1 = arg min
g
L(zk+1, µk+1, x, λk) = A+

k+1(zk+1 + λk)

with Bk := Bxk and Ak+1 = Aµk+1
, then we obtain the DM algorithm for blind ptychography

[194],[196], one of the earliest methods for blind ptychography.

Extended RAAR. To extend RAAR to blind ptychography, let us consider the augmented
Lagrangian

L(y, z, ν, x, λ) = IY (z) +
1

2
‖y −F(ν, x)‖2 + λ∗(z − y) +

γ

2
‖z − y‖2

and the following ADMM scheme

(yk+1, xk+1) = arg min
y
L(y, zk, x, µk, λk)(132)

(zk+1, µk+1) = arg min
z
L(yk+1, z, xk+1, ν, λk)(133)

λk+1 = λk + γ(zk+1 − yk+1).(134)

In the case of a known mask µk = µ for all k, the procedure (132)-(134) is equivalent to
RAAR. We refer to the above scheme as the extended RAAR (eRAAR). Note that eRAAR
has a non-standard loss function as the term ‖y − F(ν, x)‖2 is not separable. A similar
scheme is implemented in [144] in the domain of the masked object (see the discussion in
Section 4.5).

With β given in (65) the minimizer for (132) can be expressed explicitly as

yk+1 =
(
I + P⊥k /γ

)−1
(zk + λk/γ) =

(
I − βP⊥k

)
(zk + λk/γ)(135)

xk+1 = A+
k yk+1 = A+

k (zk + λk/γ)(136)

where Ak = Aµk and Pk = AkA
+
k . On the other hand, Eq. (133) can be solved exactly by

zk+1 = PY [yk+1 − λk/γ](137)

µk+1 = B+
k+1yk+1(138)

where Bk+1 = Bxk+1
.

Let

uk+1 := yk+1 − λk/γ(139)

and hence

uk+1 = (I − βP⊥k )(PY uk + λk/γ)− λk/γ.
On the other hand, we can rewrite (134) as

λk/γ = zk − uk = PY uk − uk(140)

and hence

uk+1 = (I − βP⊥k )PY uk − βP⊥k λk/γ
= (I − βP⊥k )PY uk + βP⊥k (I − PY )uk

= βuk + (1− 2β)PY uk + βPkRY uk(141)
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Figure 21: eRAAR on CiB with � = 0.8.
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Figure 21: eRAAR on CiB with � = 0.8.

B.3 eRAAR/eDRS Comparison

In the following, we make a comparison between eRAAR ( � = 0.8) with eDRS with (⇢ = 1/3). The
selection of parameters are to ensure the equivalent fixed points. In Fig. 21, figures in top row and middle
row show the convergence under � = ⇡/2 and large overlapping 66% and 75%. The convergence speed of
75% is faster than that of 66%.( I double checked with RPP case. We does not have convergence under
75% under 1200 iterations. I do not know why. Maybe much more iterations are needed.)

Bottom row shows the case with 50% and various uncertainty level �. As � gets close to ⇡/2,
more iterations are needed to get convergence. But not clear whether we would have convergence for
� = 9.5⇡/20.

Next, in Fig. ??, we conduct eDRS on the same CiB. In general, if DRS converges, the convergence
speed is faster than eRAAR. See the middle row for the 75% case with � = ⇡/2. I cannot get the
convergence for 66% with � = ⇡/2. So, I consider the case � = 4⇡/5 (since it does not converge for 9⇡/20
either). Bottom row shows the case of 50%.

Conclusion: eDRS gives faster convergence than eRAAR, if it does converge.
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(b) 66% overlap; δ = 2/5
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Figure 21: eRAAR on CiB with � = 0.8.
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Conclusion: eDRS gives faster convergence than eRAAR, if it does converge.
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(c) 75% overlap; δ = 1/2

Figure 21. Relative errors versus iteration of blind ptychography for CiB by
eRAAR with β = 0.8.

where RY = 2PY − I. This is the RAAR map with the mask estimate µk updated by (138)
and (136).

More explicitly, by (140) and (139)

yk+1 = uk+1 + PY uk − uk
and hence

xk+1 = A+
k (uk+1 + PY uk − uk)(142)

µk+1 = B+
k+1(uk+1 + PY uk − uk).(143)

Eq. (142) can be further simplified as

xk+1 = A+
k RY uk(144)

by applying A+
k to (141) to get A+

k uk+1 = A+
k PY uk.

Eq. (141), (144) and (143) constitute a simple, self-contained iterative system called the
extended RAAR (eRAAR).

