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Abstract. The two-step spectral clustering method, which consists of the Laplacian eigenmap and a rounding4
step, is a widely used method for graph partitioning. It can be seen as a natural relaxation to5
the NP-hard minimum ratio cut problem. In this paper we study the central question: when is6
spectral clustering able to find the global solution to the minimum ratio cut problem? First we7
provide a condition that naturally depends on the intra- and inter-cluster connectivities of a given8
partition under which we may certify that this partition is the solution to the minimum ratio cut9
problem. Then we develop a deterministic two-to-infinity norm perturbation bound for the the10
invariant subspace of the graph Laplacian that corresponds to the k smallest eigenvalues. Finally11
by combining these two results we give a condition under which spectral clustering is guaranteed12
to output the global solution to the minimum ratio cut problem, which serves as a performance13
guarantee for spectral clustering.14
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1. Introduction. The graph partitioning problem is ubiquitous in data analysis [4]: how17

to partition a graph into a given number of subgraphs so that the connections among them18

are weak? One popular measurement for how well the graph is partitioned is the ratio cut of19

this partition. Let G be an undirected graph with vertex set V = {v1, · · · , vn}. We assume20

that the graph G is weighted, that is each edge between two vertices vi and vj carries a21

non-negative weight wij ≥ 0 (wii = 0). The weighted adjacency matrix of the graph is the22

symmetric matrix W = (wij). Given a k-way partition of the vertices {Vi}ki=1 (tki=1Vi = V ),23

the ratio cut of this partition is defined to be24

RatioCut
(
{Vi}ki=1

)
=

k∑
i=1

Cut (Vi, V
c
i )

|Vi|
,25

where26

Cut (Vi, V
c
i ) =

∑
vj∈Vi,vk∈V c

i

wjk27

is the total weight between Vi and V c
i . The ratio cut measures the connections among the28

subgraphs normalized by the size of the subgraphs. The purpose of the normalization is to29

discourage unbalanced partitions. Hence we are interested in finding a k-way partition that30
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2 M. BOEDIHARDJO, S. DENG, AND T. STROHMER

has the minimum ratio cut, which is presumed to be a NP-hard problem ([23]). Spectral31

clustering is a natural relaxation to this NP-hard problem. We begin by defining the graph32

Laplacian of G. Let33

di = deg(vi) =
∑
j 6=i

wij34

denote the degree of vertex vi. Let the diagonal matrix D be the degree matrix with the35

degrees d1, · · · , dn on the diagonal. The graph Laplacian of the graph is then defined to be36

L = D −W.37

Note that we can rewrite38

RatioCut({Vi}ki=1) =

k∑
i=1

1
T
Vi
L1Vi
|Vi|

= Tr
(
UTLU

)
,39

40

where U ∈ Rn×k has its ith column U·i being 1√
|Vi|

1Vi and 1Vi is the indicator vector that41

take value 1 on the vertices in Vi and 0 elsewhere. Therefore the minimum ratio cut problem42

can be formulated as43

(1.1) min
{Vi}ki=1

Tr
(
UTLU

)
s.t. U·i =

1√
|Vi|

1Vi for i ∈ [k].44

Spectral clustering relaxes the combinatorial constraint of U and instead seeks a solution45

among all matrices U with orthonormal columns. So the relaxed problem is46

(1.2) min
U∈Rn×k

Tr
(
UTLU

)
s.t. UTU = Ik,47

whose solution U can be shown to be the eigenvectors w.r.t. the k smallest eigenvalues of48

L. Since the columns of U are no longer a collection of indicator vectors, a rounding step is49

necessary to obtain the partition. The rounding step is performed on the rows of U . Namely50

one should treat the ith row Ui· as the embedding of vertex vi in Rk and obtain the partition51

by clustering those points (usually through k-means) in Rk. A justification for this idea is the52

following equivalence form of the relaxed problem (1.2):53

(1.3) min
U∈Rn×k

n∑
i=1

n∑
j=1

wij ||Ui· − Uj·||22 s.t. UTU = Ik.54

Hence Ui· and Uj· tend to be close in Rk if vi and vj are strongly connected in G. For this55

reason we call U the Laplacian eigenmap of G. Spectral clustering, which consists of the56

Laplacian eigenmap and a rounding step, is shown in Algorithm 1.1.57

In this paper we try to answer the fundamental question: under what condition is Al-58

gorithm 1.1, a relaxation of the minimum ratio cut problem (1.1), able to find the global59

minimum of (1.1)?60
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Algorithm 1.1 Spectral clustering

1: Input: Weighted adjacency matrix W and the number of clusters k.
2: Compute the graph Laplacian L = D −W .
3: Compute U ∈ Rn×k whose columns are the eigenvectors correspond to the k smallest

eigenvalues of L.
4: Treat Ui· as the embedding of vertex vi in Rk and apply clustering method (k-means etc.,)

on the points {Ui·}ni=1.

5: Obtain the partition {Vi}ki=1 of V based on the result form step 4.

1.1. Related work. Spectral clustering is a popular graph partition method. We refer the61

readers to [22] for an excellent survey on this subject, whose topics include basic properties of62

the graph Laplacian, variants of spectral clustering methods, constructing similarity graphs63

from non-graph data, different perspectives of spectral clustering, etc. Even though we have64

yet to fully understand the mechanism of spectral clustering, some excellent research has been65

done about its theoretical analysis. One of the most prominent ones is the work on (higher-66

order) Cheeger-type inequalities [6, 13]. Another closely related work is [16] which gives67

performance guarantees for a SDP relaxation to (1.1). In fact our Theorem 2.2 is a direct68

improvement to their work. For an analysis of the spectral clustering method on random69

graphs we refer to [10, 9, 14, 20, 21, 1].70

The technical tool we use is the invariant subspace perturbation theory which studies the71

change to the invariant subspace of a self-adjoint matrix after the matrix is perturbed. One of72

the most celebrated works is the classic Davis-Kahan theorem [8] which bounds the invariant73

subspace perturbation in term of canonical angle. Recent years have witnessed a surge of74

research on the two-to-infinity norm bound of the invariant subspace perturbation, which is75

more suitable in many applications. The result we use for this paper is from the remarkable76

paper by A. Damle and Y. Sun [7]. Other related work on this topic includes [1, 11, 10, 5].77

1.2. Notation. We introduce some notation which will be used throughout this paper. For78

any matrix M ∈ Cn×m, we denote by Mi· and M·i its ith row vector and ith column vector79

respectively. Moreover, ||M ||2 denotes the `2 → `2 induced norm, ||M ||∞ = maxi ||Mi·||180

denotes the `∞ → `∞ induced norm and ||M ||2,∞ = maxi ||Mi·||2 is the `2 → `∞ induced81

norm. We denote by 1n the vector of length n with all entries being 1 and let Jn×m = 1n1
>
m82

be the n×m matrix of all ones. If S is a subset of the vertex set V , then 1S is the indicator83

vector such that (1S)i = 1 if vi ∈ S and (1S)i = 0 if vi /∈ S. If M ∈ Cn×n is self-adjoint, then84

we arrange its eigenvalues in increasing order:85

λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M).86

2. Main results.87

2.1. Certifying the global minimum of ratio cut. Suppose the partition {Vi}ki=1 achieves88

the minimum ratio cut. If we see each Vi as a planted cluster, then the connectivity within89

each cluster should be strong and the connections between them should be weak. To quantify90

this, let Li ∈ R|Vi|×|Vi| be the graph Laplacian of the induced subgraph G[Vi]. We measure91
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4 M. BOEDIHARDJO, S. DENG, AND T. STROHMER

the connectivity of G[Vi] by λ2(Li), which is the second smallest eigenvalue of Li. The second92

smallest eigenvalue of a graph Laplacian is also called the algebraic connectivity of the graph.93

The larger it is, the stronger the graph is connected. In the case the graph is disconnected,94

the algebraic connectivity drops to 0. One way to interpret the algebraic connectivity is that95

it provides a lower bound for the edge density of the graph (see Lemma 2.1 below). The proof96

of this result and subsequent results will be presented in Section 4.97

Lemma 2.1. Let G be a weighted undirected graph with vertex set V . Let L be the graph98

Laplacian of G. Let S be a subset of V . Then99

Cut (S, V − S) ≥ λ2(L)
|S| · |V − S|
|V |

.100

To measure the inter-cluster connectivity, we define for each vertex vi,101

d
(i)
δ =

∑
vk∈V c

j

wik102

where Vj is the cluster that contains vi. In other words, d
(i)
δ is the total weight between vi and103

outside clusters. With such definitions for intra- and inter-cluster connectivity, we are able to104

certify when a partition is optimal.105

Theorem 2.2. Suppose a partition {Vi}ki=1 satisfies106

(2.1) max
1≤i≤n

d
(i)
δ ≤

1

2
min

1≤i≤k
λ2(Li),107

then {Vi}ki=1 achieves the minimum ratio cut among all k-way partitions of V . If (2.1) holds108

with the strict inequality, then {Vi}ki=1 is also the unique partition (up to relabeling) that109

achieves the minimum ratio cut.110

Theorem 2.2 is a direct improvement of the result in [16], which has a constant 1
4 instead111

of 1
2 . The following example shows that the constant 1

2 cannot be further improved.112

Example 2.3. Let W ∈ R4n×4n,113

W =


Jn×n Jn×n cJn×n 0
Jn×n Jn×n 0 cJn×n
cJn×n 0 Jn×n Jn×n
0 cJn×n Jn×n Jn×n

− I4n.114

Consider the partition V1 = {v1, · · · , v2n}, V2 = {v2n+1, · · · , v4n}. The corresponding115

min
1≤i≤2

λ2(Li) = 2n and max
1≤i≤4n

d
(i)
δ = cn.116

If c > 1 then the condition in Theorem 2.2 is violated for this partition. One can check that117

in this case a different partition V (1) = {v1, · · · , vn, v2n+1, · · · , v3n}, V (2) = V − V (1) has a118

smaller ratio cut.119
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Theorem 2.2 is algorithm independent and can be useful in many ways. For example one120

can use it to check in polynomial time if a given partition is optimal. It can also serve as a121

benchmark for comparing different algorithms. In [16] the authors propose a SDP relaxation122

to the minimum ratio cut problem (1.1) and show that it is able to find the optimal partition123

if it satisfies max1≤i≤n d
(i)
δ < 1

4 min1≤i≤k λ2(Li). In this paper we prove that Algorithm 1.1 is124

able to find the optimal partition if max1≤i≤n d
(i)
δ . 1

lnn min1≤i≤k λ2(Li). The notation “.”125

hides a term that does not depend on n.126

2.2. A two-to-infinity norm bound for the Laplacian eigenmap. Algorithm 1.1 can be127

understood from a perturbation perspective. Suppose we try to recover the planted partition128

{Vi}ki=1. Let Wi, Di, Li denote the weighted adjacency matrix, degree matrix and graph129

Laplacian of the induced subgraph G[Vi] respectively. Let130

Wiso =


W1

W2

. . .