Figure 21 shows the relative errors (for object and mask) and residual of eRAAR with
β = 0.8 corresponding to ρ = 1/3 according to (71). The rest of the set-up is the same as for
Figure 20. Comparing Figures 20 and 21 we see that eGaussian-DRS converges significantly
faster than eRAAR, consistent with the results in Figure 9.

7.2. Further extensions of blind ptychography algorithms.

One-loop version. Let Tk denote the k-th RAAR map (141) or Gaussian-DRS map (126).
Starting with the initial guess u1, let

uk+1 = T `k(uk) for sufficiently large `(145)

for k ≥ 1. The termination rule can be based on a predetermined number of iterations, the
residual or combination of both.

Let

xk+1 = A+
k RY uk(146)

µk+1 = B+
k+1(uk+1 + PY uk − uk).(147)
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in the case of RAAR (141)

µk+1 = B+
k AkA

+
k uk(148)

xk+1 = A+
k+1uk+1(149)

in the case of Gaussian-DRS (126).

Algorithm 1 One-loop method

1: Input: initial mask guess ν1 using MPC and random object guess x1.
2: Update the object estimate: xk+1 is given by (145) with (146) for RAAR or with (149)

for Gaussian/Poisson-DRS;
3: Update the mask estimate: µk+1 is given by (147) for RAAR or (148) for

Gaussian/Poisson-DRS.
4: Terminate if ‖|Bk+1µk+1| − b‖ stagnates or is less than tolerance; otherwise, go back to

step 2 with k → k + 1.

In a sense, eGaussian-DRS/eRAAR is the one-step version of one-loop Gaussian-DRS/RAAR.

Two-loop version. Two-loop methods have two inner loops: the first is the object loop (145)-
(146) and the second is the mask loop defined as follows. Two-loop version is an example of
Alternating Minimization (AM).

Let Qk = BkB
+
k and let Sk be the associated RAAR map:

Sk(v) := βv + (1− 2β)PY v + βQkRY v

or the associated Gaussian-DRS map

Sk(v) =
v

ρ+ 1
+
ρ− 1

ρ+ 1
Q+
k v +

1

ρ+ 1
PY (2Q+

k v − v)

Starting with the initial guess v1, let

vk+1 = S`k(vk) for sufficiently large `(150)

for k ≥ 1.
Let

µk+1 = B+
k RY vk,(151)

in the case of RAAR in analogy to (146) and

µk+1 = B+
k+1vk+1(152)

in the case of Gaussian-DRS in analogy to (149).

Algorithm 2 Two-loop method

1: Input: initial mask guess ν1 using MPC and random object guess x1.
2: Update the object estimate: xk+1 is given by (145) with (146) for RAAR or with (149)

for Gaussian/Poisson-DRS;
3: Update the mask estimate: µk+1 is given by (150) with (151) for RAAR or with (152)

for Gaussian/Poisson-DRS;
4: Terminate if ‖|Bk+1µk+1| − b‖ stagnates or is less than tolerance; otherwise, go back to

step 2 with k → k + 1.
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(a) RE vs. epoch (b) RE vs. NSR

Figure 22. (a) Geometric convergence to CiB in the noiseless case at various
rates for four combinations of loss functions and scanning schemes with i.i.d.
mask (rank-one Poisson, rate = 0.8236; rank-one Gaussian, rate = 0.8258;
full-rank Poisson, rate = 0.7205; full-rank Gaussian, rate = 0.7373) and (b)
RE versus NSR for reconstruction of CiB with Poisson noise.

Two-loop experiments. Following [58], we refer to the two-loop version with Gaussian- or
Poisson-DRS as DRSAM which is tested next. We demonstrate that even with the parameter
ρ = 1 far from the optimal value (near 0.3), DRSAM converges geometrically under the
minimum conditions required by uniqueness, i.e. with overlap ratio slightly above 50% and
initial mask phase uncertainty δ = 1/2. We let δ1

k and δ2
l in the rank-one scheme (113) and

δ1
kl and δ2

kl in the full-rank scheme (112) to be i.i.d. uniform random variables over J−4, 4K.
The inner loops of Gaussian DRSAM become

ul+1
k =

1

2
ulk +

1

2
b� sgn

(
Rku

l
k

)
vl+1
k =

1

2
vlk +

1

2
b� sgn

(
Skv

l
k

)
.

and the inner loops of the Poisson DRSAM become

ul+1
k =

1

2
ulk −

1

3
Rku

l
k +

1

6
sgn
(
Rku

l
k

)
�
√
|Rkulk|2 + 24b2

vl+1
k =

1

2
vlk −

1

3
Skv

l
k +

1

6
sgn
(
Skv

l
k

)
�
√
|Skvlk|2 + 24b2.