Wk

 ,Wδ = W −Wiso.131

Let Diso, Liso, Dδ, Lδ be the corresponding degree matrices or graph Laplacians (here we132

suppose λk+1(Liso) > 0). Let U (Uiso) be a matrix with orthonormal columns whose range is133

the invariant subspace of L (Liso) that corresponds to the k smallest eigenvalues. Then the k134

smallest eigenvalues of Liso are 0 and Uiso, up to a multiplication of orthogonal matrix from135

the right, is136

Uiso =

(
1√
|V1|

1V1

1√
|V2|

1V2 · · · 1√
|Vk|

1Vk

)
.137

Hence the rows of Uiso reduce to k different points in Rk with one cluster at each point. Any138

rounding method will recover the planted clusters perfectly. Here we also point out that a139

multiplication of orthogonal matrix from the right transforms all the rows simultaneously and140

thus preserves the geometry of the embedding. If Wδ is small, then U should be close to Uiso.141

A reasonable measurement for the closeness is142

min
V ∈Ok

||UV − Uiso||2,∞ = min
V ∈Ok

max
1≤i≤n

||(UV − Uiso)i·||2 ,143

where the minimization is taken over all k × k orthogonal matrices. This error measures the144

maximum distance of a point Ui· away from its origin (Uiso)i· after some global orthogonal145

transformation. If this error is small enough then the rounding step should be able to recover146

the planted clusters perfectly. We present our bound for minV ∈Ok ||UV − Uiso||2,∞ in Theo-147

rem 2.4 below. The result is stated in terms of ||UṼ −Uiso||2,∞ where Ṽ solves the orthogonal148

Procrustes problem149

Ṽ = arg min
V ∈Ok

||UV − Uiso||F .150

Note that minV ∈Ok ||UV − Uiso||2,∞ ≤ ||UṼ − Uiso||2,∞. The matrices V and Ṽ are only151

defined for the sake of analysis and are not required by the actual algorithm.152
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Theorem 2.4. Suppose each |Vi| ≥ 3. Let153

c = max
1≤i≤k

n

|Vi|
and r =

max1≤i≤n d
(i)
δ

min1≤i≤k λ2(Li)
154

be the unbalanceness and the perturbation/eigengap ratio respectively. If r ≤ 1
16(1+c) lnn , then155 ∣∣∣∣∣∣UṼ − Uiso

∣∣∣∣∣∣
2,∞
≤ 32

√
c
(
r2 + r lnn

) 1√
n
.156

The rest of this section is dedicated to the technical details of the proof. Discussions and157

applications regarding this bound are deferred to Section 3. The tool we use is Corollary 3.3158

in [7] which gives a two-to-infinity norm perturbation bound for the invariant subspace. We159

cite this result in Lemma 2.5 below. The definition of the separation of two matrices (denoted160

by sep) that arises in Lemma 2.5, is stated below the lemma.161

Lemma 2.5. Let Liso = UisoΛ1U
T
iso + U2Λ2U

T
2 be the spectral decomposition of Liso where162

Λ1 ∈ Rk×k is a zero matrix and Λ2 ∈ R(n−k)×(n−k) whose diagonal contains all the posi-163

tive eigenvalues of Liso. Let gap = min
{

sep2(Λ1,Λ2), sep(2,∞),U2
(Λ1, U2Λ2U

T
2 )
}

and µ =164
√
n ||Uiso||2,∞. If ||Lδ||2 ≤

gap
5 and ||Lδ||∞ ≤ gap /(4 + 4µ2) then165 ∣∣∣∣∣∣UṼ − Uiso

∣∣∣∣∣∣
2,∞
≤ 8 ||Uiso||2,∞

(
||Lδ||2

sep2(Λ1,Λ2)

)2

+ 4

∣∣∣∣U2U
T
2 LδUiso

∣∣∣∣
2,∞

gap
.166

Classical perturbation theory like Davis-Kahan usually bounds the invariant subspace per-167

turbation in terms of the perturbation/eigengap ratio. Lemma 2.5 is similar but with the168

classical eigengap replaced by the gap term defined therein. Here the separation of two ma-169

trices is defined as170

sep∗,W (B,C) = inf
{
||ZB − CZ||∗ : Z ∈ Rm×l, ranZ ⊆ ranW, ||Z||∗ = 1

}
171

where B ∈ Rl×l, C ∈ Rm×m, ranW is a linear subspace of Rm and || · ||∗ is a norm on Rm×l.172

When ranW = Rm we denote sep∗(B,C) = sep∗,W (B,C). ||Lδ||2 and ||Lδ||∞ in Lemma 2.5173

can be bounded by 2 max1≤i≤n d
(i)
δ . Moreover, the two matrix separation terms sep2(Λ1,Λ2)174

and sep(2,∞),U2
(Λ1, U2Λ2U

T
2 ) are closely related to the eigengap min1≤i≤k λ2(Li). In fact,175

sep2(Λ1,Λ2) = inf
{
||ZΛ1 − Λ2Z||2 : Z ∈ R(n−k)×k, ||Z||2 = 1

}
176

= inf
{
||Λ2Z||2 : Z ∈ R(n−k)×k, ||Z||2 = 1

}
177

= min
1≤i≤k

λ2(Li)(2.2)178
179

is exactly the eigengap. Furthermore,180

sep(2,∞),U2
(Λ1, U2Λ2U

T
2 ) = inf

{
||0− LisoZ||2,∞ : Z ∈ Rn×k, ranZ ⊆ ranU2, ||Z||2,∞ = 1

}
181

= min
1≤i≤k

inf
{
||LiZ||2,∞ : Z ∈ R|Vi|×k, ranZ ⊆

{
1|Vi|

}⊥
, ||Z||2,∞ = 1

}
182

= min
1≤i≤k

inf
x⊥1|Vi|

||Lix||∞
||x||∞

183
184
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can be understood as the “eigengap” in terms of the `∞ norm. The third equality holds185

because for any Z if we let x 6= 0 be the vector that ||Zx||∞ = ||x||2, then186

||LiZ||2,∞ ≥
||LiZx||∞
||x||2

=
||LiZx||∞
||Zx||∞

≥ inf
x⊥1|Vi|

||Lix||∞
||x||∞

.187

And on the other hand we can pick a Z̃ such that its first column satisfies188 ∣∣∣∣∣∣Z̃·1∣∣∣∣∣∣
∞

= 1 ,
∣∣∣∣∣∣LiZ̃·1∣∣∣∣∣∣

∞
= inf

x⊥1|Vi|

||Lix||∞
||x||∞

189

and its other columns are 0 so that190 ∣∣∣∣∣∣LiZ̃∣∣∣∣∣∣
2,∞

= inf
x⊥1|Vi|

||Lix||∞
||x||∞

.191

Note that we always have192

inf
x⊥1|Vi|

||Lix||∞
||x||∞

≤ λ2(Li).193

Therefore the the gap term in Lemma 2.5 is simplified to194

(2.3) gap = min
1≤i≤k

inf
x⊥1|Vi|

||Lix||∞
||x||∞

.195

There is a trivial bound that relates gap to the eigengap:196

inf
x⊥1|Vi|

||Lix||∞
||x||∞

≥ λ2(Li)√
|Vi|

.197

But we will show that due to the diagonally dominant structure of the graph Laplacian, the198 √
|Vi| factor can be improved to ln |Vi|. The following theorem, which is also of independent199

interest, is essential in this context.200

Theorem 2.6. Let B be a self-adjoint n×n matrix, n ≥ 3 such that Bi,i ≥
∑

j∈{1,...,n}\{i} |Bi,j |201

for all 1 ≤ i ≤ n. Let M be a subspace of Cn such that BM⊂M. Then202

‖Bx‖∞ ≥
λmin(B|M)‖x‖∞

2 lnn
,203

for all x ∈M.204

Corollary 2.7. Suppose that L is the Laplacian of a graph with n vertices, n ≥ 3. Then205

λ2(L)

2 lnn
≤ inf

x⊥1n

‖Lx‖∞
‖x‖∞

≤ 4M

D
,206

where the second inequality holds for unweighted graphs with M being the maximum degree207

and D being the diameter.208
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The following example shows that the lnn factor in Corollary 2.7 is necessary. However, at209

this point we do not know whether it must carry over to ||UṼ − Uiso||2,∞ as well.210

Example 2.8. Suppose that L is the Laplacian of a d-regular Ramanujan graph with n211

vertices. This means that λ2(L) ≥ d − 2
√
d− 1. Note that n ≤ (d + 1)D where D is the212

diameter of the graph. This follows from the fact that for a fixed vertex u0, every vertex can be213

connected to u0 via a path of length at most D and that there are at most 1+d+d2+. . .+dD ≤214

(d+ 1)D paths of length at most D. Thus, D ≥ lnn
ln(d+1) . By Corollary 2.7,215

d− 2
√
d− 1

2 lnn
≤ inf

x⊥1n

‖Lx‖∞
‖x‖∞

≤ 4d

D
≤ 4d ln(d+ 1)

lnn
.216

For example, if L is the Laplacian of a 5-regular Ramanujan graph with n vertices, then217

1

2 lnn
≤ inf

x⊥1n

‖Lx‖∞
‖x‖∞

≤ 36

lnn
.218

For every d ≥ 3, there exist infinitely many d-regular Ramanujan graphs by [19]. This shows219

that the lnn factor in Corollary 2.7 is necessary.220

3. Discussions. Algorithm 1.1 consists of two steps: the Laplacian eigenmap and a round-221

ing step. We have bounded the Laplacian eigenmap in Theorem 2.4. The next question is222

whether the rounding step will successfully recover the planted clusters based on the embed-223

ded points in Rk. The answer depends on our understanding of the choice of the rounding224

method and it is beyond the scope of this paper to present a survey on this subject. But since225

the rows of Uiso have a natural magnitude of O(1/
√
n), if we have

∣∣∣∣∣∣UṼ − Uiso

∣∣∣∣∣∣
2,∞

< C/
√
n226

for some sufficiently small C, then it means the rows of U (after some proper global rotation)227

are close enough to the ideal Uiso and thus should be nicely separable. Indeed, we will show228

through several examples that the condition229

(3.1)
∣∣∣∣∣∣UṼ − Uiso

∣∣∣∣∣∣
2,∞

<
C√
n

230

can imply successful recovery, where C depends on the specific choice of the rounding method231

and (possibly) the number of clusters k.232

• A simple bisector for two clusters. When k = 2, the Fiedler eigenvector (i.e., the233

eigenvector u2(L) that corresponds to the second smallest eigenvalue of L) is a popular234

tool to partition the graph. One way to do this is to first put the entries of the Fiedler235

eigenvector in algebraic order. Then out of all n− 1 possible linear bisections of the entries236

we pick the one that gives the smallest ratio cut. This method is equivalent to finding the237

best linear bisection of the embedded points in R2. For this rounding method we can let238

C = 1 in (3.1). To see why, first note that Ṽ is the solution to an orthogonal Procrustes239

problem and therefore has a closed form solution240

Ṽ = V1V
T

2241
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where UTUiso = V1ΣV T
2 is the singular value decomposition of UTUiso. Given that u1(L) =242

u1(Liso) = 1√
n
1n, it is easy to check that243 ∣∣∣∣∣∣UṼ − Uiso

∣∣∣∣∣∣
2,∞

= ||u2(L)− u2(Liso)||∞244

where the sign of u2(L) is chosen so that 〈u2(Liso), u2(L)〉 > 0. Note that the distance be-245

tween the two embedded unperturbed clusters is
√

1/|V1|+ 1/|V2|. To ensure the separation246

of the two clusters in u2(L) we require247

||u2(L)− u2(Liso)||∞ <
1

2

√
1

|V1|
+

1

|V2|
,248

which is guaranteed by
∣∣∣∣∣∣UṼ − Uiso

∣∣∣∣∣∣
2,∞

< 1/
√
n.249

• An SDP type of k-means algorithm. The k-means algorithms are a family of algorithms250

that seek the k-way partition {Γi}ki=1 of n points in Rd by minimizing the following k-means251

objective function:252

min
{Γi}ki=1

k∑
i=1

∑
x∈Γi

||x− µi||22253

where µi is the mean of points in Γi. Note that the optimization is shown to be NP-254

hard ([18, 2]) so no polynomial-time algorithm is guaranteed to find the optimal partition255

in general. The most famous and widely used k-means algorithm is the Lloyd’s algorithm256