Here Rk = 2Pk − I is the reflector corresponding to the projector Pk := AkA
+
k and Sk is the

reflector corresponding to the projector Qk := BkB
+
k . We set u1

k = u∞k−1 where u∞k−1 is the
terminal value at epoch k− 1 and v1

k = v∞k−1 where v∞k−1 is the terminal value at epoch k− 1.
Figure 22(a) compares performance of four combinations of loss functions (Poisson or

Gaussian) and scanning schemes (Rank 1 or full-rank) with a 60 × 60 random mask for
the test object CiB in the noiseless case. Full-rank perturbation (112) results in a faster
convergence rate than rank 1 scheme (113). The convergence rate of Poisson DRSAM is
slightly better than Gaussian DRSAM with noiseless data.

With data corrupted by by Poisson noise, Figure 22(b) shows RE versus NSR (85) for
CiB by Poisson-DRS and Gaussian-DRS with i.i.d. mask and the full-rank scheme. The
maximum number of epoch in DRSAM is limited to 100. The RR stabilizes usually after
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30 epochs. The (blue) reference straight line has slope = 1. We see that the Gaussian-
DRS outperforms the Poisson-DRS, especially when the Poisson RE becomes unstable for
NSR ≥ 35%. As noted in [141],[214],[36] fast convergence (with the Poisson log-likelihood
function) may introduce noisy artifacts and reduce reconstruction quality.

8. Holographic coherent diffraction imaging

Holography is a lensless imaging technique that enables complex-valued image reconstruc-
tion by virtue of placing a coherent point source at an appropriate distance from the object
and having the object field interfere with the reference wave produced by this point source at
the (far-field) detector plane [78]. For example, adding a pinhole (corresponding to adding
a delta distribution in the mathematical model) at an appropriate position to the sample
creates an additional wave in the far field, with a tilted phase, caused by the displacement
between the pinhole and the sample. The far field detector now records the intensity of the
Fourier transform of the sample and the reference signal (e.g., the pinhole).

The invention of holography goes back to Dennis Gabor6, who in 1947 was working on
improving the resolution of the recently invented electron microscope [69, 70, 68]. In 1971,
he was awarded the Nobel Prize in Physics for his invention. In the original scheme pro-
posed by Gabor, called in-line holography, the reference and object waves are parallel to one
another. In off-axis holography, the two waves are separated by a non-zero angle. In classi-
cal holography, a photographic plate is used to record the spatial intensity distribution. In
state-of-the-art digital holography systems a digital acquisition device captures the spatial
intensity distribution [185].

We recommend [118] for a recent survey on iterative algorithms in holography. While
holography leads to relatively simple algorithms for solving the phase retrieval problems, it
does pose numerous challenges in the experimental practice. For a detailed discussion of
various practical issues with holography, such as resolution limitations, see [51, 119, 187,
176, 118].

A compelling direction in holographic phase retrieval is to combine holography with
CDI [120, 177, 170], see Figure 23 for a setup depicting holographic CDI. This hybrid tech-
nique “inherits the benefits of both techniques, namely the straightforward unambiguous
recovery of the phase distribution and the visualization of a non-crystalline object at the
highest possible resolution,” [120]. Researchers have recently successfully used holographic
CDI to image proteins at the single-molecule level [132].

While holographic techniques have been around for a long time, these investigations have
been mainly empirical. A notable exception is the recent work [12, 11], which contains a
rigorous mathematical treatment of holographic CDI that sheds light on the reference design
from an optimization viewpoint and provides a detailed error analysis. We will discuss some
aspects of this work below.

6Gabor devoted a lot of his time and energy to overcome the initial skepticism of the community to
the concept of holography and proudly noted in a letter to Bragg “I have also perfected the experimental
arrangement considerably, and now I can produce really pretty reproductions of the original from apparently
hopelessly muddled diffraction diagrams.” [107].
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Figure 23. Holographic CDI setup. Image courtesy of [177].

From a mathematical viewpoint, the key point of holographic CDI is that the introduction
of a reference signal simplifies the phase retrieval problem considerably, since the computa-
tional problem of recovering the desired signal can now be expressed as a linear deconvolution
problem [110, 85, 12]. We discuss this insight below.