([17]). But its heuristic nature and random initial starts make the analysis of exact recovery257

difficult. Here we consider a SDP type of k-means algorithm proposed in [15]. The proposed258

algorithm comes with a proximity condition for the planted partition under which the259

algorithm is guaranteed to recover the planted partition. Let ni = |Γi| and Xi ∈ Rni×d be260

the data matrix of the i-th cluster with each row being a point in Γi. Let Xi = Xi−1niµ
T
i261

be the centered data matrix of the i-th cluster. For each pair of i 6= j, let Mi,j denote the262

bisecting hyperplane that passes through
µi+µj

2 and is perpendicular to the line segment263

that joins µi and µj . The proximity condition is then stated as follows: for all i 6= j, (i) Γi264

and Γj are separated by Mi,j and (ii)265

ξi,j >
1

2

√√√√ k∑
i=1

∣∣∣∣Xi

∣∣∣∣2
2

(
1

ni
+

1

nj

)
266

where ξi,j = dist {Mi,j ,Γi ∪ Γj} is the margin between the clusters and the bisecting hyper-267

plane (see also Figure 1). We now claim that if C = 1/5 in (3.1) then the SDP k-means268

algorithm is guaranteed to recover the planted partition. To see why, note that (3.1) implies269

the points in Γi and Γj , together with their means, are confined within two balls of radius270

C/
√
n whose centers are

√
1
ni

+ 1
nj

apart. By Lemma 4.3 in Section 4.3 we have271

ξi,j >
1

2

√
1

ni
+

1

nj
− 3C√

n
≥ 1− 3C

2

√
1

ni
+

1

nj
.272
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10 M. BOEDIHARDJO, S. DENG, AND T. STROHMER

And on the other hand273
k∑
i=1

∣∣∣∣Xi

∣∣∣∣2
2
≤

k∑
i=1

∣∣∣∣Xi

∣∣∣∣2
F
< 4C2.274

Therefore, if C ≤ 1/5 then the proximity condition is satisfied.275

𝜇𝑖 + 𝜇𝑗

2

𝛤𝑖
𝛤𝑗

𝜇𝑖

𝜇𝑗
𝜉𝑖,𝑗

𝑀𝑖,𝑗

Figure 1: Proximity condition for the SDP k-means algorithm. If the partition satisfies the
proximity condition, then each pair of clusters Γi and Γj are separated by and sufficiently
bounded away from the bisecting hyperplane of the line segment that joins µi and µj .

276

• Two projective k-means algorithms. In [12] and [3] two projective k-means algorithms277

are proposed which consist of an SVD-based projection followed by iterative Lloyd steps278

with informed initial starts. By our notation, the algorithm in [12] is guaranteed to recover279

the planted partition if for any i 6= j,280

ξi,j > C̃k

(
1
√
ni

+
1
√
nj

) ∣∣∣∣W ∣∣∣∣
2

281

where C̃ > 0 is an absolute constant and W = [X
T
1 , · · · , X

T
k ]T . The algorithm in [3] is282

guaranteed to recover the planted partition if for any i 6= j,283

ξi,j >
1

2
C̃

(
1
√
ni

+
1
√
nj

) ∣∣∣∣W ∣∣∣∣
2

284

and285

||µi − µj ||2 > C̃
√
k

(
1
√
ni

+
1
√
nj

) ∣∣∣∣W ∣∣∣∣
2
.286

Then C in (3.1) can be similarly derived for both methods.287

Thus, by Theorem 2.4 and the discussion above, Algorithm 1.1 finds the planted partition if288

r . 1/ lnn where the hidden term depends on k and the unbalanceness term c. By Theorem 2.2289

when r ≤ 1/2, we can certify that the planted partition is optimal. Therefore we may claim290

that Algorithm 1.1 finds the optimal partition when r . 1/ lnn.291
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Note that when the unbalanceness term c gets arbitrarily large, Theorem 2.4 gets arbi-292

trarily bad. This is to be expected. We illustrate the effect of unbalanceness on the Laplacian293

eigenmap using a simple numerical example. Consider |V1| = 3 and |V2| = |V3| = 300. Let294

Wi = J|Vi|×|Vi|/|Vi| so λ2(Li) = 1 for 1 ≤ i ≤ 3. We perturb the graph by adding a weight 0.5295

between a vertex in V1 and a vertex in V2. We then add another weight 0.5 between a vertex296

in V3 and another vertex in V2. The Laplacian eigenmap of both the unperturbed and the297

perturbed graphs are shown in Figure 2. As seen from the figure, minV ∈Ok ||UV − Uiso||2,∞298

is large and will be even more so as the clusters get more unbalanced. Despite the error299

being large, the Laplacian eigenmap still separates the three clusters well. The reason is that300

minV ∈Ok ||UV − Uiso||2,∞ only measures the magnitude and thus ignores the directions of the301

perturbation. A more refined analysis on the Laplacian eigenmap should consider the direc-302

tion of the perturbation as well as the magnitude. It remains an open problem whether there303

exists a constant C such that r ≤ C implies successful recovery of the planted clusters by304

Algorithm 1.1. The constant C should only depend on k or, better yet, not even on k.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.5

-0.4

-0.3

-0.2

-0.1

0

(a) Unperturbed graph

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) Perturbed graph

Figure 2: Laplacian eigenmap for both the unperturbed and the perturbed graphs. The
embedded points live on a common plane in R3 so we can visualize them in R2. The four
empty circles are the four perturbed vertices.

305

4. Proofs.306

4.1. Proofs for Section 2.1.307

Proof of Lemma 2.1. Consider M = L− λ2(L)P where P = I − 1
|V |J|V |×|V |. Then M308

is positive semi-definite. Therefore309

1
T
SM1S = 1

T
SL1S − λ2(L)1TSP1S = Cut (S, V − S)− λ2(L)

|S| · |V − S|
|V |

≥ 0
310
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12 M. BOEDIHARDJO, S. DENG, AND T. STROHMER

Proof of Theorem 2.2. Suppose without loss of generality that the partition {Vi}ki=1311

satisfies312

max
1≤i≤n

d
(i)
δ ≤

1

2
and min

1≤i≤k
λ2(Li) ≥ 1.313

Let
{
V (j)

}k
j=1

be another partition of V . We aim to show314

RatioCut
(
{Vi}ki=1

)
≤ RatioCut

({
V (j)

}k
j=1

)
.315

Let ni = |Vi|, n(j) = |V (j)| and m
(j)
i = |Vi ∩ V (j)|. We have316 ∑

i

m
(j)
i = n(j),

∑
j

m
(j)
i = ni.317

Let318

W
(j,j′)
i,i′ =

∑
vk∈Vi∩V (j),vl∈Vi′∩V (j′)

wkl.319

Thus we have divided the weighted adjacency matrix W into k2 × k2 rectangular areas and320

W
(j,j′)
i,i′ is the total weight in one of the areas. Lemma 2.1 gives321

(4.1)
∑
j′ 6=j

W
(j,j′)
i,i ≥ min

1≤a≤k
λ2(La)

m
(j)
i (ni −m(j)

i )

ni
≥
m

(j)
i (ni −m(j)

i )

ni
322

for all i, j. We also know each d
(i)
δ is at most 1/2. This implies323

(4.2)
∑
i′ 6=i

W
(j,j)
i,i′ +

∑
j′ 6=j

∑
i′ 6=i

W
(j,j′)
i,i′ =

∑
j′

∑
i′ 6=i

W
(j,j′)
i,i′ ≤ 1

2
m

(j)
i324

for all i, j. Moreover325

(4.3)
∑
i′ 6=i

W
(j,j)
i,i′ ≤

1

2
min{m(j)

i , n(j) −m(j)
i }326

for all i, j because the summands together represent a rectangular area in W with length m
(j)
i327

and width n(j) −m(j)
i . Therefore we need to show328

RatioCut
(
{Vi}ki=1

)
− RatioCut

({
V (j)

}k
j=1

)
329

=
∑
j

∑
j′

∑
i

∑
i′ 6=i

1

ni
W

(j,j′)
i,i′ −

∑
i

∑
i′

∑
j

∑
j′ 6=j

1

n(j)
W

(j,j′)
i,i′330

=
∑
i

∑
j

∑
i′ 6=i

1

ni
W

(j,j)
i,i′ +

∑
i

∑
j

(
1

ni
− 1

n(j)

)∑
j′ 6=j

∑
i′ 6=i

W
(j,j′)
i,i′

−∑
i

∑
j

∑
j′ 6=j

1

n(j)
W

(j,j′)
i,i331

=A1 +A2 −A3 ≤ 0.332333

This manuscript is for review purposes only.
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For A1,334

A1 =
∑
i

∑
j

∑
i′ 6=i

1

ni
W

(j,j)
i,i′335

=
∑
i

∑
j

∑
i′ 6=i

1

ni
W

(j,j)
i,i′ −

1

2

∑
i

∑
j

1

ni
min{m(j)

i , n(j) −m(j)
i }336

+
1

2

∑
i

∑
j

1

ni
min{m(j)

i , n(j) −m(j)
i }337

=A11 −A12 +A13.338339

For A2, when 1
ni
− 1

n(j) ≤ 0, the summand is upper bounded by 0. When 1
ni
− 1

n(j) > 0, the340

summand is upper bounded by (by using (4.2))341

(
1

ni
− 1

n(j)

)∑
j′ 6=j

∑
i′ 6=i

W
(j,j′)
i,i′

 ≤ ( 1

ni
− 1

n(j)

)1

2
m

(j)
i −

∑
i′ 6=i

W
(j,j)
i,i′

 .342

Therefore we can bound A2 by343

A2 =
∑
i

∑
j

(
1

ni
− 1

n(j)

)∑
j′ 6=j

∑
i′ 6=i

W
(j,j′)
i,i′

344

≤
∑
i

∑
j

max

{
1

ni
− 1

n(j)
, 0

}1

2
m

(j)
i −

∑
i′ 6=i

W
(j,j)
i,i′

345

=
∑
i

∑
j

(
1

ni
−min

{
1

n(j)
,

1

ni

})1

2
m

(j)
i −

∑
i′ 6=i

W
(j,j)
i,i′

346

≤ 1

2

∑
i

∑
j

1

ni
m

(j)
i −

∑
i

∑
j

∑
i′ 6=i

1

ni
W

(j,j)
i,i′ −

1

2

∑
i

∑
j

min

{
1

n(j)
,

1

ni

}
max

{
0, 2m

(j)
i − n

(j)
}

347

= A21 −A22 −A23,348349

where in the last step we used (4.3). For A3, we use (4.1):350

A3 =
∑
i

∑
j

∑
j′ 6=j

1

n(j)
W

(j,j′)
i,i ≥

∑
i

∑
j

min
1≤a≤k

λ2(La)
m

(j)
i (ni −m(j)

i )

nin(j)
351

≥
∑
i

∑
j

m
(j)
i (ni −m(j)

i )

nin(j)
.(4.4)352

353

Therefore (here we introduce the shorthand notation min∗ for min{m(j)
i , n(j)−m(j)

i } and max∗354
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for max{m(j)
i , n(j) −m(j)

i })355

A12 −A3 ≤
∑
i

∑
j

(
1

2ni
min{m(j)

i , n(j) −m(j)
i } −

m
(j)
i (ni −m(j)

i )

nin(j)

)
356

=
∑
i

∑
j

(
min∗(min∗+ max∗)

2nin(j)
−
m

(j)
i (ni −m(j)

i )

nin(j)

)
357

=
∑
i

∑
j

(
min∗max∗

nin(j)
− min∗(max∗−min∗)

2nin(j)
−
m

(j)
i (ni −m(j)

i )

nin(j)

)
358

=
∑
i

∑
j

(
m

(j)
i (n(j) −m(j)

i )

nin(j)
−
m

(j)
i (ni −m(j)

i )

nin(j)

)
− 1

2

∑
i

∑
j

min∗(max∗−min∗)

nin(j)
359

=
∑
i

∑
j

(
m

(j)
i (n(j) − ni)
nin(j)