Here, we assume that our function of interest x∗ is an n × n image. We denote the
convolution of two functions x, z by x ∗ z and define the involution (a.k.a. the twin image)

x̌ of x as x̌(t1, t2) = x(−t1,−t2). The cross correlation C[x,z] between the two functions x, z
is given by

(153) C[x,z] := x ∗ ž,
where we use Dirichlet boundary conditions, i.e., zero-padding, outside the valid index range.
We already encountered the special case x = z (although without stipulating specific bound-
ary conditions), in form of the autocorrelation

(154) Ax = x ∗ x̌,
which is at core of the phase retrieval problem via the relation7

F (x ∗ x̌) = |F (x)|2.
While extracting a function from its autocorrelation is a difficult quadratic problem (as

exemplified by the phase retrieval problem), extracting a function from a cross correlation is
a linear problem if the other function is known, and thus much easier. This observation is the
key point of holographic CDI. We will take full advantage of this fact by adding a reference
area (in digital form represented by the signal r) to the specimen x∗. For concreteness, we
assume that the reference r is placed on the right side of x∗, and subject the so enlarged
signal [x∗, r] to the measurement process, as illustrated in Figure 23.

For (s1, s2) ∈ {−(n− 1), . . . , 0} × {−(n− 1), . . . , 0} we have

C[x∗,r](s1, s2) =(x∗ ∗ ř)(s1, s2)

=([x∗, r] ∗ [x∗, r]

∧

)(s1, n− s2) = A[x,r](s1,−n+ s2).(155)

7Arthur Lindo Patterson once asked Norbert Wiener: “What do you know about a function, when you
know only the amplitudes of its Fourier coefficients?” Wiener responded: “You know the Faltung [convolu-
tion]”, [75].
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Equation (155) allows us to establish a linear relationship between C[x∗,r] and the measure-
ments given by the squared entries of F (A[x∗,r]). Most approaches in holography are based
on utilizing this relationship in some way, see e.g. [185].

Here, we take a signal processing approach and recall that the convolution of two 2-D
signals with Neumann boundary conditions can be described as matrix-vector multiplication,
where the matrix is given by a lower-triangular block Toeplitz matrix with lower-triangular
Toeplitz blocks [79]. The lower-triangular property stems from the fact that the zero-padding
combined with the particular index range we are considering is equivalent to applying a two-
dimensional causal filter [79].

Let r(k) be the k-the column of the reference r and let the lower triangular block-Toeplitz-
Toeplitz block matrix T (r) be given by

T (r) =


T0 0 . . . 0

T1 T1 0
...

...
. . .

Tn−1 . . . T1

 ,
where the first column of the lower-triangular Toeplitz matrix Tk is given by ř(n−k−1) for
k = 0, . . . , n− 1. We also define y := F−1(|F ([x∗, r])|2) and note that

y = F−1(|F ([x∗, r])|2) = F−1(F (A[x∗,r])) = A[x∗,r].

Hence, with a slight abuse of notation (by considering x∗ also as column vector of length n2

via stacking its columns) we arrive at the following linear system of equations

(156) T (r)x∗ = y.

The n2× n2 matrix T (r) is invertible if and only if its diagonal entries are non-zero, that is,
if and only if rn−1,n−1 6= 0. As noted in [12], this condition is equivalent to the well-known
holographic separation condition [85], which dictates when an image is recoverable via using
the reference r. In signal processing jargon, this separation condition prevents the occurrence
of aliasing.

Let us consider the very special case of the pinhole reference. In this case r ∈ Cn×n is
given by

rk,l =

{
1, if k = l = n− 1,

0, else.

Thus r acts as a delta-distribution with respect to the given digital resolution (which may be
very difficult to realize in practice, and thus this is still one limiting factor in the achievable
image resolution). In this particular case its diagonal entries are [T (r)]k,k = rn−1,n−1 = 1 for
all k = 0, . . . , n2 − 1, and all off-diagonal entries of T (r) are zero; thus T (r) is simply the
n2 × n2 identity matrix.

Other popular choices are the block reference defined by rk,l = 1 for all k, l = 0, . . . , n− 1;
and the slit reference defined by

rk,l =

{
1, if l = n− 1,

0, else.
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In both cases the resulting matrix T (r) as well as its inverse [T (r)]−1 take a very simple
form, as the interested reader may easily convince herself.

In the noiseless case, the only difference between these references from a theoretical view-
point is the computational complexity in solving the system (156), which is obviously min-
imal for the pinhole reference. However, in the presence of noise different references have
different advantages and drawbacks. We refer to [12] for a thorough error analysis when the
measurements are corrupted by Poisson shot noise.

We describe some numerical experiments illustrating the effectiveness of the referenced
deconvolution algorithm. The description of these simulations and associated images are
courtesy of [12], which also contains a number of other simulations.

In this experiment, the specimen x∗ is the mimivirus image [72], and its spectrum mostly
concentrates on very low frequencies, as shown in Figure 8(b). The image size is 64 × 64,
and the pixel values are normalized to [0, 1]. For the referenced setup, a reference r of size
64 × 64 is placed next to x∗, forming a composite specimen [x∗, r] of size 64 × 128. Three
references, i.e., the pinhole, the slit, and the block references, are considered. Note that
the zero-padding introduced as boundary condition in the cross correlation function (153)
and the autocorrelation function (154) corresponds to an oversampling of the associated
Fourier transform. In this experiment, the oversampled Fourier transform is taken to be of
size 1024 × 1024, and the collected noisy data are subject to Poisson shot noise. We note
that since the oversampling condition in the detector plane corresponds to zero-padding in
the object plane, this requires the specimen to be surrounded by a support with known
transmission properties. For instance, when imaging a biological molecule, it must ideally
be either levitating or resting on a homogeneous transparent film such as graphene [120].
Thus, what is trivial to do from a mathematical viewpoint, may be rather challenging to
realize in a practical experimental.

We run the referenced deconvolution algorithm and compare it to the HIO algorithm,
the latter with and without enforcing the known reference for comparison. The results are
presented in Figure 8. It is evident that referenced deconvolution clearly outperforms HIO.
An inspection of the errors stated in the corresponding figure captions shows that for the
referenced deconvolution schemes, the expected and empirical relative recovery errors are
close for each reference, as predicted by the error analysis in [12].

In the example depicted in Figure 8 the block reference gives the smallest recovery error
among the tested reference schemes. However, this is not the case in general. As illustrated
in [12] depending on the spectral decay behavior of the image under consideration, different
reference schemes have different limitations. To overcome the specific limitations of each
reference, a dual reference approach has been proposed in [11], in which the reference consists
of two reference portions – a pinhole portion rp and a block portion rb. In this case the

illuminated image takes the form

[
x∗ rp
rb 0

]
. The theoretical and empirical error analysis

in [11] show that this dual-reference scheme achieves a smaller recovery error than the leading
single-reference schemes.
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(a) Ground-truth image (b) Fourier magnitude of the
groundtruth

(c) HIO (no ref.) ε = 93.794, E(ε)
NA

(d) HIO with block ref. ε =
42.813, E(ε) NA

(e) HIO with slit ref. ε = 102.28,
E(ε) NA

(f) HIO with pinhole ref. ε =
168.18, E(ε) NA

(g) Ref.Deconv. with block ref.
ε = 3.703, E(ε) = 3.795

(h) Ref. Deconv. with slit ref. ε =
5.720, E(ε) = 5.147

(i) Ref. Deconv. with pinhole ref.
ε = 46.97, E(ε) = 63.84

Figure 24. Recovery result of the mimivirus image using various recovery
schemes, and the corresponding relative recovery errors (all errors should be
rescaled by 10−4). Referenced deconvolution clearly outperforms HIO, both
with and without the reference information enforced. Experimental and theo-
retical relative errors for referenced deconvolution closely match, as predicted
by the theory derived in [12]. .
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9. Conclusion and outlook

In this survey we have tried to capture the state of the art of the classical and at the
same time fast-emerging field of numerical algorithms for phase retrieval. The last decade
has witnessed extensive activities in the systematic study of numerical algorithms for phase
retrieval. Advances in convex and non-convex optimization have led to a better understand-
ing of the benefits and limitations of various phase retrieval algorithms. The insights gained
in the study of these algorithms in turn has advanced new measurement protocols, such as
random illuminations.

Some of the most challenging problems related to phase retrieval arise in blind ptychog-
raphy, in imaging proteins at the single-molecule level [132], and in non-crystallographic
“single-shot” x-ray imaging [31, 131]. In the latter problem, in addition to the phase retrieval
problem one faces the major task of tomographic 3D reconstruction of the object from the
diffraction images with unknown rotation angles – a challenge that we also encounter in
Cryo-EM [188]. The review article [187] contains a detailed discussion of current bottlenecks
and future challenges, such as taking the CDI techniques to the regime of attosecond science.
This topic remains one of the current challenges in phase retrieval.

Mathematicians sometimes develop theoretical and algorithmic frameworks under assump-
tions that do not conform to current practice. It is then important to find out if these
assumptions are fundamentally unrealistic, or if they actually point to new ideas that are
(perhaps with considerable effort) implementable in practice and advance the field.

It is clear that much more work needs to be done and a closer dialogue between practi-
tioners and theorists is highly desirable to create the kind of feedback loop where theory and
practice drive each other forward with little temporal delay. Careful systematic numerical
analysis is an essential ingredient in strengthening the bond between theory and practice.
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