)
−A4360

=
∑
i

∑
j

m
(j)
i

ni
−
∑
j

∑
i

m
(j)
i

n(j)
−A4361

= k − k −A4 = −A4.362363

The cancellation above is the reason why the constant in the condition (2.1) is 1/2. We also364

have A11 −A22 = 0. Finally365

A1 +A2 −A3366

≤A21 −A12 −A4 −A23367

=
1

2

∑
i

∑
j

(
m

(j)
i

ni
− min∗

ni
− min∗(max∗−min∗)

nin(j)
−min

{
1

n(j)
,

1

ni

}
max

{
0, 2m

(j)
i − n

(j)
})

368

=
1

2

∑
i

∑
j

(
m

(j)
i

ni
− min∗(min∗+ max∗)

nin(j)
− min∗(max∗−min∗)

nin(j)
−min

{
1

n(j)
,

1

ni

}
max

{
0, 2m

(j)
i − n

(j)
})

369

=
1

2

∑
i

∑
j

(
m

(j)
i

ni
− 2 min∗max∗

nin(j)
−min

{
1

n(j)
,

1

ni

}
max

{
0, 2m

(j)
i − n

(j)
})

370

=
1

2

∑
i

∑
j

(
m

(j)
i n(j)

nin(j)
−

2m
(j)
i (n(j) −m(j)

i )

nin(j)
−min

{
1

n(j)
,

1

ni

}
max

{
0, 2m

(j)
i − n

(j)
})

371

=
1

2

∑
i

∑
j

(
m

(j)
i (2m

(j)
i − n(j))

nin(j)
−min

{
1

n(j)
,

1

ni

}
max

{
0, 2m

(j)
i − n

(j)
})

372

≤0.373374
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The last step is because for each summand,375

m
(j)
i

nin(j)
≤ min

{
1

n(j)
,

1

ni

}
.376

This concludes the proof that {Vi}ki=1 achieves the minimum ratio cut. To show that it is also377

the unique global minimum when the strict inequality holds, we assume {Vi}ki=1 satisfies378

max
1≤i≤n

d
(i)
δ ≤

1

2
and min

1≤i≤k
λ2(Li) > 1.379

All claims above still hold but we will show (4.4) holds with the strict inequality. Since380

min1≤i≤k λ2(Li) > 1, the last inequality in (4.4) takes equal sign if and only if m
(j)
i (ni−m(j)

i ) =381

0 for all i, j. But this is impossible if
{
V (j)

}k
j=1

is not a relabeling of {Vi}ki=1. Therefore if382 {
V (j)

}k
j=1

is not a relabeling of {Vi}ki=1, we have383

A1 +A2 −A3 < 0384

which concludes the proof.385

4.2. Proofs for Section 2.2. We need the following two lemmas to prove Theorem 2.6.386

For a linear transformation T on a finite dimensional vector space, λmax(T ) and λmin(T )387

denote the largest and the smallest eigenvalue of T , respectively.388

Lemma 4.1. Let T be an n× n matrix such that ||T ||∞ ≤ 1. Then389

‖x− T kx‖∞ ≤ k‖x− Tx‖∞,390

for all x ∈ Cn and k ∈ N.391

Proof. We have392

‖x− Tnx‖∞ ≤ ‖x− Tx‖∞ + ‖Tx− T 2x‖∞ + . . .+ ‖T k−1x− T kx‖∞393

= ‖x− Tx‖∞ + ‖T (x− Tx)‖∞ + . . .+ ‖T k−1(x− Tx)‖∞ ≤ k‖x− Tx‖∞,394

where the last inequality follows from ||T ||∞ ≤ 1.395

Lemma 4.2. Let T be a self-adjoint n× n matrix, n ≥ 3, such that ||T ||∞ ≤ 1. Let M be396

a subspace of Cn such that TM⊂M. Then397

‖x− Tx‖∞ ≥
(1− λmax(T |M))‖x‖∞

2 lnn
,398

for all x ∈M.399

Proof. We may assume that T is positive semidefinite. Indeed, I+T2 is positive semidefinite,400

and if the result holds with T being replaced by I+T
2 , the result will hold for T .401

Since T is positive semidefinite,402

‖T kx‖2 ≤ λmax(T |M)k‖x‖2,403
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16 M. BOEDIHARDJO, S. DENG, AND T. STROHMER

for all x ∈M and k ∈ N. So ‖T kx‖∞ ≤ λmax(T |M)k
√
n‖x‖∞ and hence, by Lemma 4.1,404

‖x‖∞ − λmax(T |M)k
√
n‖x‖∞ ≤ k‖x− Tx‖∞,405

for all x ∈M and k ∈ N. If k is large enough so that λmax(T |M)k
√
n ≤ 1

2 , then ‖x−Tx‖∞ ≥406
1
2k‖x‖∞. Since ||T ||∞ ≤ 1, we have λmax(T |M ) ≤ 1. Note that λ ≤ eλ−1 for all λ ≤ 1. So407

λmax(T |M)k
√
n ≤ ek(λmax(T |M)−1)√n ≤ 1

2 for k ≥ ln(2
√
n)

1−λmax(T |M) . Taking k to be the smallest408

integer larger than or equal to ln(2
√
n)

1−λmax(T |M) , we obtain409

‖x− Tx‖∞ ≥
1

2k
‖x‖∞ ≥

(1− λmax(T |M))‖x‖∞
2 lnn

,410

if n ≥ 30. If 3 ≤ n ≤ 29, then411

‖x− Tx‖∞ ≥
1√
n
‖x− Tx‖2 ≥

1√
n

(1− λmax(T |M))‖x‖2 ≥
(1− λmax(T |M))‖x‖∞

2 lnn
,412

for all x ∈M.413

Proof of Theorem 2.6. Without loss of generality, we may assume that Bi,i ≤ 1 for all414

1 ≤ i ≤ n. For every 1 ≤ i ≤ n,415

n∑
j=1

|(I −B)i,j | = 1−Bi,i +
∑

j∈{1,...,n}\{i}

|Bi,j | ≤ 1−Bi,i +Bi,i ≤ 1.416

So ||I −B||∞ ≤ 1. By Lemma 4.2, we have417

‖Bx‖∞ = ‖x− (I −B)x‖∞ ≥
(1− λmax((I −B)|M))‖x‖∞

2 lnn
=
λmin(B|M)‖x‖∞

2 lnn
,418

for all x ∈M.419

Proof of Corollary 2.7. Since L1n = 0 and L is self-adjoint, L{1n}⊥ ⊂ {1n}⊥. By420

Theorem 2.6,421

‖Lx‖∞ ≥
λmin

(
L|{1n}⊥

)
‖x‖∞

2 lnn
=
λ2(L)‖x‖∞

2 lnn
,422

for all x ⊥ 1n. This proves one inequality.423

To prove the other inequality, pick a vertex u0. Let y ∈ Cn be given by y(v) = d(u0, v),424

for vertices v, where d is the graph distance. Then425

(Ly)(v) = deg(v)d(u0, v)−
∑

w∈N(v)

d(u0, w),426

for all vertex v, where N(v) is the set of all neighborhood vertices of v. Since |d(u0, v) −427

d(u0, w)| ≤ 1 for all w ∈ N(v), we have |(Ly)(v)| ≤ deg(v) for all vertex v. So ‖Ly‖∞ ≤M .428

Let z = y − ( 1
n

∑
v y(v))1n ∈ Cn, where the sum is over all vertices v. It is easy to429

see that there exists a vertex w such that d(u0, w) ≥ D
2 , where D is the diameter. So430
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|z(w) − z(u0)| = |y(w) − y(u0)| = |d(u0, w) − 0| = d(u0, w) ≥ D
2 . Thus, ‖z‖∞ ≥ D

4 . Since431

L1n = 0, we have ‖Lz‖∞ = ‖Ly‖∞ ≤M . Therefore,432

inf
x⊥1n

‖Lx‖∞
‖x‖∞

≤ M

D/4
=

4M

D
.433

The result follows.434

With the help of Corollary 2.7, we can prove Theorem 2.4.435

Proof of Theorem 2.4. We use the same notation as Lemma 2.5. Note that ||Uiso||2,∞ =436

max1≤i≤k 1/
√
|Vi| so µ =

√
c. By Corollary 2.7 and (2.3) we have437

gap ≥ min
1≤i≤k

λ2(Li)

2 ln |Vi|
≥ min1≤i≤k λ2(Li)

2 lnn
.438

If439

r =
max1≤i≤n d

(i)
δ

min1≤i≤k λ2(Li)
≤ 1

16(1 + c) lnn
,440

then441

||Lδ||∞ = 2 max
1≤i≤n

d
(i)
δ ≤

gap

4(1 + µ2)
442

and443

||Lδ||2 ≤
√
||Lδ||∞ ||Lδ||1 = ||Lδ||∞ = 2 max

1≤i≤n
d

(i)
δ ≤

gap

5
.444

Therefore by Lemma 2.5 we have445

min
V ∈Ok

||UV − Uiso||2,∞ ≤ 8 ||Uiso||2,∞
(

||Lδ||2
sep2(Λ1,Λ2)

)2

+ 4

∣∣∣∣U2U
T
2 LδUiso

∣∣∣∣
2,∞

gap
446

≤ 8

√
c

n

(
2 max1≤i≤n d

(i)
δ

min1≤i≤k λ2(Li)

)2

+
8 lnn

∣∣∣∣U2U
T
2 LδUiso

∣∣∣∣
2,∞

min1≤i≤k λ2(Li)
447

= 32
√
cr2 1√

n
+

8 lnn
∣∣∣∣U2U

T
2 LδUiso

∣∣∣∣
2,∞

min1≤i≤k λ2(Li)
,448

449

where we have used (2.2) in the second step. Finally450 ∣∣∣∣U2U
T
2 LδUiso

∣∣∣∣
2,∞ =

∣∣∣∣(I − UisoU
T
iso)LδUiso

∣∣∣∣
2,∞451

=
∣∣∣∣LδUiso − UisoU

T
isoLδUiso

∣∣∣∣
2,∞452

≤
(
||Lδ||∞ +

∣∣∣∣UTisoLδUiso

∣∣∣∣
2

)
||Uiso||2,∞453

≤ (||Lδ||∞ + ||Lδ||2) ||Uiso||2,∞454

≤ 4

√
c

n
max

1≤i≤n
d

(i)
δ .455

456

Hence457

min
V ∈Ok

||UV − Uiso||2,∞ ≤ 32
√
c
(
r2 + r lnn

) 1√
n
.

458
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4.3. A lemma for Section 3.459

Lemma 4.3. Let c1, c2 ∈ Rn such that ||c1 − c2||2 = d. For any x ∈ Bc1(r) and y ∈460

Bc2(r) let M be the (n − 1)-dimensional bisecting hyperplane that passes through x+y
2 and is461

perpendicular to the line segment that joins x and y. Then462

dist {M,Bc1(r) ∪Bc2(r)} ≥ 1

2
d− 3r.463

Proof. By symmetry, it suffices to show dist {M,Bc1(r)} ≥ 1
2d − 3r. We may suppose464

c1 = 0 and d > 6r. Then it suffices to show dist {M, 0} ≥ 1
2d− 2r. For any z ∈M we have465

n∑
i=1

(xi − yi)
(
zi −

xi + yi
2

)
= 0.466

By the point-plane distance formula467

dist {M, 0} =

∣∣∑n
i=1(x2

i − y2
i )
∣∣

2
√∑n

i=1(xi − yi)2
=
||y||22 − ||x||

2
2

2 ||x− y||2
468

≥ (d− r)2 − r2

2(d+ 2r)
469

=
1

2
d− 2dr

d+ 2r
470

≥ 1

2
d− 2r.471

472
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